AN
ATeT Document Cover Sheet
for Technical Memorandum

(i

Title: Packet-Pair Flow Control

Author (Computer Address) Location Phone Number Company (if other than AT&T-BL) ‘

S. Keshav (researchlkeshav) MH 2C-552 (908)582-3384
Document No. Filing Case No. Project No.
11272-940927-17TMS 39199-11 311407-7214
Keywords:

Flow Control; Congestion Control; Packet-pair; ABR; Round-robin

MERCURY Announcement Bulletin Sections
CMM - Communications CMP - Computing

Abstract
This paper presents the packet-pair rate-based feedback flow control scheme. This scheme is designed for
networks where individual connections do not reserve bandwidth and for the available bitrate (best-effort)
component of integrated networks. We assume a round-robin-like queue service discipline in the output
queues of the network’s switches, and propose a linear stochastic model for a single conversation in a net-
work of such switches. These model motivates the Packet-Pair rate probing technique, which forms the ba-
sis for provably stable discrete and continuous time rate-based flow control schemes. A Kalman state esti-
mator is derived from discrete-time state space analysis, but there are difficulties in using the estimator in
practice. These difficulties are overcome by a novel estimation scheme based on fuzzy logic. We then ad-
dress several practical concerns: dealing with system startup, retransmission and timeout strategy, and dy-
namic setpoint probing. We present a finite state machine as well as source code for a model implementa-
tion. The dynamics of a single source, the interactions of multiple sources, and the behavior of packet-pair
sources in a variety of benchmark scenarios are evaluated by means of detailed simulations. We close with
some remarks about possible extensions to packet-pair, limitations of this work, and an outline of related
work.

Total Pages (including document cover sheet): 61

Mailing Label

MCSL (07/12/30)
Timestamp: 0 AT&T BELL LABORATORIES

Initial Distribution Specifications

11272-940927-17TMS (page ii of ii)

Complete Copy

Executive Director 112, 113
Directors 112
R. Marley
P. Agrawal
A. Berger
R. Caceres
A. DeSimone
B.T. Doshi
K. Fendick
M. Grossglauser
C.R. Kalmanek
H. Kanakia
C. Lund
W.T. Marshall
P.P. Mishra
- D. Mitra
S.P. Morgan
S. Phillips
N. Reingold
R.C. Restrick Il

Cover Sheet Only

A. A. Penzias

Department Heads 1126, 1127, 1138

1127 MTS

Future AT&T Distribution by ITDS

RELEASE to any AT&T employee (excluding contract employees).

Author Signature
Y
N 7 s .

S. Keshav

Organizational Approval (Optional)

For Use by Recipient of Cover Sheet:

Computing network users may order coples via the library —k command;

for information, type man /brary after the UNIX prompt.
Otherwise:

Enter PAN if AT&T-BL (or SS# if non-AT&T-BL).
Retum this sheet to any ITDS location.

Intemnal Technical Document Service

() AK 2H-28 () 1H7M-103
() ALC 1B-102 ()MV 1L-19
() CB 30-2011 () WH 3E-204
{) HO 4F-112

(}N
P

W-ITDS
R 5-2120

dlll:ll’llll»

AT&T Bell Laboratories

Subject: Packet-Pair Flow Control date: September 27, 1994
Work Project No. 311407-7214 -- File Case 39199-11 '

from: S. Keshav
Org. 11272
MH 2C-552
(908)582-3384
research!keshav

™: 11272-940927-17TMS

TECHNICAL MEMORANDUM

1. Introduction

The emerging paradigm for data communication is based on the concept of an integrated network,
where traffic from constant bitrate, variable bitrate and bursty sources are intelligently multiplexed to pro-
vide quality of service guarantees to individual connections. Integrated networks are expected to provide at
least two classes of service. In the first class, users regulate their traffic to fit within some behavior enve-
lope, and in exchange the network gives them some guarantees of performance. For example, a traffic
source may agree to obey a leaky bucket descriptor, in exchange for a bound on its expected loss rate. In
the second class, sources do not specify a bound on their traffic, and in return, are not given performance
guarantees. These sources must adapt to changing network conditions in order to achieve their data transfer
goals. Such a service is useful for sources that are incapable of describing their expected behavior, since
this behavior may be bursty or unpredictable. The second class of service, which we call available bitrate
(ABR) service, is compatible with existing computer networks, such as the Internet and various LAN tech-
nologies, and hence it is likely to be an important component of future networks as well. In this paper, we
present a scheme for congestion control of the ABR component of integrated networks which is equally
applicable to existing datagram-oriented networks.

Congestion control for ABR traffic involves packet (or cell) schedulers at queuing points and the
flow control protocol at traffic sources [13, 35]. We first consider the role of packet schedulers in conges-
tion control. Recent work has shown that there is a strong motivation to use round-robin-like packet sched-
ulers for bursty data traffic, since this provides several advantages over the traditional first-come-first-
served discipline [13, 26, 35, 46,48]. Round-robin service automatically enforces a min-max fair allocation
of resources [21]. It also automatically polices sources, since a source sending faster than its fair share is
the one that will be subjected to packet or cell loss. This ensures that well-behaved users are protected from
ill-behaved users, which is desirable in public data networks [19]. Due to these advantages, it is likely that
round-robin schedulers will be widely implemented. packet-pair flow control is one way to exploit the
properties of such schedulers to do intelligent flow control.

While ’packet-pair’ strictly refers only to the technique for probing the bottleneck bandwidth avail-

;l:lity, we extend the meaning of packet-pair flow control’ to include several additional components.
ese are:

1) The technique for probing network state

2) The estimators that smooth this state information

3) The control law that uses the smoothed network state

4) The technique for flow control at startup or when current network state
information is not available

5) The strategy used to compute timeout intervals

6) The retransmission strategy

7) The buffer management strategy

Taken together, these schemes and strategies are intended to provide a complete solution to the problem of
flow control for best-effort sources in high speed networks of round-robin-like servers.

The paper is presented in roughly three stages: theory, implementation and simulations. In Section 2
we present and justify an analytic model for networks of round-robin like servers. This model serves as a
basis for the control law, the choice of estimators and the packet-pair probing technique discussed in Sec-
tion 3. Section 4 presents a strategy to use the state information in a control framework, followed by the a
discrete and continuous time control scheme, their stability analysis, and the design of Kalman and fuzzy-
logic based state estimators. Sections 5-7 present schemes for startup, timeout and retransmission strategy
and buffer management strategy. Section 8 discusses implementation considerations, and Section 9 is a
detailed simulation study of the scheme. Section 10 discusses some possible extensions to packet-pair, and
Section 11 presents some conclusions as well as a review of related work.

2. Network Model

In this section, we present and justify an analytical model for a network of round-robin-like servers.
We first describe several variants of round-robin service, then present a generic model. We will assume
here that all packets from a source to a destination traverse the same unicast route. This is true for virtual
circuit networks (such as ATM networks) and datagram networks where typical transport (or higher) layer
connect times are shorter than the routing table update time.

2.1. Round Robin and Rate Allocating Servers

Packet servers (or cell servers in ATM networks) are associated with every queueing point in a
packet-switched network, and are typically present at the output queues of packet switches. A round-robin
server is one where each active connection is associated with a logical or physical per-connection data
queue and the server serves non-empty data queues in turn. The time duration spanned by a visit of the
server to all non-empty data queues is called a round. If a single packet is served per round of service, the
scheduler is strict round-robin. If more than one packet is served per round, the scheduler is called
weighted round-robin.

If the packet size is small and fixed, then simple round robin service provides an equal bandwidth
share to each connection. When packet sizes are variable and potentially large, a packet must receive ser-
vice in inverse proportion to its length in order to achieve fair bandwidth allocation. This can be done by
tagging packets with the completion time had the service been head-of-line processor sharing, and then
serving packets in increasing order of their tags, as in Fair Queueing [13]. It can be shown that Fair Queue-
ing emulates head-of-line processor sharing asymptotically with conversation length [23,24]. Connections
may be allocated unequal bandwidth shares by varying the weights, as is done in the Weighted Fair Queue-
ing discipline.

If the round spans a constant time duration, with the output trunk being kept idle if necessary (i.e. a
non-work-conserving discipline), this is called framed round robin service. A multilevel framed round
robin server is also called a hierarchical round robin server [30]. The network model (and hence the flow
control scheme) described in this paper is adequate to describe variants of round-robin service where the
packet size per connection is fixed (as in ATM networks), or service is weighted to reflect the packet size

-3-

(as with Fair Queueing [13], Weighted Fair Queueing, Packetized Generalized Processor Sharing [48], and
Virtual Clock [67]). We call this kind of round-robin server a Rate-Allocating Server, (RAS) since at each
round a connection is allocated a service rate depending on the number of active connections and their
weights, and relatively independent of the traffic arrival patterns at the other connections. We say relatively
independent, since a connection that is only sporadically active will increase and decrease the number of
active connections, and in this way influence the service rate allocated to other connections.

Note that even with these variations in the service rate, a RAS provides a conversation with a more
consistent service rate than a first-come-first-served (FCFS) server. In a FCFS server, the service rate of a
conversation is linked in detail to the arrival pattern of every other conversation in the server, and so the
perceived service rate varies rapidly. For example, consider the situation where the number of conversa-
tions sending data to a server is fixed, and each conversation always has data to send when it is scheduled
for service. In a FCFS server, if any one conversation sends a large burst of data, then the service rate of all
the other conversations effectively drops until the burst has been served. In a RAS, the other conversations
will be unaffected. Thus, the server allocates a rate of service to each conversation that is, to a first approx-
imation, independent of the arrival patterns of the other conversations.

2.2. Stochastic Model for a Conversation

We now present a stochastic model for a conversation in a network of RASs. This is an extension of
the deterministic model presented in References [55,60,61). We model a conversation in a RAS network
as a sequence of regularly spaced packets from a source to a destination over a series of servers connected
by links. The servers in the path of the conversation are numbered 1,2,3...n, and the source is numbered 0.
The destination is assumed to acknowledge each packet. We also assume, for ease of analysis, that sources
always have data to send. This simplification allows us to ignore start-up transients in our analysis. In fact,
the start-up costs can be significant, and these are analyzed in [55].

The time taken for service at the ith server at time ¢ is denoted s;(¢), and the (instantaneous) service
rate is defined to be p;(r) = 1/s;(#). s; includes the time taken to serve packets from all other conversations
in round-robin order, the round time. Thus, the service rate is the inverse of the time between consecutive
packet services from the same conversation.

The source sending rate is denoted by A and the source is assumed to send packets spaced exactly
5o = 1/A time units apart. We define
sp(t) = m’gx(si(t)]0sisn)
to be the bottleneck service time in the conversation, and b is the index of the bottleneck server. p,(¢), the
bottleneck service rate, is defined to be 1/s,(¢). p,(f) changes due to changes in the number of active con-
versations. We model these changes over discrete time intervals, so that p(¢) changes at discrete time steps
1,2, .., k k+1 ---. The choice of step duration is discussed in Section 4.1.2.

If the number of active conversations, N,, is large, we expect that the change in N, in one time inter-
val will be small compared to N,.. Hence the change in p, in one interval will be small and ., (k+1) will
be ‘close’ to jt,(k). We model p, (k) as a random walk. This represents the fact that the cross traffic at a
bottleneck point is uncontrollable and suffers random variations. This model is simple, and though it repre-
sents the dynamics only to first order, we have found that it is sufficient for effective control in practice.
Thus, we define

Hp(k+1) = max(p,(k) + w(k),0)

where (k) is a random variable. We make some assumptions on the distribution of w depending on the
choice of estimator for |, (k). This is discussed in Sections 4.4 and 4.5.

By modelling the effect of cross traffic as a random noise variable, we have essentially linearized the
system, except for the 'max’ operator. This makes the control task relatively straightforward. Linearization
is possible because RAS service isolates a conversation’s service from the details of the arrival pattern of
cross traffic. For FCFES service, there is no such isolation, and the associated non-linear control is complex
[18,57].

3. Packet-pair Probing

S - ---

Y \
‘-.‘,\- _-_-d
~~~~~~~~~~ Y
F—e T J\
ret| | T
--a--
/
. bottleneck
/- Y e
/ .................. -_—— e o
- m | . -
¥-- 4+ L ::: ‘‘‘‘‘‘
rate estimaje /,./:::-"' ]
SOURCE SERVER 1 BOTTLENECK SINK

Figure 1: Packet-pair probing

The packet-pair mechanism is to send all data in the form of back-to-back pairs, and then estimate the
bottleneck service rate from the spacing of the acknowledgements (Figure 1). The figure presents a time
diagram, with time increasing along the vertical axis. Each axis represents either a source, sink or queueing
point in a communication network. The parallelograms represent the transmission of a packet and corre-
spond to two kinds of delays: the vertical sides are as long as the transmission delay (the packet size
divided by the line capacity). The slope of the longer sides is proportional to the propagation delay. Since
the network is store-and-forward, a packet cannot be sent till it is completely received. After a packet
arrives, it may be queued for a while before it receives service. This is represented by the space between
two dotted lines, such as de.

In the Packet-Pair scheme, the source sends out two back-to-back packets (at time s). Let the size of
the second packet be P. These two packets are then served by the bottleneck; by definition, if the inter-
packet service time is s,, the instantaneous service rate of the source at the bottleneck, W, is P/s,. Since
the acks preserve this spacing s, and P is known by the source, it can measure the inter-ack spacing to esti-
mate ;.

We now consider possible sources of error in the estimate. The server marked 'SERVER 1’ also
spaces out the back-to-back packets, so can it affect the measurement of p,? A moment’s reflection
reveals that as long as the second packet in the pair arrives at the bottleneck before the bottleneck ends ser-
vice for the first packet, there is no problem. If the packet does arrive after this time, then, by definition,
server 1 itself is the bottleneck. Hence, the spacing out of packets at servers before the bottleneck server is
of no consequence, and does not introduce errors into the scheme. Another factor that does not introduce
error is that the first packet may arrive when the server is serving other packets and may be delayed, for
example, by de. Since this delay is common to both packets in the pair, this does not affect estimation of
service capacity.

What does introduce an error is the fact that the acks may be spread out more (or less) than s, due to



-5.

different queueing delays for each ack along the return path. In the figure note that the first ack has a net

queueing delay of ij + Im, and the second has a zero queueing delay. This has the effect of increasing the
estimate of 1.

Note tlfat this source of error will persist even if the inter-ack spacing is noted at the sink and sent to
the source using a sta'te exchange scheme [52]). Measuring p, at the sink will reduce the effect of noise, but
cannot eliminate it, since any server that is after the bottleneck potentially introduces noise in the measure-
ment.

We model this error in measurement as an observation noise. Since the observed value of s, can be
either increased or decreased by this noise, with equal probability in either direction, we expect that the
noise distribution is symmetric about 0.

4. Flow Control Design

We now present a flow control algorithm that makes uses of the probed values of u,. The philosophy
behind the design is to make the necessary simplifications and assumptions that enable a analytical design,
then use simulations to refine the design and test the validity of the assumptions. In this section, we present
the theoretical framework for the design, and in Section 9 we present validation by extensive simulation.

4.1, Design Strategy

The design strategy for the flow control mechanism is based upon the Separation Theorem [3]). Infor-
mally, the theorem states that for a linear stochastic system where an observer estimates the system state
and then uses this estimate to do control, the eigenvalues of the state estimator and the controller are separa-
ble. The theorem allows us to use any technique for state estimation, and implement control using the esti-
mated state % instead of the actual state x. Thus, we will derive a control law assuming that all required esti-
mators are available; the estimators are derived in Section 4.5. We first present a few preliminary consider-
ations.

4.1.1. Choice of Setpoint

The aim of the control is to maintain the number of packets in the bottleneck queue, n, at a desired
setpoint. Since the system has delay components, it is not possible for the control to stay at the setpoint at
all times. Instead, the system will oscillate around the setpoint value. We assume for the moment that each
queueing point allocates B buffers to each conversation, and that B is a static quantity known to the source.
(This assumption will be relaxed in Section 7.) Then, the choice of the setpoint reflects a tradeoff between
mean packet delay, buffer usage, packet loss and bandwidth loss (which is the bandwidth a conversation
loses because it has no data to send when it is eligible for service).

Consider the distribution of n, for the controlled system, given by N(x) = Pr(n, = x). N(x) is
bounded on the left by 0 and on the right by B and contains information about three things:

1) Pr(loss of bandwidth) = Pr (RAS server schedules the conversation for service | n » = 0). Assum-

ing that these events are independent, which is a reasonable assumption, we find that Pr(loss of band-

width) is proportional to N(0).

2) Similarly, Pr (loss of packet) = Pr (packet arrival | n, = B), so that the density at B, denoted N(B),

is proportional to the probability of a packet loss.

3) the mean queuing delay is given by
B
E(s,) [ aN(o)dr,
0

where, a packet takes an average of E(s;) units of time to get service at the bottleneck.

If the setpoint is small, then the distribution of N(x) is driven towards the left, the probability of
bandwidth loss increases, the mean packet delay is decreased, and the probability of packet loss is
decreased. Thus, we trade off bandwidth loss for lower mean delay and packet loss. Similarly, if we
choose a large setpoint, we will trade off packet loss for a larger mean delay and lower probability of band-
width loss. In the sequel, we assume a setpoint of B/2. The justification is that, since the system noise is



symmetric, and the control tracks the system noise, we expect N(x) to be symmetric around the setpoint. In
that case, a setpoint of B/2 balances the two tradeoffs. Since any other choice of setpoint can be chosen

wi‘thout loss of generality, in Section 7, we show how modifying the setpoint can deal with the case where
B is unknown.

Work by Mitra et al has shown that asymptotic analysis of product form queueing networks can be
used to derive an optimal value of the setpoint [44,45]. While their ideas are not directly applicable
because of their assumptions of FCFS scheduling, Poisson cross traffic and an exponentially distributed
packet service time distribution, to a first approximation, their results may be used to determine the choice
of the optimal setpoint in the control system.

4.1.2. Assumptions Regarding Round Trip Time Delay

We assume that the propagation delay, R, is constant for a conversation. This is usually true, since
the propagation delay is due to the speed of light in the fiber and hardware switching delays. These are
fixed, except for rare rerouting.

We assume that the round trip time is large compared to the spacing between the acknowledgments.
Hence, in the analysis, we treat the arrival of the packet pair as a single event, that measures both the round
trip time and the bottleneck service rate,

Finally, we assume that the measured round trip time in epoch k, denoted by RTT(k), is a good esti-
mate for the round trip time in epoch &+ 1. The justification is that when the system is in equilibrium, the
queue lengths are expected to be approximately the same in successive epochs. In any case, for wide area
networks, the propagation delay will be much larger than the additional delay caused by a change in the
queueing delay. Hence, to a first approximation, this change can be ignored.

4.2. Controller Design: Discrete Time Control

We initially restrict control actions to only once per round trip time (RTT) (this restriction is removed
later). For the purpose of exposition, we divide time into epochs of length RTT (= propagation delay R +
queueing delays) (Figure 2). This is done simply by transmitting a specially marked packet-pair, and when
it returns, taking control action, and sending out another marked pair. Thus, the control action is taken at
the end of every epoch.

Consider the situation at the end of the kth epoch. At this time we know RTT(k), the round trip time
in the kth epoch, and S(k), the number of packets outstanding at that time. We also predict pf,,(k +1), which
is the estimator for the average service rate during the (k+ 1)th epoch. (If the service rate is ‘bursty’, then
using a time average for p may lead to problems. For example, if the average value for p is large, but dur-
ing the first part of the control cycle, the actual value is low, then the bottleneck buffers could overflow. In
such cases, we can take control action with the arrival of every probe, as discussed in Section 4.3.)

Figure 2 shows the time diagram for the control. The vertical axis on the left is the source, and the
axis on the right is the bottleneck. Each line between the axes represents a packet pair. Control epochs are
marked for the source and the bottleneck. Note that the epochs at the bottleneck are time delayed with
respect to the source. We use the convention that the end of the kth epoch is called ‘time k', except that
n, (k) refers to the number of packets in the bottleneck at the beginning of the kth epoch. Estimators are
marked with a hat.

We now make a few observations regarding Figure 2. The distance ab is the RTT measured by the
source (from the time the first packet in the pair is sent to the time the first ack is received). By an earlier
assumption, the propagation delay for the (k + 1)th special pair is the same as for the kth pair. Then ab = cd,
and the length of epoch k at the source and at the bottleneck will be the same, and equal to RTT(k).

At the time marked ‘NOW’, which is the end of the th epoch, all the packets sent in epoch k-1 have
been acknowledged. So, the only unacknowledged packets are those sent in the kth epoch itself, and this is
the same as the number of outstanding packets S(k). This can be approximated by the sending rate multi-
plied by the sending interval, A(k) RTT(k). So,

S(k) = MK)RTT(k) (N

The number of packets in the bottleneck at the beginning of the (k+1)th epoch is simply the number of



Each line represents a packet pair

Epoch k+1 ~| Epoch k+
RTT(k+1)
nb(k+2) ]
SOURCE BOTTLENECK

Figure 2: Time scale for control

packets at the beginning of the kth epoch added to the number that came in minus what was served in the
kth epoch subject to the condition that n, lies in [0, B]. Since A(k)RTT(k) = S(k) packets were sent in, and
w(k) RTT (k) packets were serviced in this interval, we have

if n, (k) + MK)RTT(k) — RTT(k)p(k) < O then O
ny(k+1) = [if ny(k) + MK)RTT(K) ~ RTT(k)pu(k) > B then B
otherwise ny(k) + Mk)RTT(k) — RTT(k)p(k)

The introduction of the MAX and MIN terms in the state equation makes the system nonlinear at the
boundaries. However, note that if the setpoint is chosen to lie in the interior of the range [0,B], then the sys-
tem is linear around the setpoint. Hence, for small deviations from the setpoint, we have

ny(k+1) = ny(k) + (A(k) — p(k)) RTT(k) )
Equations (1) and (2) are the fundamental equations in this analysis. They can be combined to give
ny(k+1) = ny(k) + Sk) = (k) RTT(k) 3

Since n,(k+1) is determined by what we sent in the kth epoch, there is no way to control it. Instead, we
control n,(k+2). We have

ny(k+2) = ny(k+1) + (Mk+1) — W(k+1))RTT(k+1) (C3)
From (3) and (4):
n,(k+2) = ny(k) + S(k) — W(k)RTT(k) + (A(k+1) = n(k+1))RTT(k+1) S)
The control should set this to B/2. So we set (5) to B/2, and obtain A(k+1).
B/2 = n,(k) + S(k) — p(k)RTT(k) + (Mk+1) — w(k+1))RTT(k+1) ©6)

This gives A(k+1) as



-1
RTT(k+1)
Replacing the values by their estimators (which will be derived later), we have

1 . . -
Mk+1) = ————[B/2 - Ay (k) - S(k) + [i(k)RTT(k) + [i(k+1)RTT(k +1 8
RTI’(k+1)[ ny(k) - S(k) + [(k)RTT(k) + [i YRTT(k+1)] (3)

Ak+1) = [B/2 - ny(k) - S(k) + p(k)RTT(k) + p(k+1)RTT(k+1)] (7)

From an earlier assumption, we set Ri’I‘(k +1) to RTT(k). This gives us:

Ak+1) =

RIT(O) [(B/2 = ny(k) = S(k) + (k) + [(k+1))RTT (k)] ®

This is the control law. The control tries to get the buffer to B/2 at the end of the next epoch.

Note that the control law requires us to maintain two estimators: Lfb(k) and n, (k). The effectiveness
of the control depends on the choice of the estimators. This is considered in Sections 4.4 and 4.5.

4.2.1. Stability Analysis for Discrete Time Control

For the stability analysis of the controlled system, A(k) is substituted into the state equation from the
control law. We will assume that the estimators are perfect, and so replace the estimators in (9) with the
true values. Since we know A(k +1), we use the state equation (2) one step ahead in time. This gives

ny(k+2) = ny(k+1) + (ACk+1)-u(k+1))RTT(k+1) (10)
Substitute (8) in (10) to find the state evolution of the controlled system.
ny(k+2) = ny(k+1) = W(k+1)RTT(k+1) + %[8/2 = ny(k) = S(k) + (u(k) + p(k+1))RTT(k)]

By assumption, RTT(k) is close to RTT(k +1). So, moving back two steps in time,
ny(k) = ny(k—=1) — Wk-1DRTT(k=1) + B/2 = ny(k=2) = S(k=2) + (W(k=2) + p(k-1))RTT(k-2)
Taking the Z transform of both sizes, we get
ny(2) = 27'ny(2) — 2 2W2IRTT(2) + B/2 - 27%ny(2) - 2728(2) + 227*U(z) RTT(2)
Considering n,, as the state variable, the characteristic equation is
z72-z"'+1=0

If the system is to be asymptotically stable, then the roots of the characteristic equation (the eigenvalues of
the system), must lie inside the unit circle on the complex Z plane. Solving for z™', we get

o 13
vl

Hence the eigenvalues lie on the unit circle, and the controlled system is not asymptotically stable.
However, we can place the pole of the characteristic equation so that the system is asymptotically sta-
ble. Consider the control law

AMk+1) = F;‘(—“-[B/Z - Ay(k) - S(k) + (k) + fi(k+1))RTT(k))

This leads to a characteristic equation

azl-z14+1=0

and roots
2 = 1+V4a - 1i
20

The poles are symmetric about the real axis, so we need only ensure that
[z >1 => ac<l

This means that if @ < 1, the system is asymptotically stable. By the Separation Theorem, since the system



.9-

and observer eigenvalues are distinct, this stability result holds independent of the choice of estimators.

The physical interpretation of « is simple: to reach B/2 at the end of the next epoch, the source should
send exactly at the rate computed by (9). If it does so, the system may be unstable. Instead, it sends at a
slightly lower rate, and this ensures that the system is asymptotically stable. Note that a is a constant that is
independent of the system’s dynamics and can be chosen in advance to be any desired value smaller than
1.0. The exact value chosen for o controls the rise time of the system, and for adequate responsiveness, it
should not be too small. Simulations indicate that a value of 0.9 is a good compromise between responsive-
ness and instability. Similar studies are mentioned in [15].

4.3. Controller Design: Continuous Time Control

This section describes how the frequency of control can be increased by using information about the
propagation delay. Note that 71, the estimate for the number of packets in the bottleneck queue, plays a
critical role in the control system. The controller tracks changes in 7, (k), and so it is necessary that n, (k)
be a good estimator of n,. n,(k) can be made more accurate if additional information from the network is
available. One such piece of information is the value of the propagation delay.

The round-trip time of a packet has delays due to three causes:
. the propagation delay from the speed of light and processing at switches and interfaces

. the queueing delay at each switch, because previous packets from that conversation have not yet been
serviced

J the phase delay, introduced when the first packet from a previously inactive conversation waits for
the server to finish service of packets from other conversations

The propagation delay depends on the geographical spread of the network, and for WANS, it can be of the
order of a few tens of milliseconds. The phase delay is roughly the same magnitude as the time it takes to
send one packet each from all the conversations sharing a server, the round time. The queueing delay is of
the order of several round times, since each packet in the queue takes one round time to get service. For
future high speed networks, we expect the propagation and queueing delays to be of roughly the same mag-
nitude, and the phase delay to be one order of magnitude smaller. Thus, if queueing delays can be avoided,
the measured round-trip time will be approximately the propagation delay of the conversation.

An easy way to avoid queueing delays is to measure the round-trip time for the first packet of the first
packet-pair. Since this packet has no queueing delays, we can estimate the propagation delay of the conver-
sation from this packet’s measured round trip time. Call this propagation delay R.

The value of R is useful, since the number of packets in the bottleneck queue at the beginning of
epoch k+1, n,(k+1), can be estimated by the number of packets being transmitted (‘in the pipeline’) sub-
tracted from the number of unacknowledged packets at the beginning of the epoch, S(k). That is,

Ay(k+1) = S(k) = RiLy(k)

Since S, R and ;f,,(k) are known, this gives us another way of determining 7,(k+1). This can be used to
update 7, (k+1) as an alternative to equation (2). The advantage of this approach is that equation (2) is
more susceptible to parameter drift. That is, successive errors in #,(k+1) can add up, so that 7, (k+1)
could differ substantially from n,. In the new scheme, this risk is considerably reduced: the only systematic
error that could be made is in p. There is another advantage to this approach: it enables control actions to
be taken at the arrival of every packet-pair, instead of once per RTT. Thus, the controller can react at the
earliest possible moment to changes in the system.

In the system described thus far, we limited ourselves to once per RTT control because this enables
the simple relationship between S(k) and A(k) given by equation (1). If control actions are taken faster than
once per RTT, then the epoch size is smaller, and the relationship is no longer true. The new relationship is
much more complicated, and it is easily shown that the state and input vectors must expand to include time
delayed values of p, A and n,. The faster that control actions are required, the larger the state vector, and
this complicates both the analysis and the control. In contrast, with information about the propagation
delay R, control can be done as quickly as once every packet-pair with no change to the length of the state
vector. .



-10-

When control is done once every probe, it is easier to work in continuous time. We also make the
fluid approximation [1], so packet boundaries are ignored, and the data flow is like that of a fluid in a
hydraulic system. This approximation is commonly used [4, 7,42, 57], and both analysis [45] and simula-
tions show that the approximation is a close one, particularly when the bandwidth-delay product is large.

Let us assume that the input rate A is held fixed for some duration J. Then,
n,(t+J) = n,(1) + A()J - p()J (11

where u is the average service rate in the time interval [t, t+]], and n, is assumed to lie in the linear region
of the space. Also, note that the amount of information in the bottleneck buffer can be estimated by the dif-
ference between the amount of unacknowledged data and the amount of data in flight:

ny(1) = S(1) - Ru(r) (12)
The control goal is to have n,(s+J) be the setpoint value B/2. Hence,
ny(t+J) = n, (1) + M) - u()J = B/2 (13)

So,

At = B/2 - S(1) + R{(1) + Jii(1)

7 (14)
which is the control law. The stability of the system is easily determined. Note that n,(¢) is given by
5 -
iy (1) = limie 22O T O w (15)
50 )
From equation (13),
B/2 - t
ny = 22 om0 16)
J
If we define the state of the system by
x =n,(t) - B2 a7n
then, the equilibrium point is given by
x=0 (18)
and the state equation is
x = 'Tx 19)

Clearly, the eigenvalue of the system is -1/, and since J is positive, the system is both Lyapunov stable and
asymptotically stable. In this system, J is the pole placement parameter, and plays exactly the same role as
a in the discrete time system. When J is close 0, the eigenvalue of the system is close to — and the system
will reach the equilibrium point rapidly. Larger values of J will cause the system to move to the equilib-
rium point more slowly. An intuitively satisfying choice of J is one round trip time, and this is easily esti-
mated as R + S(k) (). In practice, the values of R and S(k) are known, and p(r) is estimated by fi.

4.4. Estimator Design: Kalman Estimator

Having derived the control law, and proved its stability, we now need to determine stable estimators
for the system state. We choose to use Kalman estimation, since it is a well known and robust technique
[22). We present the design of a Kalman state estimator, and show that Kalman estimation is impractical.
A practical scheme is presented in §4.5.

In order to use Kalman estimation, we have to assume that the system noise o discussed in Section
2.2 is zero-mean, white and Gaussian. The zero mean assumption means that increases in service rate are
as likely as decreases in service rate, which is reasonable in the linear region of the control space, The white
noise assumption means that the changes in service rate at time k and time k +1 are uncorrelated. Since the
changes in the service rate are due to the effect of uncorrelated input traffic, we think that this is valid.



-11-

However, the Gaussian assumption is harder to justify. As mentioned in [2], many noise sources in nature
are Gaussian. Second, a good rule of thumb is that the Gaussian assumption will reflect at least the first
order dynamics of any noise distribution. Thus, for these two reasons, we will assume that the noise is
Gaussian. Before the technique is applied, a state-space description of the system is necessary.

4.4.1. State Space Description
We will use the standard linear stochastic state equation given by

x(k+1) = Gx(k) + Hu(k) + v, (k)
y(k) = Cx(k) +v,(k)

x, u and y are the state, input and output vectors of sizes n, m and r, respectively. G is the nxn state matrix,
H is an nxm matrix, and C is an rxn matrix. v,(k) represents the system noise vector, which is assumed to
be zero-mean, gaussian and white. v, (k) is the observation noise, and it is assumed to have the same char-
acteristics as the system noise. '

Clearly, u is actually u, a scalar, and u(k) = A(k). At the end of epoch %, the source receives probes
from epoch k-1. (To be precise, probes can be received from epoch k-1 as well as from the beginning of
epoch k. However, without loss of generality, this is modeled as part of the observation noise.) So, at that
time, it knows the average service time in the k-1th epoch, p(k-1). This is the only observation it has
about the system state and so y(k) is a scalar, y(k) = p(k-1) + v,. If this is to be derived from the state
vector x by multiplication with a constant matrix, then the state must contain p(k-1). Further, the state
must also include the number of packets in the buffer, n,. This leads to a state vector that has three ele-
ments, n,, (k) and p(k - 1), where p(k) is needed since it is part of the delay chain leading to (k- 1) in the
corresponding signal flow graph. Thus,

where p_, represents the state element that stores the one step delayed value of p.

We now turn to the G, H, v, v, and C matrices. The state equations are
ny(k+1) = n,(k) + A(k)RTT(k)—n(k) RTT(k)
wk+1) = plk) + (k)
Boy(k+1) = p(k)

Since RTT(k) is known at the end of the kth epoch, we can represent it by a pseudo-constant, Rer. This gives

us the matrices
1 =Rt 0 Ru 0
G=[010 ] H=[0}vl=[m] C=[001)]
010 0 0

v, is simply the (scalar) variance in the observation noise. This completes the state space description
of the flow control system.

4.4.2. Kalman Filter

A Kalman filter is the minimum variance state estimator of a linear system. In other words, of all the
possible linear estimators for x, the Kalman estimator is the one that will minimize the value of
E([ 2(t) = x(O1T[2() - x(¢)]). Moreover, a Kalman filter can be manipulated to yield many other types
of filters [22]. Thus, it is desirable to construct a Kalman filter for x.

In order to construct the filter, we need to determine three matrices, Q, S and R, which are defined
implicitly by :

B [:;][v.rm . [gi]



-12-
Expanding the left hand side, we have

000 0
Q=E0(U20 R=E(V22) S=E WV,
000 0

If the two noise variables are assumed to be independent, then the expected value of their product will be
zero, so that S = 0. However, we still need to know E(w?) and E(v,2).

From the state equation,
Kk +1) = p(k) + (k)
Also,
Wobservea(k+1) = plk+1) + vy(k+1)
Combining,
Wonservea (K +1) = (k) + (k) + vo(k+1)

which indicates that the observed value of p is affected by both the state and observation noise. As such,
each component cannot be separately determined from the observations alone. Thus, in order to do Kalman
filtering, the values of E(w?) and E(v,?) must be extraneously supplied, either by simulation or by mea-
surement of the actual system. Practically speaking, even if good guesses for these two values are supplied,
the filter will have reasonable (but not optimal) performance. Hence, we will assume that the value of noise
variances are supplied by the system administrator, and so matrices Q, R and S are known. It is now
straightforward to apply Kalman filtering to the resultant system. We follow the derivation in [22] (pg 249).

The state estimator x is derived using
X(k+1) = GX(k) + K(k)[y(k) - Cx(k)] + Hu(k)

' %(0) =0

where K is the Kalman filter gain matrix, and is given by
K(k) = [GEZ(k)CT][CZ(k)C + R]™!
(k) is the error state covariance, and is given by the Riccatti difference equation
Z(k+1) = GZ(k)GT + Q - K(K)[CZ(k)CT + RIK(k)"
Z(0) = &y

where X, is the covariance of x at time 0, and can be assumed to be 0.

Note that a Kalman filter requires the Kalman gain matrix K(k) to be updated at each time step. This
computation involves a matrix inversion, and appears to be expensive. However, since all the matrices are
at most 3x3, in practice this is not a problem.

To summarize, if the variances of the system and observation noise are available, Kalman filtering is
an attractive estimation technique. However, if these variances are not available, then Kalman filtering can-
not be used. In the next section, we present a heuristic estimator that works even in the absence of knowl-
edge about system and observation noise.

4.5. Estimator Design: Fuzzy Estimator

This section presents the design of a fuzzy system that predicts the next value of a time series. This
predictor can be used instead of the Kalman estimator to predict p,(k +1) given the time series of probe
values for s,. Consider a scalar variable 6 that assumes the sequence of values

{ek] = el. 0y, ---, 0,
where

0y =0, + 0,

and w, (called the ‘system perturbation’) is a random variable from some unknown distribution.



-13-
Suppose that an observer sees a sequence of values

and wishes to use the sequence to estimate the current value of 6,.

4.5.1, Assumptions in the Design of the Fuzzy Predictor

We assume that the observed sequence is corrupted by some observation noise &, so that the observed
values {8, } are not the actual values {6,}, and

0, =6, + &
where €, is another random variable from an unknown distribution.

Since the perturbation and noise variables can be stochastic, the exact value of 8, cannot be deter-
mined. What is desired, instead, is 8, the predictor of 0, be "good" in some sense.

We model the parameter 8, as the state variable of an unknown dynamical system. The sequence
{08,} is then the sequence of states that the system assumes. We make three weak assumptions about the
system dynamics. First, the time scale over which the system perturbations occur is assumed to be an order
of magnitude slower than the corresponding time scale of the observation noise. Second, we assume that
the system perturbation can span a spectrum ranging from ‘steady’ to ‘noisy’. When it is steady, then the
variance of the perturbations is small, and changes in { 8, } are due to observation noise. When the system
is noisy, {6,} changes, but with a time constant that is longer than the time constant of the observation
noise. Finally, we assume that £ is from a zero mean distribution.

Note that this approach is very general, since there are no assumptions about the exact distributions
of w and & On the other hand, there is no guarantee that the resulting predictor is optimal: we only claim
that the method is found to work well in practice.

4.5.2. Fuzzy Prediction
The basis of fuzzy prediction is the exponential averaging predictor given by:

Bre1 = @, + (1-0)8,

The predictor is controlled by a parameter o, where « is the weight given to past history. The larger it is,
the more weight past history has in relation to the last observation. The method is called exponential aver-
aging, since the predictor is the discrete convolution of the observed sequence with an exponential curve
with a time constant o
T - .
0, = Y(1-a)8;a* "' + a*@,
i=0

The exponential averaging technique is robust, and so it has been used in a number of applications.
However, a major problem with the exponential averaging predictor is in the choice of a. While in princi-
ple, it can be determined by knowledge of the system and observation noise variances, in practice, the vari-
ances are unknown. It would be useful to automatically determine a ‘good’ value of o, and to be able to
change this value on-line if the system behavior changes. Our approach uses fuzzy control to effect this
tuning [65, 69]. '

Fuzzy exponential averaging uses the assumption that a system can be thought of as belonging to a
spectrum of behavior that ranges from ‘steady’ to ‘noisy’. In a ‘steady’ system, the sequence {0,} is
approximately constant, so that {8,} is affected mainly by observation noise. Then, & should be large, so
that the past history is given more weight, and transient changes in 0 are ignored.

In contrast, if the system is ‘noisy’, {8,} itself could vary considerably, and 8 reflects changes both in
0, and the observation noise. By choosing a lower value of o, the observer quickly tracks changes in 6,
while ignoring past history which only provides old information.

While the choice of a in the extremal cases is simple, the choice for intermediate values along the
spectrum is hard to make. We use a fuzzy controller to determine a value of o that gracefully responds to
changes in system behavior. Thus, if the system moves along the noise spectrum, o adapts to the change,



-14-

allowing us to obtain a good estimate of 8, at all times. Moreover, if the observer does not know a a pri-
ori, the predictor automatically determines an appropriate value.

Since a is linked to the ‘noise’ in the system, how can the amount of ‘noise’ in the system be deter-
mined? Assume, for the moment, that the variance in o is an order of magnitude larger than the variance in
£ (this assumption is removed later in this section). Given this assumption, if a system is ‘steady’, the
exponential averaging predictor will usually be accurate, and prediction errors will be small. In this situa-
tion, o should be large. In contrast, if the system is ‘noisy’, then the exponential averaging predictor will
have a large estimation error. This is because when the system noise is large, past history cannot predict
the future. So, no matter what the value of o, it will usually have a large error. In that case, it is best to
give little weight to past history by choosing a small value of a, so that the observer can track the changes
in the system.

To summarize, the observation is that if the predictor error is large, then o should be small, and vice
versa. Treating ‘small’ and ‘large’ as fuzzy linguistic variables [64], this is the basis for a fuzzy controller
for the estimation of c.

The controller implements three fuzzy laws:

If proportional error is low, then o is high
If proportional error is medium, then a. is medium
If proportional error is high, then o. is low

The linguistic variables ‘low’, ‘medium’ and ‘high’ for a and proportional error are defined in the usual
way in Figure 3.

1.0 1.0
LOwW MEDIUM X HIGH Low X MEDIUM X HIGH
0.0 0.5 1.0 0.0 0.7 10
Linguistic variables to describe alpha Linguistic variables to describe error

Figure 3: Definition of linguistic variables

The input to the fuzzy controller is a value of proportional error, and it outputs o in three steps. First, the
proportional error value is mapped to a membership in each of the fuzzy sets ‘low’, ‘medium’, and ‘high’
using the definition in Figure 3. Then, the control rules are used to determine the applicability of each out-
come to the resultant control. Finally, the fuzzy set expressing the control is defuzzified using the centroid
defuzzifier.

The error |8 — §|is processed in two steps before it is input to the fuzzy system. First, it is converted

to a proportional value, error = —I(Bé—e"! Second, it is not a good idea to use the absolute error value
&

directly, since spikes in 8, can cause the error to be large, so that a drops to 0, and all past history is lost.
So, the absolute error is smoothed using another exponential averager. The constant for this averager, B, is
obtained from another fuzzy controller that links the change in error to the value of . The idea is that if the
change in error is large, then B should be large, so that spikes are ignored. Otherwise, B should be small. B
and change in error are defined by the same linguistic variables, ‘low’ and ‘high’, and these are defined
exactly like the corresponding variables for o. With these changes, the assumption that the variance in the
observation noise is small can now be removed. The resulting system is shown in Figure 4. Further details
of the prediction system and a performance analysis can be found in Reference {39].



-15-

ObservatioL

Exponential Averager z!
é A
« Estimate
€ >
8
Fuzzy System
Proportional Smoothed proportional error
error \7
Exponential Averager 7!
B
b Fuzzy System 7
Figure 4: Fuzzy prediction system
5. Startup

Thus far we have discussed the situation where the rate control mechanism has had some time to col-
lect past history and has a steady stream of user data to do continuous rate probing. Unfortunately, there
are at least three situations where this situation does not hold. First, the transfer length may be too short for
the source to accumulate enough history to get a good estimator for p. Second, the source may be intermit-
tent, so that there are long idle periods, during which the stored state information becomes aged and use-
less. Finally, during the startup phase of a conversation, there is no information about the network. All the
three cases share a common problem, that is, the source does not have enough state about the network to
make an informed decision. Thus, the control law described in the earlier sections is not directly applica-
ble. We call this the startup problem, and describe several solutions to the problem in this section.

Before we begin, note that having a good startup algorithm is an essential part of flow control. If the
startup is too aggressive, then on startup, every conversation will overflow its buffers, which is undesirable.
On the other hand, a conservative startup can lead to poor performance for short transfers. Since a large
class of applications, such as Remote Procedure Calls, consist of short transfers compared to the round trip
bandwidth delay product, having a good startup scheme is crucial.

Several startup schemes have been described in the literature. The DECbit scheme is to open the
window linearly till the operating point is reached [50]. This is a poor choice when the bandwidth delay
product is large. For example, when the operating window is 200 packets, this scheme will take 200 round
trip times to reach that size. A faster way to reach the operating point is the exponential + linear scheme
proposed by Jacobson and Karels [28]. However, the choice of when to change phase from exponential to
linear increase is rather ad hoc. Finally, Kanakia and Mishra have proposed a linear increase in the sending
rate till the operating point is reached (i.e a constant acceleration in the sending rate) [31]. This scheme
performs better than the DECbit scheme, but the choice of the acceleration is crucial, and not addressed.

Our proposal is to use an adaptive exponential rise to the nominal operating point. Given a current
nominal operating point, the rate control will exponentially increase the sending rate to this point. How-
ever, as new information about the operating point arrives, the asymptote of the exponential rise is adjusted
on the fly (Figure 5).



-16 -

Sending rate

target 1

Time

Figure 5: Adaptive Exponential Startup

In the figure, starting at time O, the sending rate exponentially rises to the first target operating point. How-
ever, soon after reaching this asymptote, fresh information about the next target arrives, so that the sending
rate moves exponentially to the new target. The sending is quickly adjust to information as it arrives. The
idea is that the information obtained at startup is not very accurate, so we do not want to rise to it immedi-
ately. Nor do we want to be overly conservative. By choosing an exponential rise, there is some room to
maneuver, without giving poor performance to short transfers.

Each target operating point is chosen by applying the control law to the current estimator for . At
startup, a source sends a packet pair probe and waiting for the first pair of acks to arrive. This gives enough
information for the control law to choose the first target operating point. During the second round trip time,
more packet pairs are sent and as the estimators get better, the target operating points can change. The
source does an adaptive exponential rise to the targets as and when they change. Note that there is a one
round trip time delay at startup. This can be avoided if the network administrator can guarantee that each
new connection is guaranteed some nominal bandwidth. Then, during the first round trip time, the connec-
tion can send at this bandwidth, revising its estimate for actual available bandwidth at the end of the first
round trip time.

It is important to determine when to end the startup phase. In other words, we need to know when
that the operating point has been reached. This information is available by looking at the estimator for the
bottleneck buffer size n,. When the sending rate is below the operating point, 4, (k +1) will be close to
zero, since the service rate will exceed the sending rate. However, as we approach the operating point, and
the buffer setpoint is reached, n, (k + 1) will rise above zero, and reach the chosen setpoint. Thus, a simple
way to know that the operating point has been reached is to check for n,(k+1) > 0. In practice, to allow
for measurement errors, we actually check for /i, (k+1) 2 2.

Having presented the adaptive exponential rise scheme, we now discuss the solutions to the three
problems raised at the beginning of this section. For short transfers and startup for long transfers, we use
the adaptive exponential rise scheme until 7,(k+1) > 2. (With short transfers, the transfer may complete
before this condition is reached.) For the problem of intermittent transfers, note that the end of a tranmis-
sion burst causes the value of 7, to drop to zero. Thus, when a new burst starts, the flow control automati-
cally goes into slow-start. Network state information is automatically updated during this startup.

The adaptive exponential rise technique is also useful whenever the state estimators are suspected to
be inaccurate. Such a situation arises when the number of active sources at a bottleneck suddenly
decreases. Consider a scenario where three sources share a line (Figure 6a). Note that each source sends a
pair of packets, and the output is perfectly interleaved. Thus, each source correctly estimates its capacity as
1/3 of the line capacity. Now, if one of the three terminates (Figure 6b), for the next round trip time the
other two send data slower than their available capacity, draining their bottleneck queue. If this leads to a



-17-

zero length queue, then it is possible that pairs arriving from the same conversation would be served back to
back before the arrival of pairs from the other conversation. For example, the pairs from source ’a’ are
served back-to-back since the server is otherwise idle. The same occurs for source ’c’. Both conversations
incorrectly estimate their share of the line at 100%, and in the next round trip time, would send at too high a
rate. )

(a)
Arrivals a a b b c ¢ a a p
R EE N I AN R AR
cab c ab c awb Time
Depnﬂums““l““
capacity estimate
(b)
Arrivals

e |-
0 |—

Time
Departures u LR, __i

capacity estimate
Figure 6: If a source stops transmission, the others get wrong rate estimates

The real problem here is that the sources receive poor estimates of bottleneck capacity because their
bottleneck buffers are empty. If the buffers were non-empty, then even when conversation b’ terminated,
packets from ’c’ would be available to interfere with packets from ’a’ and thus correctly inform ’a’ that its
share of capacity is 50%. If the endpoints notice that their 7, (k + 1) is small, and act cautiously on the esti-
mators received when this situation holds, this problem can be avoided.. Thus, the source should check for
the condition n,(k+1) < 2 at all times (not just during startup), and do an adaptive exponential rise if this
condition holds. Simulations show that this is solution works well in practice.

6. Timeout and Retransmission Strategy

Timeout and retransmission strategy is usually considered to be a part of error control rather than
flow control. However, if timers are too small there can be numerous retransmissions, which can lead to
network congestion. A poor choice in the other direction will lead to long pauses, wasting the available
bandwidth [66]). Thus, the choice of timers and of which packets to retransmit is intimately related to flow
and congestion control.

Three considerations guided the design of the timeout and retransmission strategy for packet-pair.
First, we believe that timers should be a mechanism of last resort. In the normal case, losses should be
detected without using timers. However, if timers are needed, then the choice of the timeout value should
be chosen intelligently, based on current network state. Second, the sender should try to continuously keep
sending data in order to keep probing the network state. That is, it is desirable to keep the pipeline as full as
possible. Finally, loss detection and correction should be made orthogonal to flow control.

To attain the last objective, each transport layer connection maintains a transmission queue that
buffers both incoming user data and data to be retransmitted. The transmission queue is partitioned into a
high priority zone at the head, and a low priority zone at the tail of the queue. Data from the application
layer is placed at the tail of the low priority zone, and the packets awaiting retransmission are added to the
tail of the high priority zone of the queue. The rate control process removes data from this queue at a rate
specified by the control law or startup procedure (Figure 7). The idea is that since retransmissions and data
share the same queue, it is not possible to violate the sending rate due to retransmissions. The transmission
queue thus effective decouples the rate and error control processes.



- 18-

Data from application
\
\

\ Transmission queue

Ce——————L|H

Rate control

Retransmissions .

Figure 7: Transmission queue

To detect losses without using timers, we monitor the sequence numbers carried by the acknowledg-
ments. We assume that, as in TCP, this sequence number is that of the last in-sequence packet seen so far,
and that every packet is acknowledged. In addition, every acknowledgement carries the offset between the
last in-sequence packet seen, and the sequence number of the packet that generated the acknowledgment.
For example, if the receiver receives sequence numbers 1,2,3,4,6,7,8... the acknowledgements will be (1,0),
(2,0), (3,0), (4,0), (4,2), (4,3), (4,4)... where each tuple is the sequence number of the acknowledgment, and
the corresponding offset. A non-zero offset indicates that the packet with the sequence number one larger
than the sequence number must have been lost (or was received out of order). Assuming that most packets
are delivered in order (which is true for virtual circuit oriented networks, such as ATM), the sender should
retransmit the packet with that sequence number. For the example above, the sender presumes that packet 5
must have been lost and will retransmit it. This idea of retransmitting packets before they time out is called
fast retransmit, and is due to Jacobson [28]. Fast retransmits are a good indication of receiver state, since
even if one or more acknowledgments are lost, the information is repeated, and even one duplicate
acknowledgment sequence number is enough to inform the sender about the loss of a data packet.

In contrast to Jacobson’s approach, where three duplicate acks automatically trigger retransmission of
the flow control window, we use the offset information to do intelligent retransmission. When an ack with a
non-zero offset is received, the sender notes that the packet with sequence number (ack sequence number +
offset) has reached safely. It then retransmits every packet in the range [last acknowledgement sequence
number, ack sequence number + offset] that has not been retransmitted already, and has not been received
correctly (this would have been detected earlier). Continuing with the example, when the sender receives
(4,2), it will retransmit 5 and note that 6 was correctly received. When (4,3) is received, since 5 has been
retransmitted, and 6 has been received, no retransmissions occur. Thus, with a single loss, a single retrans-
mission will occur. If a large chunk of outstanding packets are lost, they will all be retransmitted. The
scheme guarantees that no packet that has been correctly received and acknowledged is ever retransmitted.
In this sense, it is optimal.

If the retransmitted packet is also lost, then the scheme described above will fail. This is handled by
two other schemes called soft timeout and timeout respectively. In the soft timeout scheme, every two
round trip times, the source checks if any progress has been made in the last consecutive acknowledgement
received (round trip times are measured without using timers, as described in the discussion of buffer set-
point probing in Section 7). If no progress has been made, then the packet with sequence number (last_ack
+ 1) is retransmitted. Thus, in the usual case, the hole in the transmission window is corrected without hav-
ing a timer. Of course, if more than one packet is lost in the window, a timeout is needed.

In order to minimize the OS requirements of an implementation, timeouts are done using a single
shared timer, instead of a per-packet timer. The timer is re-initialized at the start of every packet transmis-
sion. On a timeout, the entire flow control window is put in the retransmission queue, except for packets
that have been received correctly. Thus, if there are multiple losses in a round trip time, these are automati-
cally retransmitted. With this scheme, the sender keeps the pipeline full the extent possible. Note that the
retransmission scheme combines the robustness and low overhead of a go-back-n protocol with the trans-
mission efficiency of a selective retransmission scheme. Also note that the actions on a duplicate ack and a
timeout are identical, except that the duplicate ack scheme will not retransmit a packet that has already been
retransmitted, but the timeout scheme will,

The timeout value must be well chosen to deal with the case where a whole window as well as its
acknowledgments are lost (for example, on a mobile host that has moved from one cell to another) or when



-19-

a fast retransmission is lost. We expect the round trip time to be R + S5(k) I, (k). Thus, we set the timer to
be 1.5 (R + S(k) pf,,(k)), in the expectation that if an ack is not heard from in this time, something is wrong.
Since we have good estimators for R, S(k) and ;f,,(k), this enables us to set timeouts fairly accurately. If
necessary, the multiplier can be tuned to achieve the best results for a particular network. '

The control law assumes that a correct count of the number of outstanding packets, S(k), is available.
It is important to know S(k) accurately, since the estimate for the number of packets in the bottleneck
directly depends on this value. If there are no packet losses, then S(k) can simply be incremented on every
packet transmission, and decremented with every ack. However, if a packet is lost, then the increment to
S(k) is made on transmission, but the corresponding decrement is not made. Thus, if S(k) is not corrected
to deal with lost packets, it will slowly increase with time, causing a systematic error in the rate control. To
deal with this, the sender decrements S(k) whenever a packet is retransmitted either from a fast retransmis-
sion or a timeout. This correctly accounts for the lost packet, and prevents drift in S(k).

7. Buffer Management Strategy

In Section 4.1.1 we assumed that each intermediate point would reserve B buffers per conversation.
If that is indeed feasible, then the preceding treatment is sufficient. However, we expect there to be many
networks where intermediate queueing points do not reserve buffers per conversation. In this case, the end-
point has two strategies. One is to minimize losses by choosing a small setpoint. As discussed in Section
4.1.1, this will lead to a lower effective throughput, but the loss rate would also be lower. This would be
suitable for risk-averse applications such as remote procedure calls.

The other strategy is to choose the largest setpoint that can be supported by the network without caus-
ing excessive packet losses for the conversation. This can be done by choosing a small setpoint, and
increasing the setpoint additively once every few round trip times till a loss occurs, which would trigger a
fast retransmit and a multiplicative decrease in the setpoint. By this dynamic probing of the setpoint, a
risk-taking client can choose a setpoint that is the largest that can be supported at any given time. This
maximizes the available bandwidth at the risk of incurring packet losses and additional queueing delay. In
our work, we have found that increasing the setpoint by 0.1 every four round trip times, and a multiplicative
decrease factor of 0.6 is effective in most circumstances. Note that this additive-increase-multiplicative-
decrease algorithm is modeled on the DECbit scheme, but is rather different in its aim. In the DECbit
scheme, the window size is increased and decreased to modify the operating rate. Here, we choose the send-
ing rate based on the packet-pair information. The buffer setpoint is modified by risk-taking applications
only to maximize the usage of buffers at the bottleneck.

8. Implementation

This section presents details on the implementation of packet-pair flow control. Feedback flow con-
trol algorithms are typically implemented at the transport layer of the protocol stack [56]. If a data source is
not trusted, or incapable of flow control, this functionality could also be implemented at the Network Inter-
face Unit, which is interposed between a traffic source and a public B-ISDN network. In either case, we
assume the system to be able to support per-connection state, give access to a real-time clock, and provide
at least one timer. We present the state diagram for the protocol, describing the actions at each state. C
code for an implementation is in the Appendix.

We describe only the sending side of the packet-pair protocol. Each packet is acknowledged by the
receiver, and the sequence number of the acknowledgment is the last in-sequence packet seen by the
receiver so far. A connection is assumed to have a transmission queue where it buffers packets awaiting

transmission (Figure 7). A flow chart describing the implementation of the protocol is presented in Figure
8.

State diagram

The system is usually in blocked state, waiting for an input. This can be one of ACK, TICK, INT,
TIMEOUT and USER_INPUT. When a packet containing an acknowledgement (ACK) arrives, and has a
non-zero sequence number offset, we know that at least one packet in the current send window has been
lost. The sender first notes that sequence number (last_ack + offset) has been correctly received, It then
scans the current send window, and places all packets in the range [last_ack +1, last_ack + offset] that have



-20-

not been retransmitted already at the end of the high priority portion of the transmission queue, to be
retransmitted eventually. If the ack signals the end of two round trip times in which no progress has been
made, then the packet with sequence number (last_ack + 1) is retransmitted (soft timeout).

Append user data
to transmission queue

USER_DATA

Blocked

iNT /«\cx \1MEOUT TICK

7
X Retransmit packets if Enqueue packets Mark pair as eligible
Mark line as free non zero offset. Retx. in retransmission

last_ack +1 if no progress queue
Modify buffer setpoint

Y o N
Check seq_no

Note time Compute inter_ack

Note RTT Compute alpha
Note seq_no Compute estimator for mu

Compute new sending rate

AN e S

Send a packet—pair if possible

Set next timer

Figure 8: Finite state machine description of the protocol

If the ACK is the first of a pair (this is a field in the transport layer header), then the current time is
noted. By comparing the transmission time of this packet to the current time, the round trip time is com-
puted and stored in a state variable. The sequence number of this packet and the current time are also
stored. The arrival of the ack reduces the count of outstanding packets by one.

If the ack’s header claims that it is the second of a pair, we validate its sequence number by testing if
it is one larger than the sequence number of the last ack seen. If so, this is a valid ack pair, and the inter-
ack time is the current measurement of the bottleneck service time. This is compared with the current esti-
mate of the service time, and the proportional error is fed into the fuzzy controller to get a new value of a
for the exponential averager (Section 4.5). Using this o and the new observation of s,, the new value for p
and 7, are computed. These are plugged into the continuous time control law (Equation 14), to obtain the
new sending rate. This rate is stored in a state variable, and is used by the per-connection timer then next
time it is loaded. Note that if multiple updates to the sending rate occur before the current rate timer
expires, the latest value of the sending rate is automatically used.

To dynamically modify the setpoint, the source maintains two state variables, rtt_count which
counts round trip times, and rtt_seq, which stores a sequence number. rtt_seq is initially 0. When
an ack arrives, if the sequence number is greater than rtt_seq, then rtt_seq is set to the sequence
number of the next packet to be sent, and rtt_count is incremented. Since the ack for this packet will
arrive in approximately one round trip time, this method gives us a cheap but approximate round trip time
counter. When rtt_count reaches a chosen value, the setpoint is increased, and the counter reset to
zero. If there is a packet loss, the setpoint is multiplicatively decreased. Thus, the dynamic setpoint prob-
ing is quite simple to implement. By testing to see if the ack has a sequence number greater than or equal
to rtt_seq, the scheme is tolerant of packet loss. The errors introduced by the fact that the next packet is
not sent immediately are small, and tolerable for our purpose.



221 -

The adaptive exponential rise uses a state variable called the mean_send_rate, which is an expo-
nentially averaged value of the actual sending rate. The control variable for the exponential averaging is
supplied extraneously and the system is quite insensitive to this choice. We used a value of 0.75. The adap-
tive rise is implemented as an exponential increase from the current mean_send_rate to the target oper-
ating point specified by the control law. Specifically, if the current target is 7, the current
mean_send_rate is m, then the next sending rate is chosen to be INC_FACTOR*(T - m), and m is
updated by the exponential averager. We used an INC_FACTOR of 0.2. To deal with startup, if the current
value of a1, (k+1) is less than 2, then the sending rate is chosen to be value computed above, else it is the
value computed by the control law (i.e. the target operating point itself). At startup, the
mean_send_rate is set to 0, and 7, (k+1) < 2 holds, so that the system automatically does an adaptive
rise.

In Section 4.3 we mentioned that J is the pole placement parameter and can be used to control the
speed with which the system reacts to changes. A large value of J will lead to slow reaction, and a small J
leads to a quick reaction, with possible oscillations. A good value for J is RTT, though it can be chosen
arbitrarily. We use two values of J in our implementation. If 7,(k +1) is above the setpoint, then the buffer
is overfull, and we would like to react to it quickly in order to prevent packet loss. If n1,(k+1) is below the
setpoint, we would like to use a less aggressive reaction rate. This is achieved by choosing two constants
ATTACK_UP and ATTACK_DOWN such that if A,(k+1) S B/2 then J = ATTACK_UP*RIT else
J = ATTACK_DOWN *RTT. We found ATTACK_UP = 1.5 and ATTACK_DOWN = 0.8 works well for a vari-
ety of simulated situations. When a TIMEOUT event occurs, all currently unacknowledged packets are
placed in the transmission queue. This is similar to the go-back-n policy, except that some or all of these
packets can be removed from the queue if acknowledgements are received before the queue can be emptied.

When an INT event occurs, this indicates that the output line is free, and a state variable is set to note
this. When a USER_INPUT event occurs, the users data is appended to the tail of the transmission queue.
If the transmission queue is full, the user process can be optionally be put to sleep. When a TICK event
occurs, this indicates that the rate timer has expired, and a state variable is modified to indicate that it is
valid to send a packet pair. The TICK timer is reloaded with a value computed using the control law by the
latest ACK pair.

At the end of event processing, the source checks to see if it is possible to send another packet pair.
This is true if the rate-timer has enough credits, and the output trunk is free, and either the receiver’s flow
control window is not full, or there has been a timeout or duplicate retransmission event. If all these condi-
tions are true, two packets are removed from the head of the transmission queue and a packet pair is sent.
As each packet is sent, the TIMEOUT timer is reloaded with a value computed from the current estimate of
the propagation and queueing delays, and the number of outstanding packets is increased by one. If any of
these conditions fail, then the source falls out of the test into the blocked state.

Dealing with Singletons

In the discussion above, we have implicitly assumed that each user write has enough data for an inte-
gral number of packet-pairs. This is because in the 'test’ state, if there is only one packet’s worth of data to
send and the user sends no more data, then this packet will never be transmitted, which is an error. Thus, if
a user calls the transport layer with, say, only 1 byte of data, (such as for a "telnet’ application), then the
transport layer has to somehow deal with this singleton packet.

Clearly, since the user may hand the transport layer only one byte, the transport layer cannot assume
that it can always fragment user data and send out this data as a pair. Thus, an alternate solution would be
to accompany small packets with a dummy packet, whose only purpose would be to provide the pair to
probe the bottleneck state. However, this is inefficient.

An alternate solution, which we have adopted, is to allow some packets to be singletons. These pack-
ets do not contribute to state probing. When the transport layer receives a packet, it starts off a If the timer
goes off, and the packet that led to the timer being set is still in the transmission queue, it is transmitted as a
singleton. This saves transmission efficiency at the cost of an extra timer and some user delay for singleton
packets. If this is unacceptable for some applications, the timer can be set to zero, so that all singletons
would be sent out right away. In our implementation, we chose the singleton timer (based cn anticipated



-22-

application sensitivity to delay) to be 100 ms.

Implementation Details

Table 1 shows the state variables used in the implementation, their meanings, and initial values.
Table 2 shows the control parameters, their meanings, and their suggested values. C code for an implemen-
tation of packet pair is given in the Appendix.

This concludes our description of the packet-pair scheme. We now evaluate its effectiveness by
means of simulations.

Variable Initial value Meaning

seq_no 0 sequence number counter

last_sent -1 highest sequence number sent so far
num_outstanding 0 number of packets outstanding

start_up 1 ‘ flag indicating startup

line_busy 0 flag indicating output line busy

tick 2 how many packets to send to probe

time_of_last_ack -1 time when last ack recvd

timeout 2s timeout value

alpha 1.0 exp. av. const for rate estimate

nbhat 0 estimate of number of packets in bottleneck

se 0 bottleneck rate estimator

re 0 estimator of RTT

reclean 0 clean estimate of propagation delay

send_rate 0 computed sending rate

mean_send_rate 0.0 smoothed sending tate

inter_ack 0 current value

last_ack -1 last ack seen so far

first_of_pair -1 seq number of first ack of pair

num_dup_acks 0 number of duplicate acks seen so far

packets_sent 0 packets sent so far

total_dup_acks 0 number of packets retransmitted so far from dupacks
B B_INITIAL current buffer setpoint

rtt_count 0 how many RTTs have gone by

rtt_seq 0 an ack with this sequence number indicates one RTT
num_retx (WINDOW_SIZE] 0 number of retransmissions for this sequence no.
recvd_ok [WINDOW_SIZE] O 1 if packet with that seqg. no. was correctly recvd.

Table 1: State variables and their meaning

9, Simulation Results

In this section, we present simulation results to measure the performance of packet-pair in a variety
of situations. We start with simple scenarios where we explore the dynamics of the system, then move on
to more complicated scenarios where we test the limits of packet-pair control.

The simulation scenarios have some network elements in common. We study the behavior a source
sending data to a sink where the source and sink are separated by a WAN link (Figure 9). Without loss of
generality, we assume that resource contention occurs at the destination LAN. The data packet size is 500
bytes (at the transport layer), and the ack packet is assumed to be 40 bytes long. These correspond to mean



-23.

Variable Suggested value Meaning

.5 attack rate if bottleneck underfull
.8 attack rate if bottleneck overfull

ATTACK_UP
ATTACK_DOWN

1

0
TIMEOUT_MULTIPLIER 1.5 this times RTT estimate is timeout value
INC_FACTOR 0.2 factor controlling send rate increase
MS_ALPHA 0.75 exponential averaging constant for mean_send_rate
B_DEC_FACTOR 0.75 multiplicative decrease factor for setpoint
B_ADD_INC_FACTOR 2.0 additive increase constant for setpoint
B_INITIAL 5 initial value of setpoint
B_MIN 2 smallest value of setpoint
B_COUNT 2 how many RTTs to wait before changing setpoint

Table 2: Control parameters

packet sizes observed on the Internet [11]. The source LAN speed is assumed to be the same as the WAN
link speed, and the destination LAN speed is assumed to be one-tenth of the WAN link speed. The line
speeds and propagation delays are chosen so that the bandwidth delay product is 100 packets and the round
trip time is 100 time units (TUs). The bottleneck router has a buffer capacity of 100 packets. Since no con-
gestion or queueing happens at the first router, the abstracted network is shown in Figure 10.

The pipeline depth of 100 packets and a round trip time delay of 100 TUs model a variety of band-
width delay products. Table 3 shows sample LANs, MANs and WANSs to which our results would be
directly applicable. In this table, bandwidth refers to the sustained WAN bandwidth that would be avail-
able to a network interface unit (or single end system). Note that both high speed LANs as well as medium
speed WANS fall in the same bandwidth delay regime, and can be modeled using similar parameters. We
also show sample parameters for ATM networks where flow control is done on an ATM cell (instead of
AALS frame) basis. Given the current economics of LAN interconnection (45 Mbps connections cost
about 1000 dollars per mile per month), we feel that the simulation parameters are fairly representative.

Network type  Packetsize = Bandwidth Delay  Buffer size

LAN 500 bytes 400 Mbps 1 ms 50 KBytes
MAN 500 bytes 40 Mbps 10ms 50 Kbytes
WAN 500 bytes 6.7 Mbps 60ms 50 Kbytes

ATM LAN 53 bytes 42 Mbps Ims 5.3 Kbytes
ATM MAN 53 bytes 4.2 Mbps 10ms 5.3 Kbytes
ATM WAN 53 bytes 706 Kbps 60ms 5.3 Kbytes

Table 3: Simulation bandwidth delay regime

9.1. Base Case Dynamics

The simplest possible dynamics are when a single source sends packets through a single bottleneck
which has adequate buffers. This is the best possible case for the flow control algorithm. We use this case
to study the dynamics of 'free-running’ flow control.

In the first test we study the behavior of a risk-averse source by turning off setpoint probing and
observing the behavior of the flow control algorithm in isolation. Figure 11 shows the setpoint, the queue
length at the bottleneck buffer, its estimated value, and the number of outstanding packets versus simulation
time measured in round trip times (RTTs). During startup, the bottleneck queue length is close to zero. As



-24.

B sink
o
: \ |
’ b : router -\
source v, () /
( { ) e et = N
router ¢ -
1 LAN
LAN “WAN
Figure 9: Simulation scenario
40,476 bits/time unit 4,047 bits/time unit )
()  nffer=Toopks L)
source delay =0 router sink

delay = 49.412 time units

pkt size = 500 bytes
ack size = 40 bytes

round trip time = 100 time units
bandwidth delay product = 100 packets

Figure 10: Abstracted scenario

the sending rate matches the service rate, the queue length rises exponentially to the setpoint of 20 packets,
where it stays till the end of the simulation. It is clear that 7, is a good estimator of the queue length. The
number of outstanding packets is around 120, which is the pipeline depth of 100 added to the buffer set-

point of 20.

140
120
100

80

Packets

40
20

60

| | | |
— — Queue size —
Estimate —--
B 1 Setpoint ----
n _|# unacked pkts ------
|/ / i | L
0 5 10 15 20 25

Figure 11: Queue length, setpoint and number of outstanding packets

A more detailed view of the queueing is shown in Figure 12. Note that the packets arrive as pairs,



-25.

and depart with a spacing of around 1 time unit, which is the service rate at the bottleneck. The arriving
pairs exactly synchronize with the departing pairs so that the oscillation around the bottleneck is exactly 2
packets in amplitude, with a mean of the buffer setpoint of 20 packets. The buffer size estimate also oscil-

lates around this point.

21
20.8
20.6
204
20.2

20
19.8
19.6
194
19.2

19

Packets

|
— Queue size —
| Estimate —--—
| | Setpoint ----
4= JEN S NS N DU S o
| | | ]
142 1425 143 1435 144 1445 145

RTT

Figure 12: A closer look at the queue size, its estimator and the setpoint

The flow control does not immediately reach the buffer setpoint because of the adaptive exponential
rise during startup. The time to reach the setpoint is seen in the switch utilization curve. The utilization is
measured over intervals of 25 time units. Note that the 99% utilization mark is reached in about 4.5 round
trip times. The utilization stays at 100%, since the bottleneck queue is never empty.

1.1

0.9

Utilization

5 10 15 20

RTT

Figure 13: Switch utilization

25



-26-

Finally, the sequence numbers and acknowledgement numbers rise smoothly, with a slope equal to
the service rate at the bottleneck (Figure 14).

2000
1800
1600
1400
1200
1000
800
600
400
200

Sequence number ——
Ack number ---

Sequence number

Figure 14: Sequence number and acknowledgement number space

In the next experiment, we enable buffer setpoint probing. Setpoint probing is not a great advantage
when there is only a single source. In fact there is no need for probing with only a single source since there
is no source of variation in the buffer share. Probing is more useful when the number of sources, and there-
fore the fair buffer share, changes with time. Figure 15 shows dynamic setpoint probing where four sources
share a bottleneck. Note that the sources increase their setpoint till the sum of the setpoints reaches 100, at
which some packet losses occur, and the four sources immediately reduce their setpoint. The setpoints
oscillate around 25, which is the fair share of buffers. Though not shown here, the queue lengths exactly
follow the setpoints. Because of the retransmission strategy described in Section 6, the losses affect the
sources minimally. This is illustrated by the sequence number trace in Figure 16. Note that each loss is cor-
rected by a single retransmission, and losses do not affect the sending rate, reflecting the decoupling of the
flow control and retransmission strategy.

During probing, the setpoint is increased linearly by 2 every 2 round trip times, and if a loss occurs,
the setpoint is multiplicatively decreased by a factor of 0.75. If the setpoint increase factor were increased,
the increase interval were decreased, or the decrease factor made closer to one, the frequency of setpoint
probing would increase. However, this would induce more losses. One can view each loss event as giving
some information about the highest achievable setpoint. Better information is achieved only by increased
losses. Thus the goal of loss-free transfer and setpoint probing are mutually contradictory. We prefer to
somewhat conservative in inducing losses, as evidenced by the choice of probing parameters. It is possible
to trade off losses for better probing. As an example, in the scenario above, the four sources each lost three
to six packets during the course of the simulation. With additive increase in the setpoint of 1 every two
round trip times, there is only one loss per source, which would be a more conservative tradeoff.

Another problem with dynamic probing is that the instantaneous setpoints achieved by the different
sources are not necessarily fair. Given a buffer of size K and N sources, we would like the setpoints to con-
verge to a fair buffer share of K/N. Though instantaneous bandwidth shares are guaranteed to be fair by the
round-robin scheduling discipline, since loss events cause drastic changes in the setpoint, over short inter-
vals of time, the buffer share is unfairly distributed. However, since Fair Queueing follows the policy of
dropping a packet from the longest queue, over long enough periods, the buffer share will also be fairly dis-
tributed.



-27-

=1 Setpoint1 —
Setpoint2 ---
- Setpoint3 ----
Setpoint 4 ------

Packets

120
RTT

Figure 15: Dynamic setpoint probing for four sources sharing 100 buffers

2500

2000 -1 Seq#1 —
Seq#2 ---
Seq#3 ----

1500 - Seq#4 -----er

Packets

1000

500

0 20 40 60 80 100 120
RTT

Figure 16: Sequence numbers for the four sources

The same problems are present in a more severe form in the 4.3 BSD implementation of TCP, where
induced losses are used to probe for the window size [28]. However, in their case, since the probing is for
the flow control window, uneven losses lead to unfair bandwidth allocation. In our case, the unfairness in
setpoints does not lead to unfair allocations of bandwidth.



.28 -

9.2. Dynamics of Interaction between Sources

In the next set of scenarios, we study the behavior of a source as additional sources start up and share
the bottleneck bandwidth. Two cases are of interest. In the first, we study the effect of adding a source to
an existing set of sources. In the second, we study the effect of adding N additional sources simultane-
ously, as N varies over some range.

For the first case, the source under study starts at time 0, and new sources start up every R round trip
times, until 10 sources are active. As each source starts up, we see the incremental effect of a source when
N sources are already active, and N ranges from 1 to 9. The behavior of the system depends on the choice
of R. If R is less than 1, then the source under study does not have time to react to a change, before the next
change occurs. If R is more than 1, then the source has a chance to adjust its sending rate before seeing the
next change. Thus, we study two sub-cases - one where R = 0.5, and another where R = 2.

Figure 17 shows the sending rates versus time for sources 1 (the source under study), 2, 6 and 10
when R = 0.5. Source 1 sends 1500 packets and the other 9 sources send 500 packets each. The start times
are staggered 50 time units apart starting at time 500. Source 1 initially has a sending rate of 1, which com-
pletely uses the bottleneck. As the setpoint for 1 increases, its queue occupancy also rises. At time 500,
source 2 starts up, and every 50 time units after that a new source starts up. Since each source does an
adaptive exponential rise, which takes about 5 round trip times to complete, the effect of the additional
sources on source 1 is not as drastic as it might be (Figure 17). The last source starts up at time 950, and by
time 1000, source 1 has brought its rate down to below its fair share of 0.1, so that its queues drain to the
fair buffer share of 10. From time 2000 onwards, the system is quite stable, with all the sources sharing
bandwidth equally. As sources terminate, their share is distributed to the remaining sources, which appears
as arise in the sending rates towards the end of simulation time.

Sending rate | ——
Sending rate 2 —--
Sending rate 6 ----
Sending rate 10 -------

Packets/time unit

L1 1 1
30 40 50 60 70
RTT

Figure 17: Sending rates as new sources are added every 0.5 RTT

Figure 18 shows the sending rates versus time for the case where R = 2. As before source 1 stabilizes
by time 500 slightly above the bottleneck rate of 1.0, so that its queue size increases with the increasing set-
point. As source 2 starts up, source 1’s sending rate decreases to around 0.5, then drops incrementally as
more sources become active. By the time source 10 starts up at time 2100, source 1 is nearly at its fair
share rate of 0.1 and is not affected much by the new source. Two conclusions are clear from the this and
the previous experiment. First, the degree to which source 1 is affected by a new source depends on the
number of sources already active. Second, the variation in sending rate for a new source also decreases as
the number of active sources increases. This is easy to explain - if there are N sources active, the addition



-.29.

of a new source changes the bottleneck service rate from 1/N to 1/(N + 1), achange of I/N(N + 1). AsN
increases, this fraction decreases by a factor of N2, and so the system behaves in a more stable fashion. In
this sense, packet-pair scales well with N. This is desirable.

Sending rate | ——
Sending rate 2 —--
Sendingrate 6 ----
Sending rate 10 -------

Packets/time unit

. T
0 10 20 30 40 50 60 70
RTT

Figure 18: Sending rates as new sources are added every 2 RTT

We now turn our attention to the behavior of a source as N sources are simultaneously added to the
system. As N increases, the source under study suffers a bandwidth loss of 1 — 1/N, so that the ratio of new
service rate to old decreases linearly with N. We study two cases, one where the buffer size is 100 buffers
as before, and we look at the number of losses suffered by source 1, and another where the buffer size is
infinite, and we study the peak buffer size attained by source 1.

We first consider the behavior of source 1 for the case where nine other sources start up at time 1000.
This behavior of source 1 goes through nine distinct phases, explained below. Figure 19 shows the sending
rate in packets/second and the inter-ack spacing seen by the packet pair probe sent from source 1, and Fig-
ure 20 shows its queue at the bottleneck. Recall that the service rate is approximately 1 packet per second.
Thus, when all 10 sources are active, the inter-ack spacing is 10, and the sending rate ought to be around
0.1.

In the first phase, from time 0 to 1000, the source sees an inter-ack spacing of 1 and sends at 1 packet
per second, after the slow start period discussed earlier. At time 1000, phase 2 begins when all the other
sources send their first probe, and source 1’s service rate drops to 0.1. However, in the period before this is
seen, the sending rate stays at 1.0, thus building up the queue. At this time, packet losses are possible.
Phase 3 begins about one round trip time from the end of phase 1, when the new service rate is known, and
the estimate for the bottleneck queue (#,) suddenly increases. Thus, to allow the bottleneck queue to drain,
the sending rate rapidly drops to nearly zero. At the end of the third phase, the source sends out a new
probe. However, this probe encounters none of the other sources, since they are all in their slow start
phases, and source 1 imagines that it is alone in the network (the inter-ack spacing is seen to be 1). So, it
begins transmitting at the full rate (phase 4). However, the other sources soon attain their final sending
rates, and source 1's queue starts building up (this is the second queue buildup, with packet losses again
possible). When source 1 finally sees the inter-ack spacing of 10, and all the sources are simultaneously
active, source 1 sends at its correct rate of 0.1 (phase 5), and the bottleneck queue is at its correct value of
10 packets. Since packets lost in phase 1 and retransmitted in phase 4 are also lost, every two round trip
time, the source attempts several soft timeouts (the downward spikes in Figure 21). When the competing
sources complete, the service rate suddenly increases to 1, and so source 1’s queue rapidly drains. This is



-30-

phase 6. In the seventh phase, source 1 detects that the service rate has increased to 1.0, and the queue
increases to the setpoint. The source is now able to send at the full rate till the end of its transmission,
unless the soft timeouts are unable to fill in the lost packets in the transmission window. In this case, the
source will be able to send only until the receive window fills up, at which point it must wait for a timeout
before the packet is retransmitted for the second time, and the receive window opens up again. Thus, in the
eighth phase, the source is idle, waiting for a timeout, and in the ninth phase, it begins a new slow-start.
Phases 8 and 9 do not occur in this example, but have been observed for larger values of N.

Figure 21 shows the loss behavior for source 1. Note that almost the entire window is lost at time
1000, and this is retransmitted in phase 4, where some packets are again lost. The source recovers from this
loss during phase 5 using soft timeouts.

l

- Sending rate ——
- Inter-ack time —--

Packets/time unit, time unit

I
'\i__-_-______-a——
]

I'._/_l__l_ﬂ A1

0 10 20 30 40 S0 60 70 80
RTT

O~ NDWHAWULUOAN®OO
|

Figure 19: Sending rate and inter-ack probes for source 1

This scenario illustrates the difficulty in designing a good retransmission strategy for a rate-based
flow control algorithm. One needs to design not just the rate probing algorithm, but also the choice of
timeout, slow-start strategy, what information is sent back to the source by the receiver, and problems with
incorrect probes. We believe that we have achieved a reasonably good mix in packet-pair flow control.

We now consider some quantitative metrics of packet-pair performance as N increases. Table 4 shows
the number of loss rate, retransmission rate, the completion time, and the peak buffer occupancy as a func-
tion of N. Note that the completion time increases monotonically. This is to be expected, since the total
number of packets served increases as N increases. The loss rate and retransmission rate match exactly,
which shows that the retransmission strategy is optimal, as claimed. The loss rate (expressed as mean num-
ber of packets lost per 1000 time units over the length of the simulation) generally increases with N. This is
because the buffer share decreases as 1/N. The peak buffer occupancy shows an interesting trend, first
decreasing and increasing by turns. The explanation is that these peaks are achieved in different phases,
and that in each phase, the peak is achieved for a different N.

As N increases, the peak in phase 2 increases, and is maximum for N = 10 at 41. The peak for phase
4 depends on the slow start behavior of the other sources, and peaks at N = 7 with an cccupancy of 76.
When N = 2, the peak occupancy of 83 is achieved because the loss in service rate is small, and the queue
achieved at the end of phase 2 is not much larger than the target setpoint. Thus, phase 3, where the sending
rate slows down to drain the queue does not occur. So, the phase 4 buildup adds to the phase 2 buildup,
leading to a large queue. For N = 3 and N = 4 also there are no losses, but phase 3 is longer, and the phase
4 buildup is smaller since the rate probes are more likely to interfere with competing sources than when



-31-

Queue length ——

Packets

T ] | | bl |

0 10 20 30 40 50 60 70 80
RTT

Figure 20: Queue length at the bottleneck for source 1

-1 Sequence number ——
- Ack number ---

Sequence number

0 | ] ] ] ] ] ]

0 10 20 30 40 50 60 70 80
RTT

Figure 21: Sequence and acknowledgement space for source 1

N = 2. Thus, the peak phase 4 buildup is achieved when N = 2. To summarize, for N in [2,4], there are no
losses, and the peak is for N = 2, when there is least interference. For N in [5,7], there are packet losses in
phase 2, as well as queue draining in phase 3, and the subsequent phase 4 buildup peaks when N = 7.
Finally, the phase 2 buildup peaks when N = 10.

We now consider peak buffer occupancy when the buffer is very large (10,000 packets) (Table 5).
As before, when N = 2, phase 3 is missing, and the phase 2 and 4 buildups add up, so that the peak queue
occupancy of 83 is reached at that time. Phase 4 buildup is much larger than phase 2 buildup in all cases,
and this peaks for N = 9 where it is 101. N = 10 achieves the largest phase 2 buildup (41), but this is



-32-

N  Loss Retransmission ~ Completion  Peak Buffer
Rate Rate Time Occupancy
(pkts/1000 TUs)  (pkts/1000 TUs) (TU) (pkts)

2 0 0 2761 83

3 0 0 3291 31

4 0 0 3803 35

5 0.6 0.6 4435 40

6 05 0.5 4941 44

7 3.7 3.7 5542 76

8 9.0 9.0 6519 35

9 99 9.9 6921 38

10 89 8.9 7172 41

Table 4: System with limited buffers

smaller than its phase 4 buildup of 86.

N [ 2 3 4 5 6 7 8 9
Peak Occupancy | 83 31 35 40 44 82 84 101

Table 5: System with unlimited buffers

We draw several conclusions from the study of packet-pair dynamics. First, the dynamics are influ-
enced by a number of factors, and it is important to achieve a synergy between retransmission and flow
control strategies. Second, the scheme behaves nearly optimally even when there are drastic changes in the
bottleneck capacity. The estimator for the bottleneck queue length tracks the real queue length quite
closely, due to the fuzzy prediction algorithm. The setpoint probes allow the sources to share bottleneck
buffers fairly. Third, the peak buffer occupancy is achieved in one of two phases of queue buildup. The
phase 2 buildup is as expected, and reflects the lack of information about the rate change for one round trip
time. The amount of buildup is exactly the minimum predicted by multiplying the change in the service
rate by the round trip time {36]. However, phase 4 buildup because of improper rate probing when several
sources are in their startup phase, was somewhat unexpected. As it turns out, this effect dominates peak
buffer occupancy. Fourth, we the simulations show that packet-pair is robust to large changes in service
rate, large numbers of packet losses, improper rate information and small number of available buffers in sit-
uations where the bandwidth delay product is as large as 100 packets. This robustness is necessary for any
practical rate-based flow control mechanism.

9.3. Goodput in a Public Data Network

We now study a scenario that models a public data network. Here, N on-off sources regulated by
packet-pair flow control compete for a single bottleneck server. Each source is modeled as a pair of pro-
cesses. The producer process places some number of packets in the transmission queue during the expo-
nentially distributed on time and then is idle for the exponentially distributed off time. The consumer pro-
cess is the packet-pair flow regulator, which empties out the transmission queue into the network. The pro-
ducer process has a nominal rate A, which is the mean rate at which it places data into the transmission
queue. The actual source rate can be less than A if so determined by the flow control algorithm. The metric
of interest is to study the throughput and loss behavior of the system as the sum of the nominal source rate
increases and then goes beyond the bottleneck capacity. Since the sources are stochastic in nature, not all
the sources would be active all the time, leading to possible congestion.

Since this is a large public network, we choose to simulate 10 active sources in all the scenarios. We
change the loading by increasing the sum of the nominal rates from 0.5 of the bottleneck capacity to 5.0 of
this capacity. Two types of sources are studied - open and closed sources. An open source puts its data in
the transmission queue independent of the state of the queue. Thus, the sum of the on and off duration is



-133-

independent of the network loading. This models a file transfer type application. A closed.source epte’rs 1ts
off time only when the transmission queue is empty. Thus, the actual sum of on and off times varies with
the load of the system. The open system models a file transfer type of application, the closed system mod-
els a transaction processing environment.

We measure the performance of packet-pair in this scenario by the goodput, which is the retransmis-
sion rate subtracted from the transmission rate, as a function of the sum of the nominal loads of all the
sources. Losses (and retransmissions) are fairly shared by all sources due to the fair buffer loss property
and the fair bandwidth allocation property of Fair Queueing. So, we simply add the retransmissions
incurred by all the sources, and subtract this from the throughput to determine the goodput. Each of 10
sources sends 2000 packets during the course of the simulation, so RTX total retransmissions corresponds to
a mean goodput of 1-RTX/20,000. Table 6 shows the mean goodput per source as the nominal rate
increases for the open and closed systems. In both cases, the bottleneck has 100 buffers, and the bandwidth
delay product of the network is 100 packets.

Nominal Load Open System Closed System
Retransmissions ~ Goodput | Retransmissions  Goodput

0.5 0 1.0 0 1.0

0.75 0 1.0 0 1.0

0.9 205 0.99 50 0.99

1.0 506 0.97 394 0.98

1.5 387 0.98 739 0.96

2.0 398 0.98 845 0.96

5.0 382 0.98 235 0.99

Table 6: Goodput in a public data network

Note that in all cases, the goodput is above 95%, which is excellent, considering that the sources
share a single round trip time worth of buffers, and the delay is substantial. Further, though this is not
shown, for all the cases, each sources maintains approximately 10 packets in the buffer at all times, thus
achieving the fair setpoint. To our mind, these simulations indicate that packet-pair is suitable for best
effort traffic for B-ISDN networks.

9.4. File Transfer Benchmark Tests

In this section, we study the behavior of packet-pair in a set of benchmarks that are designed to stress
the flow control algorithm in a number of ways [33]. We compare the behavior of packet-pair to the opti-
mal flow control, defined below. We use sources with finite amounts of data (such as a file) to send and
use the file transfer time as the primary metric to compare the performance of various schemes. The file
transfer time is defined as the interval between the instant at which the first byte of data is available at the
transport-level of the sender and the instant at which the sender receives the acknowledgement that the des-
tination has received the last byte of the file. By carefully designing the topology of the network and the
experimental environment, this measure subsumes other traditional performance measures such as link uti-
lization, fairness and throughput. Several considerations about the design of such a benchmark are pre-
sented in [33). In this work, we simply present the benchmarks and results obtained for packet-pair.

We do not compare packet-pair with other schemes for two reasons. First, all the other schemes have
been designed for networks of first-come-first-served servers, and so are optimized for that case. Since the
behavior of FCFS servers is not as ’nice’ as that of round-robin-like servers, packet-pair has an unfair
advantage. A more pragmatic reason is that the number of flow control schemes proposed in the literature
is rather large, and it would be impractical to study them all. Further, most schemes are parametrized by a
large number of parameters that are not always published in the literature. For these reasons, we only pre-
sent the benchmark results for packet-pair.

The optimal file transfer time is obtained analytically by assuming that the bottleneck has infinite
buffers. Thus, the optimal scheme would be to send the entire file into the bottleneck, where it would be



-34-

stored, and served at the fair share of the capacity. In a round-robin like network, this transfer time would
be lowest achievable.

9.4.1. Benchmark 1: Slow Changes in Cross-Traffic

The configuration used for this experiment is shown in Figure 22. In this scenario, the cross-traffic
load seen by the primary connection changes gradually. Connection 1, shown in Figure 22, starts up at time
zero and has 2 Megabytes of data to send. The bottleneck has one round trip time worth of buffers. The
first cross-traffic stream, connection 2, starts at 100 ms and nine more cross-traffic streams come up at
intervals of 44 ms (which is the round-trip propagation delay for all the connections). Since the fundamen-
tal time constant for reacting to changes in network state is one round trip time (RTT), the flow control
mechanisms are highly stressed when new traffic sources come up spaced apart one RTT. Each cross traf-
fic stream has 500 Kbytes of data to send. The transmission speeds of links and the size of files are chosen
such that the cross-traffic load gradually increases and then decreases back to zero during the interval in
which connection 1 is transmitting its data. As Table 7 shows, packet-pair achieves a throughput within
10% of optimal in this case.

H3
AJ\:_ Connections.zl—l |
A B A
HI () ro H2
—Connection I |_ | -
V1A
A = 200 Mbfs, 1 ms delay !
B = 40 Mb/s, 20 ms delay H4

Figure 22: Configuration for Benchmark 1

Optimal  Packet-pair  Slowdown
1444 1576 9.1%

Table 7: Benchmark 1: Completion times (in milliseconds)

9.4.2. Benchmark 2: Sudden Jumps in Cross-Traffic

The configuration used for this experiment is the same as in the previous experiment and is shown in
Figure 22. However, in this scenario, the cross-traffic load seen by the primary connection changes very
rapidly. This scenario evaluates packet-pair in terms of buffers required at the bottleneck in face of a large
perturbation. Connection 1 starts up at time zero and has 2 Megabytes of data to send. The first cross-
traffic stream, connection 2, starts at 100 ms and nine more cross-traffic streams come up at intervals of 4
ms. This is much smaller than one RTT, so connection 1 experiences a large drop in available bandwidth
within one RTT. At the same time, the interval of 4 ms is large enough to throw off any schemes that sim-
ply count the number of new connection requests and accurately allocate bandwidth to existing and new
connections. Each cross traffic stream has 500 Kbytes of data to send.

This benchmark shows that even with large changes in the available bit rate, packet-pair is stable, and
shows only a small degradation in performance (10.7% slower than optimal compared to 9.1% slower in
Benchmark 1). This confirms the results in Section 9.2.



-35-

Optimal  Packet-pair  Slowdown
1444 1599 10.73%

Table 8: Benchmark 2: Completion times (in milliseconds)

9.4.3. Benchmark 3: Transfer Time for Short Files

The transfer time is a critical performance measure for small file transfers. The main factor that
increases the transfer time for short amounts of data transfers is the ‘‘slow-start’’ mechanism used by many
flow control schemes (Section 5). In this experiment, we isolate the slow start mechanism from the effect of
lost packets and lost bandwidth due to cross traffic. Hence, there is no cross traffic. The configuration used
in this experiment is shown in Figure 23. File sizes of 4, 20 and 200 packets are used in this configuration.

The file transfer times for sending files of 4, 20, 200 and 2000 packets are shown in Table 9. The
results indicate that as the number of packets sent, N, increases, packet-pair has an increasing, and then a
decreasing slowdown factor. It is easy to explain why the factor decreases with N. Note that if R is the
round trip propagation delay, the optimal scheme completes at time R + N/u. Packet-pair stablizes roughly
at time 5R. So, its completion time would be roughly SR + N/u. Thus, the slowdown ratio is
(5R + N/pW)Y/(R + N/p), which can be written as (K + 5)/(K + 1), K = N/(Rp). This function, and thus
the slowdown factor, asmyptotically approaches 1 as N increases.

The increase for small N is harder to explain, since it depends in detail on the behavior of packet-pair.
Instead, we use the acknowledgment number trace for the scenario with a transfer length of 2000 packets to
compute the slowdown factor for every value of N. This is shown in Figure 24. Note that the peak slow-
down of about 140% is achieved for a transfer of about 100 packets.

We feel that this order of slowdown is inevitable for any real-life algorithm that has to deal with
imperfect knowledge about network state at the time of start up. In fact, all the other proposals for slow-
start show similar or worse behavior (recall that for the DECbit algorithm [50], to achieve a window size of
100 would take 100 round trip times, so that packet-pair performs roughly 20 times better).

A N\ B o\ A
———331————— S2 E——— H2

Connection 1

HI

A =200 Mb/s, 1 ms delay
B =40 Mb/s, 20 ms delay

Figure 23: Configuration for Benchmark 3

#Packets Optimal  Packet-pair  Slowdown
4 444 84 89%

20 46 92 100%
200 64 146 128%
2000 244 330 35%

Table 9: Benchmark 3: Completion times (in milliseconds)



-36-

2 1.4 ! —
kS 1.2 =
2 1 —
') 08 -
& 0.6 -
= 0.4 =
g 02 = | | | | B
[a¥ 0

0 400 800 1200 1600 2000
# of packets transferred

Figure 24: Percentage slowdown as a function of number of packets transferred

9.4.4. Benchmark 4: Fairness

Previous studies of window flow control performance have observed that connections on a longer
delay path get a smaller share of the bandwidth of the bottleneck (for example, see [13]). This *‘unfairness’’
increases the file transfer times for traffic streams going over longer paths. In this experiment the fairness in
bandwidth allocations is measured. The configuration used in this experiment is shown in Figure 25. Two
primary connections, 1 and 2, are started at time O and both have 2 Megabytes of data to send. Connection 2
goes over a path with approximately twice the end-to-end propagation delay of that of connection 1. Both
connections see the same cross-traffic load at the bottleneck link shared by these connections. The starting
times and file sizes of the cross traffic streams is the same as in Experiment 1.

The file transfer times for sending files over the two different delay paths are shown in Table 10.
Because of the different reaction times to a change, every flow control scheme will discriminate against the
connection with the longer delay paths to some degree. Even the optimal file transfer time for Connection
2 is slightly longer than for Connection 1 because of the longer round trip delay. However, packet-pair per-
forms within 6% of optimal for both the long and short connection. This discrimination against longer
delay paths can be mitigated to some extent by choosing a larger buffer setpoint for longer paths.

9.4.5. Benchmark 5: Migrating Bottlenecks

There will be only one bottleneck at any one time in the path of a connection. But the site of the bot-
tleneck may migrate with changes in the network traffic. In this experiment, we explore the performance of
flow control schemes in the presence of migrating bottlenecks. For simplicity, we have considered a gen-
eric case where a bottleneck first develops at a link, shifts to another link and then finally shifts back to the
original link. The shifts in the site of the bottleneck are induced by introducing cross-traffic streams with
different file transfer sizes over two separate links. The primary connection comes on at time zero with 2
Megabytes of data to send. Connection 2 switches on at 100 ms with 1 Megabyte of data to send. After
connection 2 switches on, the S1-S2 link becomes the bottleneck for connection 1. At time 250 ms connec-
tions 3 and 4 switch on with 250 Kilobytes of data each to send. This causes the bottleneck for Connection
1 to shift to the S2-H2 link. When connections 3 and 4 terminate the S1-S2 link again becomes the bottle-
neck for connection 1. The configuration used in this experiment is shown in Figure 26.

The file transfer times for sending files are shown in Table 11. Surprisingly, the migrating bottleneck
traffic scenario results presents little difficulties to the packet-pair scheme even though it does not get
explicit feedback from a bottleneck. The result seems to suggest that the filters used to predict and adapt
rates in packet-pair scheme are functioning reasonably well.



-37.

A =200 Mb/s, 1 ms delay
B =40 Mb/s, 20 ms delay

H3 C =200 Mb/s, 20 ms delay

A Connections 3—-12

A B 1 A
HI s1 (s2)
—Confiection T /"_—_‘:____l—_ -
A | A
C // Y !
/ Connection 2 H4
us [

Figure 25; Configuration for Benchmark 4

Optimal Packet-pair Slowdown
Short Long Short Long Short Long

1844 1882 1869 1993 14% 59%

Table 10: Benchmark 4: Completion times (in milliseconds)

H3
H3 |
| Connections 3—4
' A 1_Connection 2 A L —_——
A B T o
H1 Si 1 52} H2
—Connection I — ~ | -
| A

A =200 Mb/s, | ms delay
B =40 Mb/s, 20 ms delay H4
C =40 Mb/s, 1 ms delay

Figure 26: Configuration for Benchmark §

Optimal  Packet-pair  Slowdown
644 779 21.0%

Table 11: Benchmark 5: Completion times (in milliseconds)



-38-

9.4.6. Benchmark 6: Two-Way Traffic

A traffic scenario with traffic flowing in both directions through a switch is important to examine
because of the role played by acknowledgement packets in some flow control schemes [68). The TCP
scheme uses acks as a clocking mechanism to inject packets into the network at roughly the bottleneck rate.
The packet-pair scheme uses the gap between acknowledgment packets to estimate the service rate at the
bottleneck node. Unfortunately, whenever there is congestion or even burstiness in the traffic along the
reverse path, there is a chance that two successive acks may get bunched up and thus adversely affect
schemes that use the frequency of ack arrivals or inter-ack gaps in their control policies. This experiment is
designed to detect any such conditions and to measure its impact on the performance.

The configuration used in this experiment is shown in Figure 27. The configuration is similar to that
used in Experiment 1 with all the connections being duplicated and reversed so as to create an exactly sym-
metrical flow in both directions. Thus, the primary reverse connection is started by the host that is the sink
for the primary forward connection. Both the primary forward and reverse connections start at time zero.
Cross-traffic streams are also mirrored in a similar fashion.

The file transfer times for sending files in the forward and backward directions are shown in Table
12. These times should be compared to the file transfer time observed in Experiment 1 in order to deter-
mine the impact of having a congested reverse path. Note that the optimal file transfer time is longer
because the data packets have to share bandwidth with the ack packets. Packet-pair performs better than
expected (even better than in Benchmark 1!) because the fuzzy filtering of the spacing between acks, which
ignores the noise generated by bi-directional traffic.

H3

A | f Connections 3-12

Al omecton T O ' \S.z/._i_ —_—
QT — — —— —— — ——— e —] — — — — —
Connection 2 | | A | Connections 13-22
4 Y '
A =200 Mb/s, 1 ms delay '
B =40 Mb/s, 20 ms delay H4
Figure 27: Configuration for Benchmark 6
Optimal Packet-pair Slowdown

Connl Conn2 Connl Conn2 Connl Conn2
1556 1556 1677 1677 7.8% 7.8%

Table 12: Benchmark 6: Completion times (in milliseconds)

9.4.7. Benchmark 7: Non-compliant Cross-traffic

In a network, one should not expect that all traffic streams will be subject to a single flow control dis-
cipline. For example, a real-time traffic source such as a packet video camera is unlikely to follow the same
flow control scheme as that followed by a bursty data source such as a file transfer. Furthermore, there will
always be some short data transfer applications (such as distributed computation) which will not be subject
to any end-to-end flow control. Thus, it seems important to measure the performance of packet-pair when
other non-compliant traffic streams are present. The configuration used in this experiment is shown in



-39-

Figure 22. The configuration is identical to that used in Experiment 1 except that the cross-traffic streams
are uncontrolled and the packet arrival process for each cross traffic source is Poisson such that the aggre-
gate arrival rate of all the cross connections is 20-90% of the bottleneck link bandwidth. As before the pri-
mary connection comes on at time zero and the cross traffic streams switch on at 44 ms intervals, starting at
100 ms.

The file transfer times are shown in Table 13. The siowdown percentage decreases with the increase
in cross traffic intensity. This reflects the time lost due to slow start, which is independent of simulation
length. Since this factor plays a smaller role as the optimal transfer time increases, the slowdown from opti-
mal correspondingly decreases. These performance results show that that packet-pair does not do much
worse even with non-compliant cross traffic. Thus we believe packet-pair to be robust and well-behaved
even in the presence of non-compliant cross-traffic streams.

Cross traffic ~ Optimal Packet-pair Slowdown
Intensity Mean Variance

02 544 681 8.5 25.2%

0.4 710 934 79 31.5%

0.6 1044 1331 19.5 27.5%

0.8 2044 2236 26.8 9.3%

09 4044 4112 134 1.7%

Table 13: Benchmark 7: Completion times (in milliseconds)

9.4.8. Benchmark 8: Fewer Data Buffers at a Switch

In this experiment, we study the effect of having fewer buffers at the switch. While we believe that
having at least one round trip time worth of buffering (shared among all conversations) is a minimum, it
may sometimes be the case that this amount of buffering is not available. Here the scenario is as in Experi-
ment 1, except that the switch has only one tenth of a round trip time worth of buffers.

Table 14 shows that despite having very few buffers, packet-pair is able to perform quite well. With
one RTT worth of buffering, the completion time was 1576ms, with a tenth of that, the completion time
deteriorated only by around 110ms to 1686ms. This is because of the robust and efficient retransmission
strategies developed in Section 6.

Optimal  Packet-pair  Slowdown
1444 1686 16.76%

Table 14: Benchmark 8: Completion times (in milliseconds)

9.4.9. Benchmark 9: A Torture Test for Rate-based Schemes

This scenario is designed to be a ’torture test’ for rate-based schemes, in that it stresses what are
believed to be the weakest aspects of rate-based flow control. The configuration used in this experiment is
shown in Figure 28. In this scenario, we have Connection 2 with a round trip time of 20.2 ms and Connec-
tion 1 with rtt of 0.2 ms sharing a bottleneck link. Cross-traffic is provided by 2 on-off sources that start at
times 1.5 ms and 3 ms respectively. Each on-off source sends at 25% of the total bottleneck link’s capacity
for 2.5 ms and then goes idle for 1.5 ms. The number of backlogged sources changes thus changes from 1
to 2 to 1 several times in a round -trip time of 1 source (20.2 ms rtt) whereas the other one gets the chance
to adjust almost immediately. The file transfer times for the two connections are shown in Table 15. Itis
clear that even with large discrepancies in the round trip times of the two sources, the difference in their
completion times is small (less than 7%). This is due to the efficient filtering of rate information, as well as
the continuous time control system implemented in packet-pair.



- 40 -

A =200 Mb/s, 0 ms delay

B =40 Mb/s, 0.1 ms delay
H3 C =200 Mb/s 10ms delay

A | Connections 3-4 (ON-OFF sources)

A B 1 A
H1 S1 (s2) H2
— g ey ety ——— — —— — — — — —
I Connection T ____I_{__.___—
/ | A
C / 'l !
/
/ Connection 2 H4
H5 /

Figure 28: Configuration for Benchmark 9

Connl Conn2
1113 1188

Table 15: Benchmark 9: Completion times (in milliseconds)

9.4.10. Summary

This set of benchmarks shows that packet-pair is robust in a wide variety of scenarios. We have
tested the scheme in scenarios with regulated cross traffic, unregulated cross traffic, small number of
buffers, rapidly changing cross traffic and migrating bottlenecks. In all cases, the scheme is stable, and per-
forms no worse than 20% of optimal (except for very small transfers, where the slow-start scheme causes
bandwidth to be lost). While considerations of space do not allow us to present detailed results (such as the
sequence number trace) for each scenario, the behavior even in cases of extreme stress was similar to that
presented in Section 9.1 on the dynamics of packet-pair. Based on these results, we feel that the scheme is
suitable for use in public data networks.

9.5. Packet Video Using Packet-pair

In the final test of packet-pair, we used it to carry MPEG compressed video over a simulated net-
work. The experimental method is as in [32], where software coded MPEG is carried through a simulated
network with 8 active sources, limited buffering and sudden changes in available bandwidth. The feedback
signals from the flow control algorithm are used to modify the quality of the compression algorithm. Thus,
on the onset of congestion, the coder is informed, and the subsequent data rate is decreased. Of course, this
results in a loss of quality, but the quality degradation is even worse if packet losses occur, and there is no
subsequent decrease in sending rate, as would happen with open loop flow control through a leaky bucket.
The results of this experiment showed that the perceptual quality of the video stream carried by packet-pair
in a congested network are as good as a hop-by-hop congestion control scheme that uses explicit per-virtual
circuit rate feedback. Since packet-pair does not use any explicit rate information, the advantage is obvious.

10. Extensions to Packet-pair

In this section, we discuss some extensions of the packet-pair approach to deal with different environ-
ments. The first subsection discusses how packet-pair would fit in ATM environment, Section 10.2 out-
lines how packet-pair and multicast might interact. Section 10.3 considers the interaction of window flow
control with packet-pair rate-based flow control. Finally, Section 10.4 outlines an implementation of
packet-pair that runs at the receiver instead of the sender.



- 4] -

10.1. Packet-pair and ATM

The packet-pair scheme is designed to work well in ATM environments. We propose to place
packet-pair at the transport layer of a native-mode ATM protocol stack [38]. User data would be handed by
the session layer to the transport layer using the transmission queue described in Section 6. The transport
layer would then use packet-pair to send out pairs of AALS frames. The peer transport layer would send
acknowledgements that could then be used to do rate control on the transmission queue.

Note that packet-pair works well in a Fair Queueing environment. Fair Queueing tries to emulate
bit-by-bit round robin scheduling, which is closely approximated by cell-by-cell round robin at high trans-
mission speeds. Thus, the rate probing technique works well despite segmentation and reassembly done
below the AAL.

Rate probing is effective only when all the queueing points are round-robin like, and there is no mul-
tiplexing of data streams in the network. There are high-speed ATM networks already in existence that
implement round-robin service [20,53]. Further, the proposed native-mode ATM stack does not do any
multiplexing so as to preserve per-virtual circuit Quality of Service constraints. Thus, we feel that these two
restrictions could easily be satisfied by other ATM networks, making it feasible to implement packet-pair in
B-ISDN environments.

10.2. Packet-pair in a Multicast Environment

While the discussion so far has been in the context of a point-to-point data transfer, packet-pair can
be used in a multicast environment, as long as the acknowledgments from each endpoint can be de-
multiplexed using some identifier (such as the AAL 3/4 MID field). Given this, it is trivial to determine the
slowest link and send data at that rate. The timeout and retransmission strategy use only the information
contained in the acknowledgments, and by maintaining a per-destination retransmission queue, we believe
that a flow control scheme for multicast networks can be developed.

10.3. Interaction with Window Flow Control

Note that our control system does not give us any guarantees about the shape of the buffer size distri-
bution. Hence, there is a non-zero probability of packet loss. In many applications, packet loss is undesir-
able. It requires endpoints to retransmit messages, and frequent retransmissions can lead to congestion.
Thus, it may sometimes be desirable to guarantee zero packet This can be arranged by having a window
flow control algorithm operating simultaneously with the rate-based flow control algorithm described here.

In such a scheme, the rate-based flow control provides us a ‘good’ operating point which is the set-
point that the user selects. In addition, the source has a limit on the number of packets it could have out-
standing (the window size), and every server on its path reserves at least a window’s worth of buffers for
that conversation. This assures us that even if the system deviates from the setpoint, the system does not
lose packets and possible congestive losses are completely avoided.

Note that by reserving buffers per conversation, we have introduced reservations into a network that
we earlier claimed to be reservationless. However, our argument is that strict bandwidth reservation leads
to a loss of statistical multiplexing. As long as no conversation is refused admission due to a lack of
buffers, statistical multiplexing of bandwidth is not affected by buffer reservation, and the multiplexing
gain is identical to that received in a network with no buffer reservations. Thus, with large cheap memo-
ries, we claim that it will be always be possible to reserve enough buffers so that there is no loss of statisti-
cal multiplexing.

To repeat, we use rate-based flow control to select an operating point, and window-based flow con-
trol as a conservative cut-off point. In this respect, we agree with Jain that the two forms of flow control are
not diametrically opposed, but in fact can work together [29].

The choice of window size is critical. Using fixed sized windows is usually not possible in high
speed networks, where the bandwidth-delay product, and hence the required window can be large (of the
order of hundreds of kilobytes per conversation). In view of this, the adaptive window allocation scheme
proposed by Hahne ez al [25] is attractive. In their scheme, a conversation is allocated a flow control win-
dow that is always larger than the product of the allocated bandwidth at the bottleneck, and the round trip
propagation delay. So, a conversation is never constrained by the size of the flow control window. A



-42.

signaling scheme dynamically adjusts the window size in response to changes in the network state. We
believe that their window-based flow control scheme is complementary to the rate-based flow control
scheme proposed in this paper.

10.4. Receiver-based Control

The discussion thus far places the rate control at the sender. While this is reasonable for data-transfer
type of applications, we would like to dispense with this for one-way transfers such as for MPEG-
compressed video streams. In this case, we would like to implement packet-pair at the receiver. This can be
done by making three extensions to packet-pair. First, the sender places a header containing its current
state in each TPDU. The receiver thus receives continuous updates about sender state. Second, the receiver
measures the inter-packet spacing, and computes the appropriate sending rate. Third, the receiver sends
periodic messages to the sender with the optimal sending rate. The frequency of these messages determines
the effectiveness of the control. Based on the state exchange work by Sabnani et al [52], we feel that a
fairly parsimonious state exchange protocol can give reasonably good performance. However, this is still
an area for interesting future work.

11. Limitations

The main limitation of our approach is that it restricts the scheduling discipline to be round-robin-
like. Unfortunately, the vast majority of current networks implement the first-come-first-served discipline.
However, while our rate probing technique does not work in FCFS networks, other parts of the scheme,
such as for optimal retransmission, do carry over to FCFS networks.

Other than this restriction, we believe that our work is quite general in its treatment of feedback based
congestion control for ABR traffic. Given the benefits of round-robin-like service for data service, we feel
that this work will gain importance in the future.

12. Related Work

This work is related to several threads of research in congestion control. Broadly speaking, conges-
tion control can be classified as open-loop or closed-loop. Closed loop (or feedback) schemes, such as
packet-pair, are generally subdivided into dynamic window or rate-based schemes.

12.1. Dynamic Window Schemes

The first two dynamic window schemes to attract wide attention were those proposed for TCP by
Jacobson and Karels [28], and for DEC Network Architecture by Jain, Ramakrishnan and Chiu [50]. Both
schemes made seminal contributions to this area, but are best suited for FCFS networks with small
bandwidth-delay products. Neither scheme exploits the linearization property of round-robin service, and
because they take control actions only once every few round-trip times, are unsuitable for networks with a
large bandwidth-delay product. Further, as this product increases, the startup algorithms embodied in the
algorithms make both packet losses and small data transfers expensive [37]. The Jacobson-Karels approach
uses packet losses as an indication of congestion. As a consequence, the congestion indicator is seen only
when the congestion has already taken a toll. This reduces the achievable goodput. Both schemes assume
that all sources are cooperative, that is, they respond correctly to congestion signals. Thus, a non-
cooperative source (as in Benchmark 7) will cause a compliant source to reduce its own load to zero. This
is clearly undesirable for public networks!

A dynamic window scheme that uses out-of-band signalling to achieve zero packet loss while mini-
mizing buffer usage has been proposed by Hahne, Kalmanek and Morgan [25]. This scheme is efficient in
its use of bandwidth and buffers, but uses a fairly complicated signaling protocol. In contrast, packet-pair
achieves good performance using passive probes.

Mitra, Seery et al have proposed an adaptive window scheme for networks with large bandwidth-
delay products [44,45]. However, their results depend on the cross traffic being Poisson, which may not
unlikely to hold true for current or future networks [41] Further, they do not make use of predictive control,
so propagation delays lead their control to oscillate even under stable conditions.

Dynamic window schemes have been mathematically analyzed by Bolot [7], Fendick, Rodrigues and



-43.-

Weiss [16] and Mukherjee and Strikwerda [47]. These analyses give some insight into the performance of
generic dynamic window schemes.

12.2. Rate-based Flow Control

Several rate-based flow control schemes have been proposed in the literature. One of the earliest
scheme was for NETBLT [12], which was based on heuristics, and not thoroughly studied. In NETBLT,
the transmitter sends data at some rate for a few round trip times, and the receiver clocks the data to see if it
was received at that rate. If it did, the sender increases its rate, else it cuts back, This suffers from the prob-
lem that an increase in available capacity is known only by inducing congestion. We avoid this by using
packet-pair probes.

An early approach to hop-by-hop predictive control was proposed by Ko, Mishra and Tripathi [40].
This work shares several objectives with packet-pair, and was independently developed at around the same
time. The differences with our approach are that their congestion indicator is explicitly communicated to
the source, and the smoothing of these estimates uses an exponential averager with an o chosen a priori,
instead of using a fuzzy predictor. Further, they appeal primarily to intuitive heuristics, and do not use a
formal control-theoretic model, to develop their control.

Williamson has proposed the Loss-Load scheme [62, 63] that uses the throughput-versus-loss curve
to compute an optimal sending rate. This approach has numerous lacunae. It ignores system considerations,
such as the the fact that monitoring each connection at each switch poses a rather considerable burden on
the switch controller. Also, a source may lose packets even if it is sending below its fair share. Finally, the
sender computes its rate by solving an equation of the kth degree, where the overall loss rate is 1/k+1. For a
loss rate of 10 -3, solving such an equation in real-time is impossible given current technology. We feel
that packet-pair is better attuned to current networking realities.

Kanakia and Mishra have proposed a hop-by-hop congestion control scheme based on predictive con-
trol [31]. This is also similar to our approach. Again, their scheme requires a switch to monitor all the con-
versations, and there is also the overhead of switch-to-switch transfer of rate information. We have found
that the hop-by-hop scheme does perform better than packet-pair, but not by very much [33]. Given that
packet-pair uses only passive probing, we feel that the loss in performance may be worth it.

Low et al [43] have studied a scheme with one or more bits of explicit feedback information from
each switch. They estimate the network state using these bits, then do a state prediction using Kumar and
Varaiya’s one-step ahead predictor assuming that the system state density function is Gaussian. Simulations
are used to confirm the design. Their scheme may be a viable alternative to ours, but their simulations are
not detailed or diverse enough to verify the correctness of their assumptions. Further, they have not shown
that their scheme is stable, nor have they taken implementation considerations into account.

Browning has proposed a scheme based on the concept of disturbance accomodation control [10].
His scheme derives a control law very similar to that we derive in Section 4, thus validating some of our
work. However, he has not done detailed simulations to confirm his control law.

Park has proposed the "Warp’ congestion control scheme [49]. In this scheme, the receiver detects
network state by observing arrival times of data packets from the sender, and uses this to determine an
appropriate sending rate. However, this work suffers from an error in the mathematical model (Equation 6
in [49]), since according to this equation, the bottleneck queue size may be negative, which is clearly
impossible. Since the entire control is based on this equation, we doubt the correctness of his approach.

Theoretical analyses of rate-based flow control for generic schemes have been done by Benmohamed
and Meerkov [5] and by Fendick and Rodrigues [17].

12.3. Studies of Ensembles of Controlled Systems

One body of work has considered the dynamics of a system where users update their sending rate
either synchronously or asynchronously in response to measured round trip delays, or explicit congestion
signals, for example in References [6,8,9,14,54]. These approaches typically assume Poisson sources,
availability of global information, a simple flow update rule, and exponential servers. We do not make
such assumptions. Further, they deal with the dynamics of the entire system, with the sending rate of all the
users explicitly taken into account. In contrast, we consider a system with a single user, where the effects



-44-

of the other users are considered as a system ‘noise’. Also, in our approach, each user uses a rather com-
plex flow update rule, based in part on fuzzy prediction, and so the analysis is not amenable to the simplis-
tic approach of these authors.

12.4. Optimal Flow Control

A control theoretic approach to individual optimal flow control was described originally by Agnew
[1] and since extended by Filipiak [18] and Tipper et al [57]. In their approach, a conversation is modeled
by a first order differential equation, using the fluid approximation. The modeling parameters are tuned so
that, in the steady state, the solution of the differential equation and the solution of a corresponding queue-
ing model agree. While we model the service rate at the bottleneck p as a random walk, they assume that
the service rate is a non-linear function of the queue length, so that p = G(n,), where G(.) is some nonlin-
ear function. This is not true for a RAS, where the service rate is independent of the queue length. Hence,
we cannot apply their techniques to our problem.

Vakil, Hsiao and Lazar [59] have used a control-theoretic approach to optimal flow control in
double-bus TDMA local-area integrated voice/data networks. However, they assume exponential FCFS
servers, and, since the network is not geographically dispersed, propagation delays are ignored. Their mod-
eling of the service rate p is as a random variable as opposed to a random walk, and though they propose
the use of recursive minimum mean squared error filters to estimate system state, the bulk of the results
assume complete information about the network state. Vakil and Lazar [58] have considered the the design
of optimal traffic filters when the state is not fully observable, but the filters are specialized for voice traf-
fic.

Robertazzi and Lazar [S1] and Hsiao and Lazar [27] have shown that under a variety of conditions,
the optimal flow control for a Jacksonian network with Poisson traffic is bang-bang (approximated by a
window scheme). It is not clear that this result holds when their strong assumptions regarding memoryless-
ness of service are removed.

12.5. Summary

In summary, we feel that our approach is substantially different from others described in the litera-
ture. Only one other scheme has concentrated on the problem of feedback flow control in networks of
round-robin-like servers [25], and this uses a rather complex signaling protocol. All the other schemes have
either not assumed any particular scheduling discipline, or assumed it to be FCFS, and thus do not exploit
the linearization property of round-robin service.

Our use of a packet-pair to estimate the system state is unique, and this estimation is critical in
enabling the control scheme. We have described two provably stable rate-based flow control schemes as
well as a novel estimation scheme using fuzzy logic. Numerous practical concerns in implementing the
scheme have been addressed. We have proposed novel schemes for startup, optimal retransmission and
buffer setpoint probing. Finally, we have performed an exhaustive simulation study of the scheme, and
shown it to be useful in a wide variety of scenarios.

We have shown that packet-pair responds quickly and cleanly to changes in network state. Unlike
some current flow control algorithms (DECbit and Jacobson’s medifications to 4.3 BSD [28, 50]), the sys-
tem behaves well in situations where the bandwidth-delay product is large, even if the cross traffic is misbe-
haved or bursty [35]. Implementation and tuning of the algorithm is straightforward, unlike the complex
and ad-hoc controls in current flow control algorithms. Even in complicated scenarios, the dynamics are
simple to understand and manage. Packet-pair behaves well even under stress, and, more importantly, it is

simple to implement and tune. These are not fortuitous, rather, they reflect the theoretical underpinnings of
the approach.

13. Acknowledgements

My thanks to Scott Shenker for introducing me to the area of congestion control and for guiding ear-
lier attempts to build rate-based flow control schemes. I would like to thank Domenico Ferrari for his sup-
port, constant encouragement and keen questioning. Subsequently, numerous valuable discussions with
Chuck Kalmanek, Hemant Kanakia, Sam Morgan and Partho Mishra motivated me to explore the limits of



- 45 -

this scheme.

The use of packet-pairs to probe the bottleneck service rate was independently suggested by Ashok

Agrawala and Samar Singh. The use of a noise variable to model the bottleneck service rate was suggested
by G. Srinivasan. P.S. Khedkar collaborated on the design of the fuzzy controller. The benchmarks in Sec-
tion 9.4 were jointly designed with Hemant Kanakia and Partho Mishra. The public data network scenario
in Section 9.3 was suggested by Sam Morgan. Amy Reibman supplied codec data for the packet-video
experiment in Section 9.5 and also converted my results into a videotape. The helpful advice and criticism
of Sally Floyd, Debasis Mitra, R.P. Singh, M. Tomizuka, Pravin Varaiya and the anonymous refrees of
ACM Sigcomm and ACM Transactions on Computer Systems on several aspects of the work are much
appreciated.

14. References

10.

11.

12.

13.

14.

15.

16.

17.

C. Agnew, Dynamic Modeling and Control of Congestion-prone Systems, Operations Research 24,3
(1976), 400-419.

B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice Hall, 1979.
B. D. O. Anderson and J. B. Moore, Linear Quadratic Methods, Prentice Hall, 1990.

D. Anick, D. Mitra and M. M. Sondhi, Stochastic Theory of a Data-handling System with Multiple
Sources, Bell System Technical Journal 61 (1982), 1871-1894.

L. Benmohamed and S. M. Meerkov, Feedback Control of Congestion in Store-and-forward Net-
works: the Case of a Single Congested Node, ACM/IEEE Trans. on Networking (to appear), 1994.

K. Bharath-Kumar and J. M. Jaffe, A New Approach to Performance-Oriented Flow Control, /[EEE
Trans. on Communication COM-29, 4 (April 1981), 427-435.

J. Bolot and A. U. Shankar, Analysis of a Fluid Approximation to Flow Control Dynamics, Proc.
IEEE INFOCOM ’92, 1992, 2398-2407.

A. D. Bovopoulos and A. A. Lazar, Decentralized Algorithms for Optimal Flow Control, Proc. 25th
Allerton Conference on Communications Control and Computing, October 1987. University of Illi-
nois, Urbana-Champaign.

A. D. Bovopoulos and A. A. Lazar, Asynchronous Algorithms for Optimal Flow Control of BCMP
Networks, Tech. Rpt. WUCS-89-10, Washington University, St. Louis, MO, February 1989.

D. W. Browning, Flow Control in High-Speed Communication Networks, I[EEE Trans. Comm. (to
appear), 1994.

R. Caceres, P. B. Danzig, S. Jamin and D. J. Mitzel, Characteristics of Application Conversations in
TCP/IP Wide-Area Internetworks, Proc. ACM SigComm 1991, September 1991.

D. D. Clark, M. L. Lambert and L. Zhang, NETBLT: A Bulk Data Transfer Protocol, RFC-998, Net-
work Working Group, March 1987.

A. Demers, S. Keshav and S. Shenker, Analysis and Simulation of a Fair Queueing Algorithm, Jour-
nal of Internetworking Research and Experience, September 1990, 3-26;. also Proc. ACM Sig-
Comm, Sept. 1989, pp 1-12..

C. Douligeris and R. Majumdar, User Optimal Flow Control in an Integrated Environment, Proc. of
the Indo-US Workshop on Systems and Signals, January 1988. Bangalore, India.
A. E. Ekberg, D. T. Luan and D. M. Lucantoni, Bandwidth Management: A Congestion Control

Strategy for Broadband Packet Networks: Characterizing the Throughput-Burstiness Filter, Proc. ITC
Specialist Seminar, Adelaide, 1989, paper no. 4.4,

K. W. Fendick, M. A. Rodrigues and A. Weiss, Analysis of a Rate-Based Control Strategy with
Delayed Feedback, Proc. ACM SigComm ’92, 1992.

K. W. Fendick and M. A. Rodrigues, An Adaptive Framework for Dynamic Access to Bandwidth at
High Speeds, Proc. ACM SigComm ’93, 1993,



18.

19.

20.

21.

22.
23.

24.
25.

26.

27.

28.
29.

30.

3L

32.

33.

34,

35.

36.

37.

38.

39.

40.

- 46 -

J. Filipiak, Modelling and Control of Dynamic Flows in Communication Networks, Springer-Verlag,
1988.

A. G. Fraser, Designing a Public Data Network, IEEE Communications Magazine, October 1991,
31-35.

A. G. Fraser, C. R. Kalmanek, A. Kaplan, W. T. Marshall and R. C. Restrick, Xunet 2: A Nationwide
Testbed in High-Speed Networking, Proc. IEEE INFOCOM 1992, May 1992.

E. Gafni and D. Bertsekas, Dynamic Control of Session Input Rates in Communication Networks,
IEEE Trans. on Automatic Control 29, 11 (1984), 1009-1016.

G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control, Prentice Hall, 1984.

A. G. Greenberg and N. Madras, Comparison of a Fair Queueing Discipline to Processor Sharing, in
Performance '90; Proceedings of the 14th IFIP WG 7.3 International Symposium on Computer Per-
formance Modelling, Measurement and Evaluation, North Holland, Edinburgh, Scotland, September

1990, 193-207.

A. G. Greenberg and N. Madras, How Fair is Fair Queueing?, Journal of the ACM 3, 39 (1992).

E. L. Hahne, C. R. Kalmanek and S. P. Morgan, Fairness and Congestion Control on a Large ATM
Data Network with Dynamically Adjustable Windows, 13th International Teletraffic Congress,
Copenhagen , June 1991.

E. L. Hahne, Round Robin Scheduling for Fair Flow Control in Data Communication Networks,
LIDS-TH-1631, Laboratory for Information and Decision Systems, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139.

M. Hsiao and A. A. Lazar, Optimal Flow Control of Multi-Class Queueing Networks with Partial
Information, IEEE Transactions on Automatic Control 35, 7T (July 1990), 855-860.

V. Jacobson, Congestion Avoidance and Control, Proc. ACM SigComm 1988, August 1988, 314-329,
R. Jain, Myths About Congestion Management in High-Speed Networks, Technical Report-726, Dig-
ital Equipment Corporation, October 1990.

C. R. Kalmanek, H. Kanakia and S. Keshav, Rate Controlled Servers for Very High Speed Networks,
Proc. Globecom 1990, December 1990, 300.3.1-300.3.9.

H. Kanakia and P. P. Mishra, A Hop by Hop Rate-Based Congestion Control Scheme, Proc. ACM
SigComm, 1992,

H. Kanakia, P. P. Mishra and A. Reibman, An Adaptive Congestion Control Scheme for Real-Time
Packet Video Transport, Proc. ACM SigComm, 1993,

H. Kanakia, S. Keshav and P. P. Mishra, A Comparision of Congestion Control Schemes, Proc.
Fourth Annual Workshop on Very High Speed Networks, Baltimore, Maryland, March 1993.

S. Keshav, REAL : A Network Simulator, Comp. Sci. Dept. Tech. Rpt. 88/472 , University of Cali-
fornia, Berkeley, December 1988. Simulator available for anonymous FTP from
research.att.com:dist/qgos/real.tar.2.

S. Keshav, Congestion Control in Computer Networks, PhD thesis, Comp. Sci. Dept. Tech. Rpt.
91/649, University of California, Berkeley, August 1991,

S. Keshav, A. K. Agrawala and S. Singh, Design and Analysis of a Flow Control Algorithm for a
Network of Rate Allocating Servers, in Protocols for High Speed Networks II, Elsevier Science
Publishers/North-Holland, April 1991.

S. Keshav, Flow Control in High Speed Networks with Long Propagation Delays, Proc. INET’92,
June 1992. '

S. Keshav and H. Saran, Semantics and Implementation of a Native-Mode ATM Protocol Stack, Sub-
mitted to Infocom *95, August 1994.

P. S. Khedkar and S. Keshav, Fuzzy Prediction of Timeseries, Proc. IEEE Conference on Fuzzy
Systems-92, March 1992,

K. Ko, P. P. Mishra and S. K. Tripathi, Predictive Congestion Control in High-Speed Wide-Area



41.

42,

43.

45.

46.

47.

48.

49.

50.

5L

52.

53.

54.

55.

56.
57.

58.

59.

60.

61.
62.

63.

-47-

Networks, in Protocols for High Speed Networks II, M. J. Johnson (editor), Elsevier Science
Publishers/North-Holland, April 1991.

W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, On the Self-Similar Nature of Ethernet
Traffic, Proc. ACM SigComm 93, 1993.

S. Low and P. P. Varaiya, A Simple Theory of Traffic and Resource Allocation in ATM, Conference
Record, GlobeCom 1991, December 1991.

S. Low, N. Plotkin, M. K. Wong and J. Yee, On the Usefulness of Explicit Congestion Notification
in High Speed Networks, 2nd International Conference on Telecommunication Systems, Modeling
and Analysis, March 1994,

D. Mitra and J. B. Seery, Dynamic Adaptive Windows for High Speed Data Networks: Theory and
Simulations , Proc. ACM SigComm 1990, September 1990, 30-40.

D. Mitra, Asymptotically Optimal Design of Congestion Control for High Speed Data Networks,
IEEE Trans. on Communications 40, 2 (Feb 1992), 301-311.

S. P. Morgan, Queueing Disciplines and Passive Congestion Control in Byte-Stream Networks, Proc.
IEEE INFOCOM '89, 1989, 711-729.

A. Mukherjee and J. C. Strikwerda, Analysis of Dynamic Congestion Control Protocols - A Fokker-
Planck Approximation, Proc. ACM SigComm 91, September 1991.

A. K. Parekh, A Generalized Processor Sharing Approach to Flow Control in Integrated Services
Networks, PhD thesis, Massachusetts Institute of Technology, February 1992.

K. Park, Warp Control: A Dynamically Stable Congestion Protocol and its Analysis, Proc. ACM Sig-
Comm '93, 1993.

K. K. Ramakrishnan and R. Jain, A Binary Feedback Scheme for Congestion Avoidance in Computer
Networks, ACM Trans. on Comp. Sys. 8, 2 (May 1990), 158-181.

T. G. Robertazzi and A. A. Lazar, On the Modeling and Optimal Flow Control of the Jacksonian Net-
work, Performance Evaluation 5 (1985), 29-43.

K. K. Sabnani and A. N. Netravali, A High Speed Transport Protocol for Datagram/Virtual Circuit
Networks, Proc. ACM SigComm 1989, September 1989, 146-157.

H. Saran, S. Keshav, C. R. Kalmanek and S. P. Morgan, A Scheduling Discipline and Admission
Control Policy for Xunet II, Proc. 4th International Workshop on Network and Operating System
Support for Digital Audio and Video, November 1993.

S. Shenker, A Theoretical Analysis of Feedback Flow Control, Proc. ACM SigComm 1990, Septem-
ber 1990, 156-165.

S. Singh, A. K. Agrawala and S. Keshav, Deterministic Analysis of Flow and Congestion Control
Policies in Virtual Circuits, Tech. Rpt.-2490, University of Maryland, June 1990.

A. S. Tanenbaum, in Computer Networks, Prentice Hall, Englewood Cliffs, NJ, 1981.

D. Tipper and M. K. Sundareshan, Numerical Methods for Modeling Computer Networks under
Nonstationary Conditions, JSAC 8, 9 (December 1990).

F. Vakil and A. A. Lazar, Flow Control Protocols for Integrated Networks with Partially Observed
Traffic, IEEE Transactions on Automatic Control 32, 1 (1987), 2-14.

F. Vakil, M. Hsiao and A. A. Lazar, Flow Control in Integrated Local Area Networks, Performance
Evaluation 7, 1 (1987), 43-57.

J. G. Waclawsky and A. K. Agrawala, Dynamic Behavior of Data Flow within Virtual Circuits,
Comp. Sci.-Tech. Rpt.-2250, University of Maryland , May 1989.

J. G. Waclawsky, Window Dynamics, PhD Thesis, University of Maryland, College Park, May 1990.

C. L. Williamson and D. R. Cheriton, Loss-Load Curves: Support for Rate-Based Congestion Con-
trol in High-Speed Datagram Networks, Proc. ACM SigComm 1991, September 1991.

C. L. Williamson, Optimizing File Transfer Response Time Using the Loss-Load Congestion Control
Mechanism, Proc. ACM SigComm 1993, 1993.



64.
65.

66.
67.

68.

69.

-48 -

L. A. Zadeh, Fuzzy Sets, Journal of Information and Control 8 (1965), 338-353.

L. A. Zadeh, Outline of a New Approach to the Analysis of Complex Systems and Decision Pro-
cesses, IEEE Trans. on Systems, Man and Cybernetics, 1973, 28-44.

L. Zhang, Why TCP Timers Don’t Work Well, Proc. Sigcomm 1986, 1986, 397-405.

L. Zhang, A New Architecture for Packet Switching Network Protocols, PhD thesis, Massachusetts
Institute of Technology, July 1989.

L. Zhang, S. Shenker and D. D. Clark, Observations on the Dynamics of a Congestion Control Algo-
rithm: The Effects of Two-Way Traffic, Proc. ACM SigComm 1991, September 1991.

H. J. Zimmerman, in Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, 1985.



-49 -

15. Appendix 1

The appendix presents C code for an implementation of packet-pair that runs on the REAL network
simulator [34). The simulator provides a multi-threaded environment with a single shared address space.
A call to recvm() is a blocking call that returns one of the events described in Section 8. The code
assumes fixed length packets.

/t

* packet pair with control theoretic flow control

*/
#define ATTACK_UP 1.5 /* attack rate if bottleneck less full */
#define ATTACK_DOWN 0.8 /* attack rate if bottleneck less full */

#define TIMEOUT_MULTIPLIER 1.5 /* this times RTT est. is timeout value */
#define SINGLETON_TIMEOUT 0.100 /* if no pair in 100 ms, send out singleton */
#define INITIAL_TIMEOUT 1.0 /* initial timeout value in seconds */

#define INC_FACTOR 0.2 /* factor controlling send rate increase */
#define MS_ALPHA 0.75 /* exp. av. const. for mean_send_rate */

#define B_DEC_FACTOR 0.75 /* multiplicative decrease factor */
#define B_ADD_INC_FACTOR 2.0 /* additive increase for setpoint probe */

#define B_INITIAL S /* initial value of B */
#define B_MIN 2.0 /* smallest value */
#define B_COUNT 2 /* how many rtts to wait before changing B */

/* these are globals, since each time the node is run the stack is swapped */

int num_retx[MAX_NODES + 1] [MWS]; /* number of times seq # retx */
int recvd_ok (MAX_NODES + 1] [MWS]: /* this seg. no recvd ok */

pp()
{
PKT_PTR deq_pkt; /* pkt dequeued from tx queue */
PKT_PTR pkt; /* pkt under consideration */
PKT_PTR retx_pkt; /* pkt to be retransmitted */
PKT_PTR sing_pkt; /* timer pkt for catching singletons */
int i, num; /* scratch variable */
int node; /* ID of current node */
int seq_no = 0; /* sequence number counter */
int last_sent = -1; /* highest seq no sent so far */
int num_outstanding = 0; /* number of packets outstanding */
int start_up = 1; /* flag indicating startup */
int line_busy = 0; /* flag indicating output line byust */
int tick; /* how many packets to send to probe */
int num_timeouts = 0; /* # timeouts seen so far */
ident destn, sender, sink; /* scratch variables */
long key; /* scratch variables */
timev now; /* time now */
timev Adiff; /* scratch */
timev time_of_last_ack; /* time when last ack recvd */

float tao; /* scratch */



-50-

float timeout; /* timeout value */

float alpha; /* exp. av. const for rate estimate */
float nbhat = 0; /* estimate of # pkts in bottlneck */

float se; /* bottleneck rate estimator "-1 */

float re; /* estimator of RTT */

float reclean; /* clean estimate of prop. delay */

float send_rate; /* computed sending rate */

float old_send_rate = 0.0; /* old sending rate */

float mean_send_rate = 0.0; /* smoothed sending tate */

float inter_ack; /* current value */

int last_ack = -1; /* last ack seen so far */

int old_last_ack = -1; /* last ack seen so far */

int first_of_pair; /* seq # of first ack of pair */

int transmission_id = 0; /* id to simulate single timer */

int dup_ack_retx = 0; /* # retx. pkt due to dup ack */

int total_dup_acks = 0; /* # pkts retx.ed so far from dupacks */
float B = B_INITIAL; /* setpoint */

int rtt_seq = 0; /* if ack > rtt_seq, >= 1 RTT has elapsed */
int rtt_count = 0; /* how many rtts have gone by */

char no_more_data = 0; /* true if app says theres no more data */
int app_node = 0; /* node number of application layer */
char sending_pair; /* 1 if a pair is being sent */

char sent_first = 0; /* 1 if first of pair has been sent */

char bit_to_set; /* what bit to set on the pair indicator */

stop_time();

node = get_node_id({};

abs_advance (node_start_time[node]);
sink = assigned_sink[node];
source_node_type(node] = PP_SOURCE;
for (i = 0; i < MAX_WINDOW_SIZE; i++){(
0;

0;

num_retx(node] [i]
recvd_ok[node] [i]
}

last_ack = -1;

time_of_last_ack = runtime();

timeout = INITIAL_TIMEOUT * scale_factor;
tick = 2;

line_busy = 0;

goto test;

for (ever)
{
recv:
sender = recvm(&destn, &key, &pkt);
now = runtime();

switch (pkt->type)
{
case ACK:
if (num_outstanding > 0)
num_outstanding--;



-51-

/* since at least one packet reached the sink */

/* once in B_COUNT RTTs, we will increase B */
if (pkt->id >= rtt_seq){

rtt_count ++;

rtt_seq = transmission_id;

)

/* every 2 rtts, check to see if we have made progress,
* if not, retx the last ack, since it might have been lost again
*/

if (rtt_count is 2) (
if(last_ack is old_last_ack) {
make_pkt (retx_pkt) ;
retx_pkt->seq_no = last_ack + 1;
retx_pkt->resent = 1;
num_retx[node] [retx_pkt->seq no % MWS] ++;
if (num_outstanding > 0}
num_outstanding --;
enqg_high(node, retx_pkt);
dup_ack_retx ++;
}
old_last_ack = last_ack;
}

if (rtt_count is B_COUNT) ({
rtt_count = 0;
B += B_ADD_INC_FACTOR;

}

recvd_ok[node] [ (pkt->seq_no + pkt->last_recvd_offset) % MWS] = 1;
/* retransmit packets that are detected to be lost */

if (pkt->seq_no is last_ack) {
total_dup_acks++;
for(i = 1; i < pkt->last_recvd_offset; i++)
/* not retransmitted already and not already recvd */
if (((num_retx({node) ((last_ack + i) % MWS]) is 0)
and
(not (recvd_ok(node][(last_ack + i) % MWS]))){
make_pkt (retx_pkt) ;
retx_pkt->seq _no = last_ack + i;
retx_pkt->resent = 1;
num_retx[node) (retx_pkt->seq no % MWS] ++;
if (num_outstanding > 0)
num_outstanding --;
eng_high(node, retx_pkt);
dup_ack_retx ++;
}
}
if (total_dup_acks is 1){
B = (B*B_DEC_FACTOR > B_MIN)? B*B_DEC_FACTOR:B_MIN;



-52-

if (pkt->seq_no > last_ack)
{
for (i= last_ack; i <= pkt->seq no; i++)
num_retx(node) (i $ MWS] = 0;
last_ack = pkt->seq_no;
total_dup_acks = 0;
}

/* compute round trip time */

diff = time_minus(now, pkt->gen_time);
tao = make_float{(diff);
make_entry(tao, &rt_time([node]);

/* the decbit ‘bit’ differentiates between packets in a pair */

switch (pkt->decbit)
(
case 0: /* first in burst (pair) */
if (start_up)
reclean = tao;
time_of_last_ack = now;
first_of_pair = pkt->id;
free(pkt);
break:;

case 1: /* second in burst */
if ((pkt->id is first_of_pair + 1))
{
first_of_pair = -2;
/* just to be safe */

diff = time_minus(now, time_of_last_ack);
inter_ack = make_float(diff);

if (!start_up)
{
alpha = compute_alpha(se, inter_ack):
se = alpha * se + (1 - alpha) * inter_ack;
nbhat = num_outstanding - (reclean / se);
nbhat = (nbhat > 0) ? nbhat : 0.0;
nbhat = (nbhat > ftp_window) ? ftp_window : nbhat;

/t

* if we are pushing queue up, can be more

* conservative than if we are pushing queue down
*/

if (nbhat <= B)
re = ATTACK_UP * (reclean + nbhat * se);



-53-

else
re = ATTACK_DOWN * (reclean + nbhat * se);

/* control law from thesis page 67 */

send_rate = (B - nbhat)/re + 1l/se;

/*

* special case: if nbhat is very small (<2), then
* it is likely that the probe values are wrong.

* In this case, it is better to be conservative
*/

if (nbhat <= 2.0 and (send_rate > mean_send_rate))
{
send_rate = (mean_send_rate +
(send_rate - mean_send_rate) * INC_FACTOR);
}
mean_send_rate = mean_send_rate * MS_ALPHA +
(send_rate) * (1 - MS_ALPHA);

/* special case: if we have overflowed bottleneck by
a large amount, and so send rate is too low, set
timer to the time that the queue would be drained */

if ((nbhat > 3*B) and (send_rate < 2.0 /({(nbhat-B)*se)))
send_rate = 2.0/ ((nbhat-B)*se);

/* time taken to drain queue to B */

timeout = TIMEOUT_MULTIPLIER * re;
free(pkt);
} else
{ /* got first pair of acks at time RTT */
re = tao;

se = inter_ack;

start_up = 0;

/* convert to first tick; compute tick size */
pkt->type = TICK;
send_rate = 1/se;
send_rate = (mean_send_rate +
(send_rate - mean_send_rate) * INC_FACTOR);
mean_send_rate = mean_send_rate * MS_ALPHA +
(send_rate) * (1 - MS_ALPHA);

set_timer((float) (2.0/send_rate), pkt);
tick = 2;
goto test;
} /* start up */
} else {
first_of_pair = -2;



-54-

time_of_last_ack = time_zero;
free(pkt);
goto test;
}
break;
default:
free(pkt});
break:
}
goto test;
case INT:
line_busy = 0;
free(pkt):
goto test;
case TICK:
if(last_sent < num_pkts([node]){
set_timer((float) (2.0/ send_rate), pkt);

if(tick is 0)
tick = 2; /* we need this since pkt->bit is set to 1l-tick, which
* blows up if tick is set to 2 twice before it hits 0 */
goto test;

case TIMEOUT:
/*
* put all unacked packets in the retx. queue. If an ack
* arrives, it will clean out the extra pkts
*/

if (pkt->id is (transmission_id - 1))
/* simulate single timer */

{
free(pkt);
B = B_INITIAL;

/* since we timed out on the last thing we sent out,

unless the timer is really small (unlikely), nothing is
outstanding. This line catches the case where there are
* lots of losses that cannot be recovered by fast retx. */

num_outstanding = 0;

for (i = last_ack + 1; i <= last_sent; i++)
{
if (!'recvd_ok(node] [i & MWS)) {
/* dont change value of timeout - no backoff */

make_pkt (retx_pkt) ;
retx_pkt->seq _no
retx_pkt->rasent
enqg_high(node, retx_pkt);
num_timeouts++;

i;
1;



-55-

num = num_in_g(node) ;
/* sweep up singleton, if any. Cant be in middle of pair */

if(num is 1) (
pkt = deq(node);
pkt->decbit = 2;
pkt->gen_time = runtime();
pkt->id = transmission_id++;
if (pkt->resent)
num_retransmissions(node}++;
else
num_retx(node) [pkt->seq_no % MAX_WINDOW_SIZE] = 0;

recvd_ok(node] [pkt->seq_no % MWS] = 0;
if (pkt->seq_no > last_sent)

last_sent = pkt->seq no;
if (num_in_qg(node) is 0)

tick = 0;
safe_send(pkt, timeout);
num_outstanding++;
line_busy = 1;

}
}
else
free(pkt);
goto test;

case SINGLETON:
/* clean out singleton. Need this in case the source sent only 1 pkt
free(pkt);
if(tick is 0 or tick is 2) { /* not in middle of pair */
num = num_in_g(node);
if (num is 1) {
pkt = deg(node);
pkt->decbit = 2;
pkt->gen_time = runtime();
pkt->id = transmission_id++;
if (pkt->resent)
num_retransmissions [node] ++;
else

num_retx[node] {pkt->seq_no % MAX_WINDOW_SIZE] = 0

recvd_ok[node] (pkt->seq no % MWS] = 0;
if (pkt->seq no > last_sent)
last_sent = pkt->seq_no;
safe_send(pkt, timeout);
num_outstanding++;
line_busy = 1;
}

*/



-56-

goto test;

case DATA:
app_node = pkt->source;
pkt->dest = sink;
0;
pkt->seq_no = seq_no++;

pkt->resent

pkt->source = node;
eng(node, pkt);
make_pkt (sing_pkt) ;
sing_pkt->type = SINGLETON;
set_timer((float) (SINGLETON_TIMEOUT * scale_factor), sing_pkt);
goto test;

case NO_MORE_DATA:
/* source sends this when it wants to send no more data */
no_more_data = 1;
free(pkt):
goto test;
default:
pr_error ("Node %d: pp source recvd. an unknown pkt *, node);

test:
num = num_in_g(node) ;
/* if the tx. queue is empty and everything acked, ask for more and wait */
if (app_node isnt 0 and (not no_more_data)
and num is 0 and seq no <= last_ack + 1) (
make_pkt (pkt) ;
pkt->type = TX_Q_EMPTY;
sendm(app_node, 0, pkt);
goto recv;

if (((tick is 2 and num >=2) or (tick is 1 and num >= 1)) /* have a pair */
and (not line_busy)
and ((num_outstanding - 1 < ftp_window - tick)
or num_timeouts or (dup_ack_retx >= 2))

and ((last_sent < last_ack + ftp_window - tick)
or num_timeouts or (dup_ack_retx >= 2))

and (last_sent < num_pkts[node] -1)
)

pkt = deq(node);
if (pkt is NULL)
goto recv;

tick--;
if (tick is 0)
(
if (num_timeouts >= 2)
num_timeouts -= 2;



-57-

else

num_timeouts = 0;
if (dup_ack_retx >= 2)

dup_ack_retx -= 2;
else

dup_ack_retx = 0;

/* set up packet pair ID: */

pkt->decbit = 1 - tick;
pkt->gen_time = runtime();
pkt->id = transmission_id++;

if (pkt->resent)
num_retransmissions(node)] ++;
else
num_retx(node) [pkt->seq_no % MAX_WINDOW_SIZE] = 0;

recvd_ok[node]) [pkt->seq_no $ MWS] = 0;

if (pkt->seq_no > last_sent)
last_sent = pkt->seq_no;

if (num_in_g(node) is 0)
tick = 0; /* so that delays in getting next
of pair will not affect pair */
safe_send(pkt, timeout); '
num_outstanding++;
line_busy = 1;
}
goto recv;
}
}

/********"**t*t*t***ii*t*i'ﬁi*t*t*f**t1""*t*****"*********f***i***'*/

/* fuzzy controller for estimation of service rate. */
typedef struct trap TRAP, *TRAP_PTR;/* trapezium structure */
struct trap
{

float x1, x2, x3, x4, y0, area, xcentroid;

}i

float old_error_1l; /* last value of error (unsmoothed) */

float old_error_2; /* last value of error (unsmoothed) */
float error_est; /* estimator */
char fuzzy_start; /* 1 when fuzzy is called for the first time by a node */

/* LP and RP for alpha, beta and error are all assumed to be 0 and 1 */

#define LP 0.0 /* left end point */
#define MP_E 0.7 /* middle point for error */



-58-

#define MP_A 0.5 /* middle point for alpha */
#define RP 1.0 /* values suggested by P.S. Khedkar, UCB */
float

moddiff (a, b)
float a, b;
{

return ((a > b) ? a - b : b - a);

float
xintercept (x1, yl, x2, y2, y)
float x1, yl, x2, y2, vy
{
return (((x2 - x1) / (y2 - yl)) * (y - (x2 * yl - x1 * y2) / (x2 - x1)));

float
yintercept (x1, yl, x2, y2, x)
float x1, yl, x2, y2, x;
{
return (({(y2 - yl}) / (x2'— x1)) * x + ({(x2 * yl - x1 * y2) / (%2 - x1)));

float

get_error (sbest, sbact, beta)
float sbest, sbact, beta;

{

float error; /* error is the |error| in the estimate */

error = moddiff (sbest, sbact) / sbest;
old_error_2 = old_error_1;

old_error_1l = error;

return (beta * error_est + (1 - beta) * error);

float
poss_low (error, mp) /* possibility of ‘low’, mp is the middle point */
float error, mp; /* error = proportional error */
{
if (error <= LP)
return 1.0;
if (error >= mp)
return 0.0;
return (yintercept (LP, 1.0, mp, 0.0, error));

float
poss_high (error, mp) /* possibility of ‘high’ */
float error, mp;
(
if (error <= mp)
return 0.0;



if (error >= RP)

return 1.0;
return (yintercept (mp, 0.0, RP, 1.0, error)):;

float

poss_med (error,

float error,

{

mp)

mp;

if (error <=

return 0.0;

if (error >=
return 0.0;
if (error >=

LP)

RP)

-50-

/* possibility of ‘medium ‘ */

LP and error < mp)

return (yintercept (LP, 0.0, mp, 1.0, error));

return (yintercept (mp, 1.0, RP, 0.0, error));

xcentroid (trap)
TRAP_PTR trap;

{

float

x1
x2
x3
x4

1]

1]

trap->xcentroid =

x1

trap

trap
trap
trap

’

->

find_area (trap)
TRAP_PTR trap;

{

float

x1 =
x2 =
x3 =
x4 =
yo =

trap

x2,

x1;
x2;
x3;

x4;

/* x coordinate of centriod of a trapezium */

x3, x4;

((x3 * x4 - x1 * x2 + x3 * x3 + x4 * x4 - x1 * x1 - x2 * x2)/
(3'* (x3 + x4 - x1 - x2)));

/* compute area of trapezium */

x1, x2, x3, x4, yO0;

trap -> x1;
trap -> x2;
trap -> x3;
trap -> x4;
trap -> yO0;
-> area

init_trap (trap,
TRAP_PTR trap;
float x1l, x2, x3, x4, yoO;

{
trap
trap
trap
trap
trap

->

->

->

->

->

x1
x2
x3
x4
y0

= 0.5 * yO * (x4 + x3 - x2 - x1);

x1,

x1;
x2;
x3;
x4;
v0;

x2, x3, x4, y0)



-60-

float

compute_alpha (sbest, sbact)

float sbest, sbact; /* pass in old estimator and new probe value,
* return value is the new value of alpha */

{

float error, ce, beta; /* ce is the change in the mod proportional error */
float low, med, high; /* these are the heights in the result space */
float x11, x12, x21, x22, x23, x24, x31, x32; /* intercepts*/

float wa, wb, wc, wd, we; /* relative weights of a, b, ¢, 4, e */

float value;

static float inv_range_a, inv_range_b, left_xcentroid_a, left_xcentroid_b;
static TRAP left;

TRAP a, b, ¢, 4, e, right;

if (fuzzy_start) /* start up */
{
fuzzy_start 0;
sbest = 1.5 * sbact; /* initial estimator value */

old_error_1 = old_error_2 = 0.0;
error_est = 0.5;

/* initializations */

init_trap (&left, 0.0, 0.0, LP, MP_A, 1.0);

init_trap (&right, MP_A, RP, 1.0, 1.0, 1.0);

xcentroid (&left);

xcentroid (&right);

inv_range_a = 1.0 / (right.xcentroid - left.xcentroid);
left_xcentroid_a = left.xcentroid;

init_trap (&left, 0.0, 0.0, LP, RP, 1.0);

init_trap (&right, LP , RP, 1.0, 1.0, 1.0);

xcentroid (&left);

xcentroid (&right);

inv_range_ b = 1.0 / (right.xcentroid - left.xcentroid);
left_xcentroid_b = left.xcentroid;

ce = moddiff (moddiff (sbest, sbact) / sbest, old_error_1);
/* change in error */

low = 1 - ce;
high = ce;
%23 = low;
x24 = 1 - low;
%31 = high;
x32 = 1 - high;

init_trap (&b, LP, LP, x24, RP, low);
init_trap (&c, LP, x31, 1.0, 1.0, high);
init_trap (&e, LP, min (x23, x31), max (x24, x32), RP, min (low, high));



-61-

find_area (&b); find_area (&c); find_area (&e);
xcentroid (&b); xcentroid (&c); xcentroid (&e);

if (b.area != 0) wb = b.area * b.xcentroid; else wb = 0.0;
if (c.area != 0) wc = c.area * c.xcentroid; else wc = 0.0;
if (e.area != 0) we = e.area * e.xcentroid; else we = 0.0;

value = ((wb + wc - we) / (b.area + c.area - e.area));

beta = ((value - left_xcentroid_b) * inv_range_b);
/* fuzzy control for beta */

error = get_error (sbest, sbact, beta):;
/* these three lines implement the control law */
low = poss_high (error, MP_E);
med = poss_med (error, MP_E);
high = poss_low (error, MP_E);

x11 = xintercept (LP, 1.0, MP_A, 0.0, low);
x12 = xintercept (LP, 0.0, MP_A, 1.0, low);
X21 = xintercept (LP, 0.0, MP_A, 1.0, med);
x22 = xintercept (LP, 1.0, MP_A, 0.0, med);
x23 = xintercept (MP_A, 0.0, RP, 1.0, med);
x24 = xintercept (MP_A, 1.0, RP, 0.0, med);
x31 = xintercept (MP_A, 0.0, RP, 1.0, high);
x32 = xintercept (MP_A, 1.0, RP, 0.0, high);

init_trap (&a, 0.0, 0.0, x1l1, MP_A, low);

init_trap (&b, LP, x21, x24, RP, med);

init_trap (&c, MP_A, x31, 1.0, 1.0, high);

init_trap (&d, LP, min (x11, x21), max (x12, x22), MP_A, min (low, med));
init_trap (&e, MP_A, min (x23f x31), max (x24, x32), RP, min (med, high));

find_area (&a); find_area (&b); find_area (&c); find_area (&d); find_area (&e);
xcentroid (&a); xcentroid (&b); xcentroid (&c);
xcentroid (&d); xcentroid (&e);

if (a.area != 0) wa = a.area * a.xcentroid; else wa = 0.0;
if (b.area != 0) wb = b.area * b.xcentroid; else wb = 0.0;
if (c.area != 0) wc = c.area * c.xcentroid; else we = 0.0;
if (d.area != 0) wd = d.area * d.xcentroid; else wd = 0.0;
if (e.area != 0) we = e.area * e.xcentroid; else we = 0.0;

value = ((wa + wb + wc - wd - we)
/ (a.area + b.area + c.area - d.area - e.area));

return ((value - left_xcentroid_a) * inv_range_a);
/* scale to [0,1) */



