
Canopus: A Scalable and Massively Parallel Consensus Protocol

Sajjad Rizvi
University of Waterloo
sm3rizvi@uwaterloo.ca

Bernard Wong
University of Waterloo
bernard@uwaterloo.ca

Srinivasan Keshav
University of Waterloo
keshav@uwaterloo.ca

ABSTRACT

Achieving consensus among a set of distributed entities (or par-

ticipants) is a fundamental problem at the heart of many dis-

tributed systems. A critical problemwithmost consensus protocols

is that they do not scale well. As the number of participants try-

ing to achieve consensus increases, increasing network tra�c can

quickly overwhelm the network from topology-oblivious broad-

casts, or a central coordinator for centralized consensus protocols.

Thus, either achieving strong consensus is restricted to a handful

of participants, or developers must resort to weaker models of con-

sensus.

We propose Canopus, a highly-parallel consensus protocol that

is ‘plug-compatible’ with ZooKeeper, which exploits modern data

center network topology, parallelism, and consensus semantics to

achieve scalability with respect to the number of participants and

throughput (i.e., the number of key-value reads/writes per sec-

ond). In our prototype implementation, compared to EPaxos and

ZooKeeper, Canopus increases throughput by more than 4x and

16x respectively for read-heavy workloads.

CCS CONCEPTS

• Computer systems organization → Dependable and fault-

tolerant systems and networks; Distributed architectures;

KEYWORDS

Consensus, Scalable, Fault Tolerance, Geo-Distributed Replication,

Network-Aware Protocol

ACM Reference Format:

Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav. 2017. Canopus: A Scal-

able and Massively Parallel Consensus Protocol. In CoNEXT ’17: CoNEXT

’17: The 13th International Conference on emerging Networking EXperiments

and Technologies, December 12–15, 2017, Incheon, Republic of Korea. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3143361.3143394

1 INTRODUCTION

In the past few years, an important class of distributed applications

has emerged that requires agreement on the entries of a replicated

transaction log or ledger. Examples include geo-replicated data-

base systems that support high-volume, con�ict-free transaction

processing [31], and private blockchains [1–3] that continuously

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.
ACM ISBN 978-1-4503-5422-6/17/12. . . $15.00
https://doi.org/10.1145/3143361.3143394

add records to a distributed ledger. Each entry consists of a unit

of computation that can read and modify the states of the applica-

tion1. Entries are processed atomically in the order that they ap-

pear in the log or ledger.

Supporting these applications requires a consensus protocol

that can scale to hundreds of nodes spanning multiple datacenters.

The protocol must also be able to handle large volumes of requests,

and be e�cient for write-intensive workloads with nearly uniform

popularity distributions.

Most commonly used consensus protocols, such as Paxos [17]

and Raft [32], rely on a centralized coordinator to service client

requests and replicate state changes. This introduces unavoidable

latency and concentrates both processing load and network tra�c

at the coordinator, limiting their scalability.

Protocols such as EPaxos [27], Mencius [24], and S-Paxos [8] ad-

dress scalability by moving from a single coordinator to a set of co-

ordinators. However, as we will discuss in more detail in Section 2,

message dissemination in these protocols is network topology-

unaware. Their scalability is therefore still limited in wide-area de-

ployments with restricted network link capacities. Paxos Quorum

Leases [29] can improve the scalability of consensus protocols by

assigning leases to non-coordinators, and serving read requests lo-

cally by lease holders. However, they are not well suited for the

workloads required by our motivating applications.

In this paper, we introduce Canopus, a parallel, network-aware,

and decentralized consensus protocol designed for large-scale de-

ployments. It achieves scalability by (a) exploiting high perfor-

mance broadcast support in modern switches and (b) paralleliz-

ing communication along an overlay tree [6]. Moreover, observing

that modern datacenter networks use hardware redundancy, mak-

ing them immune to single points of failure, and that they o�er

numerous disjoint paths between all pairs of servers, making net-

work partitioning extremely rare [21, 22, 39], Canopus is optimized

for the common case that an entire rack of servers never fails, and

that the network is never partitioned. This greatly simpli�es our

design. We make three contributions:

• We present Canopus, a scalable and parallel consensus pro-

tocol.

• We provide a prototype that can be integrated with

ZooKeeper to simplify deployment.

• We compare the performance of our prototype with

both ZooKeeper and EPaxos. We �nd that our globally-

distributed prototype implementation can handle up to 5

million transactions per second, and that, unlike EPaxos, the

throughput increases with the number of servers participat-

ing in the consensus protocol.

1An equivalent implementation would be for each entry to store a reference and the
parameters to a stored procedure.

https://doi.org/10.1145/3143361.3143394
https://doi.org/10.1145/3143361.3143394

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav

2 RELATED WORK

Many systems have been designed to solve the consensus prob-

lem. We �rst discuss some well-known centralized and decentral-

ized consensus protocols. We then discuss systems that optimize

performance by exploiting specialized hardware and networking

technologies. We also outline related work in the area of group

communication protocols and discuss the role of consensus proto-

cols in the context of private blockchains.

2.1 Centralized Coordination

Paxos [17] is the most widely used consensus protocol. Paxos par-

ticipants elect a central coordinator to enforce consensus on a

single value, re-electing the coordinator if it fails. Many variants

of Paxos have been proposed over the years. In Fast Paxos [19],

clients send consensus requests directly to the acceptors to re-

duce the number of rounds of message exchanges. In Generalized

Paxos [18], nodes can execute commutative requests out-of-order.

FGCC [40] builds upon Generalized Paxos by reducing the mes-

sage complexity to resolve con�icts. Although these variants aim

to improve di�erent aspects of Paxos performance, none of them

signi�cantly improve the scalability of the protocol.

Ring-Paxos [26] and Multi-Ring Paxos [25] are atomic multicast

protocols developed on top of Paxos. In these protocols, nodes or-

ganize into one or more rings, and the Paxos coordinator and ac-

ceptor roles are assigned to the nodes along the ring. The major

drawback of these multicast protocols is that the latency of opera-

tions increases proportionally to the number of participants.

Several other coordinator-based consensus or atomic broadcast

algorithms have been proposed that have the same scalability lim-

itations as Paxos. These include Raft [32], a consensus algorithm

with understandability as its main design goal, and Zab [16], an

atomic broadcast protocol used in ZooKeeper [14].

2.2 Decentralized Coordination

EPaxos [27], Mencius [24], and S-Paxos [8] have been proposed to

improve the scalability of consensus algorithms. These protocols

follow a decentralized approach. For example, in EPaxos and Men-

cius, each node serves as the coordinator for the clients connected

to that node. The nodes then forward requests to each other for

con�ict resolution and ordering. S-Paxos distributes the message

dissemination load across nodes in a similar way. However, the

nodes send the request IDs to a centralized coordinator that runs

the Paxos algorithm to order the requests.

Two primary limitations restrict the scalability of these sys-

tems. First, they are not network topology-aware. For example,

each node broadcasts requests to every other participating node,

or at least to a quorum of the nodes. Thus, multiple instances of

the same request and response may traverse one or more oversub-

scribed intra-data-center or high-latency wide-area links, which

limits throughput. In contrast, Canopus organizes the nodes into a

network-aware overlay tree, and remote results are retrieved once

then shared among peers. Second, these protocols broadcast both

read and write requests. Canopus does not broadcast read requests.

Instead, Canopus introduces small delays to the read operations

that ensure that read operations are correctly linearized with re-

spect to any concurrent writes operations.

The Gira�e consensus protocol logically organizes nodes into

an interior-node-disjoint forest [38]. It uses a variant of Paxos to

order write requests within a tree and across trees in the forest.

Unlike Canopus, Gira�e does not provide linearizable consistency,

and each tree in Gira�e has its own coordinator, which limits its

scalability.

Canopus is similar to the recently proposed AllConcur [33] con-

sensus algorithm, which organizes nodes in the form of an overlay

digraph. In each consensus round, each AllConcur node atomically

broadcasts a message to its successors in the graph while keeping

track of node failures. AllConcur nodes are expected to be part of

the same In�niBand network, typically within a single datacenter.

In comparison, Canopus is a network-aware protocol that orga-

nizes the nodes in the form of an wide-area overlay tree. Nodes

located in the same rack form a virtual group, which can use any

reliable broadcast or stronger protocol to reach agreement. Cano-

pus e�ciently stitches together these virtual groups, as described

later in this paper.

2.3 Consensus Exploiting Network Hardware

Several recent systems [9, 10, 15, 20, 34] exploit fast networking

devices, e.g., low latency switches, or specialized hardware, such

as FPGAs, to achieve consensus with high throughput and low

latency. Since they require extensive in-network support, these

systems can only be deployed within the same rack or the same

datacenter. In contrast, Canopus is designed to provide consensus

between nodes across globally-distributed datacenters. Network-

hardware-aware consensus protocols are compatible with Cano-

pus, in that these systems can be used to achieve consensus among

nodes within a Canopus virtual group.

2.4 Group Communication Protocols

Many overlay and group communication protocols have been pro-

posed in the research literature [23, 35]. These protocols e�ciently

and reliably disseminate messages across a large number of partic-

ipants. Canopus uses the LOT group communication protocol [6],

which is similar to Astrolabe [41], to disseminate protocol state.

LOT embodies three insights to achieve high performance: (1)

communication should be topology aware; most communication

should occur between topologically-close nodes, (2) communica-

tion should be hierarchical, so that message dissemination to n

nodes takesO(loд(n)) steps, and (3) communication should be par-

allel, so that all nodes can make progress independent of each

other.

2.5 Private Blockchains

Private blockchains [1–3] can be viewed as a distributed append-

only ledger that is replicated across a large number of nodes.

Blockchains can be used for many di�erent applications such as

cryptocurrencies, stocks settlements, fast currency conversions,

and smart contracts. A common problem with blockchains is poor

scalability, which is primarily due to the use of proof-of-work or

topologically-unaware consensus protocols. Blockchains use con-

sensus to resolve con�icts among concurrent append requests to

the next ledger index. However, the throughputs of these proto-

cols peak at a few tens of thousands of transactions/second with

Canopus: A Scalable and Massively Parallel Consensus Protocol CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

tens of participants [42]. Canopus can be used as a scalable consen-

sus protocol for private blockchains to signi�cantly increase their

throughput. Although the current design of Canopus does not pro-

vide Byzantine fault tolerance, we are integrating Byzantine fault-

tolerance into Canopus in ongoing work.

2.6 Scalability of Read Requests

Several read optimizations have been proposed to reduce the la-

tency of read requests for read-intensive workloads. Paxos Quo-

rum Leases [29] (PQL) grants read leases to a set of objects to

nodes that frequently access them. Lease holders can then serve

read requests locally as long as the lease is valid. PQL performs

well for workloads where data popularity is highly skewed. In

Megastore [7], nodes can read data locally if the local-replica is the

most up-to-date. Otherwise, nodes read from amajority of replicas.

Canopus include an optional read optimization (§7.2) that allows

the nodes to always read from the local replica.

3 SYSTEM ASSUMPTIONS

We now specify our six design assumptions:

Network topology: Canopus makes only two minor assumptions

about the nature of its data center network. These are likely to hold

for the vast majority of modern data center networks:

1. All machines running Canopus in the same data-

center are hosted in the same rack, and are dual-

connected to Top-of-Rack (ToR) switches that provide

low-latency connectivity to all the machines in its rack. If

the number of Canopus nodes in a datacenter exceeds what

can be hosted in a single rack, we assume that we have con-

trol over the physical location of the Canopus’ nodes within

a datacenter, including the location in the racks or whether

Canopus runs in a VM or a physical machine.

2. ToR switches are connected to each other through a hi-

erarchical network fabric. In general, we expect latency

to increase and bandwidth to decrease as hop count between

the pair of communicating nodes increases.

Although Canopus will perform correctly (i.e., either achieve

consensus or stall) without the next two assumptions, for accept-

able performance, we also assume that:

3. Full rack failures are rare.More precisely, we assume that

although individual machines, ToR switches, and/or links

may fail, it is rarely the case that all machines in a rack are

simultaneously unreachable from o�-rack machines. Single-

failure fault tolerance is easily achieved by using dual-NIC

machines connected to two ToR switches on each rack. In

the rare cases of rack failures, Canopus halts until the racks

have recovered. Moreover, rack failures do not cause the sys-

tem to enter into an unrecoverable state. This is because the

nodes persistently store their protocol state, and our system

can resume when enough nodes in the failed racks recover.

4. Network partitions are rare. A network partition within

a rack requires both ToR switches to simultaneously fail,

which we assume is rare. Similarly, we assume that the

network provides multiple disjoint paths between ToR

switches, so that the ToR switches are mutually reachable

despite a link or switch failure. Finally, we assume that there

are multiple redundant links between data centers, so that

a wide-area link failure does not cause the network to par-

tition.

Many modern datacenters use network topologies that meet

these two assumptions [11, 39], including Clos-like topologies such

as fat-tree [5], VL2 [13], and leaf/spine networks. These failure as-

sumptions simplify the design of Canopus and allow us to optimize

Canopus for the common case.

In the unlikely event of a network partition, we believe it is rea-

sonable for a consensus protocol to stall while waiting for the net-

work to recover, resuming seamlessly once the network recovers.

Indeed, this is the only reasonable response to a network partition

where a majority of consensus participants do not reside in any

single partition. We believe that, given both the rarity of network

partitions and the severity in which they a�ect applications and

services, it is not worthwhile for a consensus protocol to provide

limited availability at the expense of a signi�cant increase in pro-

tocol complexity. Planned shutdown of a rack is possible and does

not result in any loss in availability.

5. Client-coordinator communication: In Canopus, as in many

other consensus systems, clients send key-value read and write re-

quests to a Canopus node. We assume that a client that has a pend-

ing request with a particular node does not send a request to any

other node. This is to allow serialization of client requests at each

node. If a client were to concurrently send a write and a read re-

quest to two di�erent nodes, the read request could return before

the write request even if the read was sent after the write, which

would violate program order.

6. Crash-stop failures: We assume that nodes fail by crashing

and require a failed node to rejoin the system using a join protocol.

The Canopus join protocol closely resembles the join protocol for

other consensus systems [32]. Canopus detects node failures by

using a method similar to the heartbeat mechanism in Raft.

4 CANOPUS

Canopus is a scalable distributed consensus protocol that ensures

live nodes in a Canopus group agree on the same ordered sequence

of operations. Unlike most previous consensus protocols, Cano-

pus does not have a single leader and uses a virtual tree overlay

for message dissemination to limit network tra�c across oversub-

scribed links. It leverages hardware redundancies, both within a

rack and inside the network fabric, to reduce both protocol com-

plexity and communication overhead. These design decisions en-

able Canopus to support large deployments without signi�cant

performance penalties.

The Canopus protocol divides execution into a sequence of

consensus cycles. Each cycle is labelled with a monotonically in-

creasing cycle ID. During a consensus cycle, the protocol deter-

mines the order of pending write requests received by nodes from

clients before the start of the cycle and performs the write re-

quests in the same order at every node in the group. Read re-

quests are responded to by the node receiving it. Section 5 will

describe how Canopus provides linearizable consistency while al-

lowing any node to service read requests and without needing to

disseminate read requests.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav

Canopus determines the ordering of the write requests by hav-

ing each node, for each cycle, independently choose a large random

number, then ordering write requests based on the random num-

bers. Ties are expected to be rare and are broken deterministically

using the unique IDs of the nodes. Requests received by the same

node are ordered by their order of arrival, which maintains request

order for a client that sends multiple outstanding requests during

the same consensus cycle.

4.1 Leaf-Only Trees

During each consensus cycle, each Canopus node disseminates the

write requests it receives during the previous cycle to every other

node in a series of rounds. For now, we will assume that all nodes

start the same cycle in parallel at approximately the same time.

We relax this assumption in Section 4.4, where we discuss how

Canopus nodes self-synchronize.

Instead of directly broadcasting requests to every node in the

group, which can create signi�cant strain on oversubscribed links

in a datacenter network or wide-area links in a multi-datacenter

deployment, message dissemination follows paths on a topology-

aware virtual tree overlay.

Speci�cally, Canopus uses a Leaf-Only Tree overlay [6], that

allows nodes arranged in a logical tree to compute an arbitrary

global aggregation function. We adapt LOT for use in a consensus

protocol; from this point on, we will always be referring to our

modi�ed version of LOT.

A LOT has three distinguishing properties:

i. Physical and virtual nodes: In LOT, only the leaf-nodes exist

physically (in the form of a dedicated process running in a physical

machine). Internal nodes are virtual and do not exist as a dedicated

process. Instead, each leaf node emulates all of its ancestor nodes.

For clarity, we denote a leaf node as a pnode and an internal node

as a vnode.

ii. Node emulation: Each pnode emulates all of its ancestor vn-

odes. i.e., each pnode is aware of and maintains the state corre-

sponding to all of its ancestor vnodes. Thus, the current state of

a vnode can be obtained by querying any one of its descendants,

making vnodes inherently fault tolerant, and making vnode state

access parallelizable.

iii. Super-leaves: All the pnodes located within the same rack

are grouped into a single super-leaf for two reasons. First, this re-

duces the number of messages exchanged between any two super-

leaves; instead of all-to-all communication between all the pnodes

in the respective super-leaves, only a subset of the super-leaf nodes,

called its representatives, communicate with another super-leaf on

behalf of their peers. Second, because all the pnodes in a super-leaf

replicate their common parents’ state, a majority of the super-leaf

members need to simultaneously fail to cause the super-leaf to fail.

Figure 1 shows an example of a leaf-only tree consisting of 27

pnodes. There are three pnodes per super-leaf. The pnode N emu-

lates all of its ancestor vnodes 1.1.1, 1.1, and 1. The root node 1

is emulated by all of the pnodes in the tree.

We assume that during Canopus initialization, each node is pro-

vided with the identities and IP addresses of the peers in its own

super-leaf.

4.2 Consensus Cycle

Each consensus cycle consists of h rounds where h is the height

of the LOT. Each consensus cycle is labelled by a monotone non-

decreasing cycle ID. Canopus ensures that nodes concurrently ex-

ecute the same consensus cycle, which we further explain in Sec-

tion 4.4. In the following sections, we describe the details of the

messages exchanged in each round of a consensus cycle.

First round in a consensus cycle: In the �rst round of a consen-

sus cycle, each pnode prepares a proposal message and broadcasts

the message to the peers in its super-leaf using a reliable broad-

cast protocol, which we describe in detail in Section 4.3. A pro-

posal message contains the set of pending client requests, group

membership updates, and a large random number generated by

each node at the start of the consensus cycle. This random number,

called the proposal number, is used to order the proposals across the

nodes in each round in the consensus cycle. A proposal message

is also tagged with the cycle ID, the round number, and the vnode

ID whose state is being represented by the proposal message. The

group membership updates include the membership changes that

happened before starting the current consensus cycle. Note that

proposal messages sent in the �rst round are used to inform the

receivers about the start of the next consensus cycle.

After receiving the round-1 proposal messages from all the

peers in its super-leaf, each pnode independently orders the pro-

posals according to their (random) proposal numbers. The sorted

list of proposals represents the partial order of the requests in the

current round and constitutes the state of the parent vnode of the

super-leaf. A node �nishes its �rst round after it has obtained pro-

posal messages from all its super-leaf peers, and then immediately

starts the next round in the consensus cycle.

Round-i in a consensus cycle: In each subsequent round, each

node independently prepares a new proposal message, which is

used to share the computed state from the previous round with

other super-leaves. The list of requests in the proposal message is

simply the sorted list of requests obtained in the previous round.

Similarly, the proposal number in the new message is the largest

proposal number from the previous round. Thus, a proposal mes-

sage for round i can be de�ned as Mi = {R′
i−1,N

′
i−1, F

′
i−1,C, i,v},

where R′ is the sorted list of proposals from the previous round,

N ′
i−1 is the largest proposal number in the previous round, F ′i−1 is

the set of membership updates received in the proposals from the

previous round, C is the cycle ID, i is the round number, and v is

the vnode ID, or the pnode ID in the case of the �rst round.

In round i , the pnodes compute, in parallel, the state of their

height-i ancestor vnode. For example, the root vnode in Figure 1

has a height of 3, and therefore, its state is computed in the third

round. As the current state of a vnode is just the merged and sorted

list of proposals belonging to its child pnodes or vnodes, each

super-leaf independently gathers the proposals of that vnode’s chil-

dren from their emulators, where a vnode’s emulator is a pnode

that is known to have the vnode’s state; see § 4.6 for details.

To obtain the proposal belonging to a vnode, representatives

from each super-leaf select one of that vnode’s emulators and

sends a proposal-request message to the selected emulator. For in-

stance, to compute the state of the node 1.1, representative node

N in Figure 1 sends a proposal-request to emulators of the vnodes

Canopus: A Scalable and Massively Parallel Consensus Protocol CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

Figure 1: An example of a leaf-only tree (LOT). Only the leaf nodes exist physically and the internal nodes are virtual. A leaf

node emulates all of its ancestor virtual nodes.

1.1.2 and 1.1.3 – it already knows the state of the vnode 1.1.1,

which was computed in the previous round.

The proposal-request message contains the cycle ID, round

number, and the vnode ID for which the state is required. In re-

sponse to receiving a proposal-requestmessage, the receiver pnode

replies with the proposal message belonging to the required vnode.

If the receiver pnode has not yet computed the state of the vnode, it

bu�ers the request message and replies with the proposal message

only after computing the state of the vnode. When the super-leaf

representative receives the proposal message, it broadcasts the pro-

posal to its super-leaf peers using reliable broadcast. These peers

then independently sort the proposals, resulting in each node com-

puting the state of their height-i ancestor. Note that representa-

tives from all super-leaves issue proposal-requests in parallel, and

all nodes in all super-leaves independently and in parallel compute

the state of their height-i ancestor.

Completing a consensus cycle: The consensus protocol �nishes

after all nodes have computed the state of the root node, which

takes time proportional to the logarithm of the number of Cano-

pus pnodes. At this point, every node has a total order of requests

received by all the nodes. The node logs the requests in its request

log for execution. It then initiates the next consensus cycle with its

super-leaf peers if it received one or more client requests during

the prior consensus cycle.

4.3 Reliable-Broadcast in a Super-Leaf

The nodes in a super-leaf use reliable broadcast to exchange pro-

posal messages with each other. For ToR switches that support

hardware-assisted atomic broadcast, nodes in a super-leaf can use

this functionality to e�ciently and safely distribute proposal mes-

sages within the super-leaf.

If hardware support is not available, we use a variant of Raft [32]

to perform reliable broadcast. Each node in a super-leaf creates its

own dedicated Raft group and becomes the initial leader of the

group. All other nodes in the super-leaf participate as followers in

the group. Each node broadcasts its proposal messages to the other

nodes in its super-leaf using the Raft log replication protocol in its

own Raft group. If a node fails, the other nodes detect that the

leader of the group has failed, and elect a new leader for the group

using the Raft election protocol. The new leader completes any in-

complete log replication, after which all the nodes leave that group

to eliminate the group from the super-leaf.

Reliable broadcast requires 2F + 1 replicas to support F failures.

If more than F nodes fail in the same super-leaf, the entire super-

leaf fails and the consensus process halts.

4.4 Self-Synchronization

So far we have assumed that all of the nodes start at the same con-

sensus cycle in parallel. Here, we describe how the nodes are self-

synchronized to concurrently execute the same consensus cycle.

Before starting a consensus cycle, a node remains in an idle state.

In this state, its network tra�c is limited to periodic heartbeat mes-

sages to maintain its liveness. A new consensus cycle only starts

when the node receives outside prompting. The simplest version

of this prompting is when the node receives a client request for

consensus. A client request triggers the node to start a new con-

sensus cycle and broadcast a proposal message to other peers in its

super-leaf. The proposal message informs the peers that it is time

to start the next consensus cycle, if it is not already under way. The

representatives, in e�ect, send proposal-request messages to other

super-leaves that trigger them to start the next consensus cycle, if

they have not started yet.

Alternatively, a node, while in the idle state, may receive either

a proposal message from its peers in its super-leaf, or a proposal-

request message from another super-leaf. This indicates that a new

cycle has started, and therefore, this node begins the next consen-

sus cycle. In this scenario, the node’s proposal message contains an

empty list of client requests. As a result, the nodes are self-clocked

to execute the same consensus cycle.

4.5 Super-Leaf Representatives

A super-leaf representative fetches the state of a required vnode

on behalf of its super-leaf peers and broadcasts the fetched state

to the peers using reliable broadcast (§ 4.3). We use a variant of

Raft’s leader election and heartbeat protocols [32] to allow nodes

in a super-leaf to select one or more super-leaf representatives and

detect representative failures. A representative failure triggers a

new election to select a replacement representative.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav

The representatives of a super-leaf are each individually respon-

sible for fetching the states of the tree’s vnodes. A representative

can fetch the states of more than one vnode. However, to improve

load balancing, we recommend that di�erent representatives fetch

the states of di�erent vnodes. The vnode to representative assign-

ment can be performed deterministically by taking the modulo of

each vnode ID by the number of representatives in a super-leaf.

Because representatives of a super-leaf are numbered and ordered

(e.g., representative-0, representative-1, etc.), the result of the mod-

ulo operation can be used to determine which representative is

assigned to a vnode without the need for any communication or

consensus.

4.6 Emulation Table

Thus far, we have not discussed how Canopus nodes actually com-

municate with other nodes. To initiate communication with an em-

ulator of a vnode (a pnode in the sub-tree of the vnode)with a given

ID, LOT maintains an emulation table that maps each vnode to a

set of IP addresses of the pnodes that emulate that vnode. For ex-

ample, for the LOT given in Figure 1, the table would map vnode

1.1 to the set of IP addresses of the nine pnodes that emulate this

vnode.

We assume that at system initialization time, the emulation ta-

ble is complete, correct, and made available to all pnodes. Subse-

quently, failed pnodes must be removed from the emulation tables

maintained by all non-failed pnodes. Note that this itself requires

consensus. Hence we maintain emulation tables in parallel with

the consensus process, by piggybacking changes in the emulation

table on proposal messages.

Speci�cally, in the �rst round of a consensus cycle, pnodes list

membership changes (determined based on an within-super-leaf

failure-detector protocol, such as through Raft heartbeats) in their

proposal messages. Membership changes for a pnode include the

list of pnodes that joined or left its super-leaf before the pnode

started its current consensus cycle. At the end of the consensus cy-

cle, all the pnodes have the same set of proposal messages, and thus

the same set of membership changes are delivered to each pnode.

Therefore, each pnode applies the same membership updates to

the emulation table at the end of each consensus cycle. As a result,

each pnode has the same emulation table and same membership

view of LOT in each consensus cycle.

4.7 An Illustrative Example

We illustrate Canopus using an example in which six nodes are

arranged in two super-leaves in a LOT of height 2 as shown in Fig-

ure 2(a). Nodes A, B, and C comprise super-leaf Sx , and the nodes

D, E, and F comprise the super-leaf Sy . The nodes in Sx and Sy
are connected with the common vnodes x and y respectively. The

vnodes x and y are connected with the root vnode z. In the �rst

round, the states of vnodes x and y are computed, which estab-

lishes consensus within the super-leaves. In the second round, the

state of the root vnode z is computed, which establishes consen-

sus between super-leaves. Figure 2(b) shows the events occurring

in the super-leaf Sx during the consensus cycle. The events are

labelled in circles and explained as follows:

x

A
B

C

y

D
E

F

z

Super-leaf Sx Super-leaf Sy

Consensus

in round 1

Consensus

in round 2

(a) Six nodes are arranged in two super-leaves in a LOT of height 2.

PA= [RA | NA | 1]
1

2

P
x
= [PA, PC, PB | NB | 2]

F

D D

E E

FD

A

B

C

3

Py

Px

4

P
z
= [Py, Px | NB | 3]

Px

6

7

PC = [Ø | NC | 1]

5

Proposal message to/from

remote node

Proposal-request message
Round 2

Round 1

PB= [RB | NB | 1]

Qx

Qi: Proposal-request to fetch the

state of vnode i

Pi: Proposal belonging to node i

Qy

Qy

Qx

Reliable broadcast of a proposal message

(b) Timing diagram of the events occurring in the super-leaf Sx , which consists of
the nodes A, B, and C.

Figure 2: Illustration of a consensus cycle in Canopus.

1. The consensus cycle starts:NodesA and B start the �rst round

of the consensus cycle. At the start of the cycle, nodes A and B

have the pending requests RA and RB . The nodes prepare proposal-

messages and broadcast them to their peers in the super-leaf.

Assume that the proposals of nodes A, B, and C are PA = {RA |

NA | 1}, PB = {RB | NB | 1}, and PC = {ϕ | NC | 1}, where Ri is

the ordered set of pending requests on node i , Ni is the proposal

number, and 1 is the round number. We omit the other information

from the proposals for simplicity.

2. A proposal-request message is sent:NodeC receives the pro-

posal message from node A and starts its consensus cycle. Assum-

ing that nodes A and C are the representatives for super-leaf Sx ,

these nodes send proposal-request messagesQy toD and E respec-

tively to redundantly fetch the state of vnode y. The nodes in Sx
require the state of y to compute the state of the ancestor vnode z

in the next round.

3. A proposal-request is received for an un�nished round:

NodeA receives a proposal-requestmessage from F , which belongs

to the next round of the current consensus cycle, asking for the

proposal Px . As node A has not yet �nished its �rst round that

results in Px , it bu�ers the request and does not send any reply

until it �nishes its �rst round.

4. The �rst round is completed: Node C receives the proposal

message PB from B. As node C has received the proposals from

Canopus: A Scalable and Massively Parallel Consensus Protocol CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

all the peers in its super-leaf, it �nishes its �rst round. Node C

sorts the requests in the received proposals and its own proposal

according the proposal numbers. The sorted list of requests is the

consensus result from the �rst round, and comprises the current

state of the vnode x . When nodes A and B �nish their �rst round,

they also have the same sorted list of requests.

To continue with the next round, the nodes prepare the

proposal-messages that contain the sorted list of requests and the

largest proposal number from the last round. In this example, the

three nodes prepare the round-2 proposal Px = {PA, PC , PB | NB |

2}, assuming NA < NC < NB .

5. A proposal-request is served: Node A continues in the next

round after �nishing the �rst round and prepares the proposal Px .

It replies to the pending proposal-request Qx , which it received

from node F .

6. Coordinating the proposals: Node C receives the reply of its

requestQy for the round-2 proposal Py , and reliably broadcasts Py
to other peers in its super-leaf. Assume that Py = {PD , PE , PF |

NF | 2}.

7. The consensus cycle is completed: After receiving all the re-

quired round-2 proposals, nodeC �nishes the second round of the

consensus cycle. At the end of the round, nodeC has the proposal

Pz = {Py , Px | NB | 3}, assuming NF < NB . As node C has now

�nished calculating the state of the root node, it �nishes the con-

sensus cycle. At the end of the cycle, nodeC has the consensus on

the requests, which is {RD ,RE ,RF ,RA,RC ,RB }. Other nodes will

have the same ordering of the requests when their second round

is �nished. Node C applies the requests in its copy of the commit

log. Note that all node eventually agree on identical copies of this

log.

5 LINEARIZABILITY

Canopus provides linearizability by totally ordering both read and

update requests. Interestingly, Canopus enforces global total order

without disseminating read requests to participating nodes, signif-

icantly reducing network utilization for read-heavy workloads. In-

stead, Canopus nodes delay read requests until all concurrently-

received update requests are ordered through the consensus pro-

cess. Once the update request ordering is known, each Canopus

node locally orders its pending read requests with respect to its

own update requests such that the request orders of its clients are

not violated. This trades o� read latency for network bandwidth.

During consensus cycle Ci , the nodes bu�er the requests re-

ceived from the clients. The requests accumulated on a node Ni

during cycle Cj form a request set S
j
i . In Canopus, the requests

within a request set are sequential and follow the receive order. In

contrast, the request sets across the nodes in cycleCj , which we de-

note as S
j
∗, are concurrent. To order the concurrent sets in S

j
∗, Cano-

pus executes the next instanceCj+1 of the consensus protocol. The

consensus process gives a total order of the concurrent sets in S
j
∗.

The total order of the concurrent sets translates to the linearized

order of the requests received during the cycle Cj . Note that the

requests in a request set are never separated. We are instead order-

ing the request sets to determine a total order of requests. At the

end of the consensus process, each node has the same total order

of write requests, and inserts its read requests in the appropriate

positions to preserve its own request set order.

In this approach, each node delays its read requests for either

one or two consensus cycles to provide linearizability. If a request

is received immediately after starting a consensus cycle Cj , the

read request is delayed for two consensus cycles: The currently ex-

ecuting cycleCj , and the next cycleCj+1 in which the request sets

S
j
i are ordered and executed. If the request is received just before

completing the currently executing cycle Cj , the read is delayed

for only one consensus cycle Cj+1.

6 CORRECTNESS PROPERTIES

Similar to Paxos and EPaxos, Canopus provides the properties of

nontriviality, agreement, FIFO order of client requests, lineariz-

ability, and liveness2. Nontriviality and FIFO ordering are met by

design. The following theorem ensures agreement, linearizability,

and liveness:

Theorem 1: For a height-h LOT consisting of n super-leaves, all

the live descendant-nodes Êrw of the root-vnodew that eventually

complete the last round r = h have the same ordered-set of mes-

sages.

∀

i, j ∈Êrw

Mr
i = Mr

j (1)

where Mr
i is the set of messages that a live node i has after com-

pleting the round r of the current consensus cycle.

We provide a proof sketch for the special case of the �rst con-

sensus cycle for height-2 tree with n super-leaves. The complete

proof involves induction �rst on the number of cycles and then on

the tree height. The complete proof is available in our extended

technical report [36].

The proof assumes that:

A1 All nodes are initialized with the same emulation table and

membership view.

A2 The network cannot be partitioned, messages are not cor-

rupted, messages are eventually delivered to a live receiver,

and that nodes fail by crashing. Node failures within a super-

leaf are detected by using heartbeats and timeouts similar to

Raft.

A3 The super-leaf-level structure of LOT does not change:

Nodes may leave or join super-leaves, however, super-

leaves are not added or removed.

A4 Reliable broadcast functionality is available within a super-

leaf, which ensures that all the live nodes in a super-leaf

receive the same set of messages.

Proof Sketch: Consider a height-2 LOT consisting of n super-

leaves, as shown in Figure 3. Each super-leaf Si has a height-1 par-

ent vnodeui . The height-1 vnodes are connected with the common

root vnodew . A consensus cycle consists of two rounds for a LOT

of height 2. In the �rst round, the nodes share the pending batch

of update-requests within their super-leaf using the reliable broad-

cast functionality (assumption A4). The nodes sort the messages

according to the proposal numbers received in the messages. At

the end of the �rst round, each node f i
Sj

in a super-leaf Sj has the

2Please refer to Reference [27] for de�nitions.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav

« «

w

u1 u2

f
S1

1 f
S1

x f
S2

1 f
S2

y

S1 S2

«

un

f
Sn

1 f
Sn

z

Sn

«

Figure 3: A LOT of height 2 with n super-leaves.

same ordered-set of messagesM1
j , which represents the state of the

height-1 ancestor uj of the nodes in Sj . To order the messages in

the next round, the largest proposal number received in the current

round is selected.

In the second round each node f i
Sj

calculates the state of its

height-2 ancestor w . Therefore, the set of messages that f i
Sj

re-

quires to complete the second round is M2
j = ∀u ∈C2

j
∪M1

u , where

C2
j is the set of children of the height-2 ancestor of any node in the

super-leaf Sj .

By Canopus’ design, a set of representatives of Sj fetch the miss-

ing state M1
u of each vnode u ∈ C2

j from the live descendants of u.

By assumption A1 and A2, the representatives will eventually suc-

ceed in fetching the state of u if there is at least one live super-leaf

descending from u. If the representatives of Sj eventually succeed

in fetching the states of all the vnodes u ∈ C2
j , then by reliable

broadcast within the super-leaf (assumption A4), all the nodes in

the Sj have the same set of messagesM2
j that are required to com-

plete the second round.

By assumptions A1 and A3, all the nodes have the same view of

LOT in the �rst consensus cycle. Therefore, the representatives of

each super-leaf fetch the same state of a common vnodeu from any

of the descendants of u. This implies that, for all the super-leaves

for which the representatives have succeeded in fetching all the

required states of height-1 vnodes, the nodes in the super-leaves

have same set of messages, which allows the nodes to complete the

second round. Thus,

∀

i, j ∈Ê2
w

M2
i = M2

j (2)

the nodes sort the messages according the proposal numbers re-

ceived with the vnode-states. As the consensus cycle consists of

two rounds for a LOT of height 2, equation 2 implies that all of the

descendants of the height-2 root vnode that complete the �rst con-

sensus cycle have the same ordered-set of messages. This shows

that the live nodes reach agreement and eventually complete the

consensus cycle, if a super-leaf does not fail.

If the representatives of a super-leaf Sj fail in fetching the state

of at least one vnode u ∈ C2
j in the second round, then either (a)

all the descendants of u have crashed or they do not have the state

of u due to not completing the previous round, or (b) all the repre-

sentatives of Sj have crashed, which implies that the super-leaf Sj
has failed due to insu�cient number of live nodes to elect a new

representative. In either case, the nodes in Sj cannot complete the

second round due to missing a required state, and the consensus

process stalls for the nodes in Sj in the second round of the current

consensus cycle.

Alternatively, if the nodes in another super-leaf Sk succeed in

fetching all the required states, then the consensus process stalls

for the nodes in Sk in the next cycle c + 1 because the live nodes

in Sj are stalled in the last cycle c . This shows that the consensus

process stalls for the live nodes due to a super-leaf failure and the

nodes do not return a wrong result.

In the subsequent consensus cycles, the assumption A1 does not

hold because the membership of LOT changes if a node fails or

a new node joins a super-leaf. However, we show in the detailed

proof, which is available on request, using induction that the emu-

lation tables are maintained and all the live nodes that eventually

complete a cycle c have the same emulation table in cycle c + 1.

Therefore, Canopus satis�es agreement and liveness properties in

any consensus cycle for height-2 LOT. We prove these properties

for a LOT of any height-h using induction, for which the height-2

LOT serves as the base case.

7 OPTIMIZATIONS

In this section, we discuss two optimizations that enable Canopus

to achieve high throughput and low read latency in wide-area de-

ployments.

7.1 Pipelining

The completion time of a consensus cycle depends on the latency

between the most widely-separated super-leaves. If only one cycle

executes at a time, then high latency would reduce throughput as

the nodes are mostly idle and are waiting for distant messages to

arrive. Therefore, we use pipelining in Canopus to increase the

throughput of the system. Speci�cally, instead of executing only

one consensus cycle at a time, a node is permitted to participate in

the next consensus cycle if any of the following events occur:

• The node receives a message belonging to the consensus

cycle that is higher than its most recently started consensus

cycle.

• A periodical timer expires, which serves as an upper bound

for the o�set between the start of two consensus cycles.

• The number of outstanding client requests exceeds the max-

imum batch size of requests.

With this change, a node can start exchanging messages with

its peers that belong to the next consensus cycle even before the

end of the prior cycle. In e�ect, this allows Canopus to maintain

multiple in-progress consensus cycles. However, log commits only

happen when a particular consensus cycle is complete, and always

in strict order of consensus cycles. This is no di�erent than a trans-

port layermaintaining awindow of transmitted-but-unacked pack-

ets.

Two cases need to be addressed to maintain the total order of

the requests. First, nodes must always start consensus cycles in se-

quence (i.e., they cannot skip a cycle). It may happen that a node

receives a message belonging to cycleCj≥i+2 whereCi is the most

recently started consensus cycle at the node. In that case, the node

Canopus: A Scalable and Massively Parallel Consensus Protocol CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

still starts the next cycle Ci+1 instead of starting the cycle Cj . Sec-

ond, nodes always commit the requests from consensus cycles in

sequence. Due to parallelism and fetching proposals from di�er-

ent nodes in each cycle, it may happen that a node receives all the

required messages to complete a cycle Cj≥i+1 before it has com-

pleted the cycleCi . However, to maintain the total order, nodes do

not commit the requests from Cj until the requests from all the

cycles before Cj have been committed.

7.2 Optimizing Read Operations

Canopus delays read operations to linearize them relative to the

write requests across all the nodes in the system. Therefore, the

read operations must be deferred to the end of the next consensus

cycle, which is bounded by the round-trip latency between the far-

thest super-leaves. However, for read-heavy workload, it is desir-

able that the read operations are performed with minimal latency.

Canopus can optionally support write-leases for a particular key

during a consensus cycle to reduce the latency of read operations

while preserving linearizability.

For any key, during any consensus cycle either a write lease is

inactive, so that no writes are permitted to that key, and all nodes

can read this key with no loss of consistency or all nodes have

permission to write to this key (with a write order that is decided

at the end of the consensus cycle) and no reads are permitted to this

key. Any read requests made to a key during a consensus cycle i

such that there is a write lease for the key is deferred to the end of

the (i + 1)th consensus cycle, to ensure linearizability.

Write leases require the following three modi�cations to Cano-

pus:

1. Blocking client requests: Following the model in Paxos

Quorum Leases [30], our read optimization restricts the clients to

sending only one request at any one time. This is di�erent than our

earlier model, where the clients are permitted many outstanding

requests at a time.

2. Write leases: Write requests are committed after acquiring

the write-lease for the keys in the requests. Nodes piggyback lease

requests with the proposal messages in the next consensus cycle

Ci+1. At the end of the consensus cycle Ci+1, all the correct nodes

that complete the cycle have the same set of lease requests. There-

fore, all the correct nodes in the system can apply the lease in the

same consensus cycle Ci+p+1.

3. Reads without delay: A node N performs a read operation

for a keyy immediately (reading results from committed consensus

cycles) if the write-lease for y is not active in any of the currently

ongoing consensus cycles. If a node receives a read request for y

while the write-lease for y is currently active, the node delays the

read request until the end of the next consensus cycle.

8 EVALUATION

The focus of our evaluation is to compare the throughput and la-

tency of Canopus with other competing systems at di�erent de-

ployment sizes. Our experiments are based on our prototype im-

plementation of Canopus, which consists of approximately 2000

lines of Java code. We select EPaxos as a representative for state-

of-the-art decentralized consensus approaches as EPaxos has been

reported [27] to perform equal or better than other decentralized

consensus protocols. We use the publicly available implementa-

tion [28] of EPaxos from the paper’s authors for the evaluation.

We also compare against ZooKeeper, a widely used coordination

service that uses Zab, a centralized atomic broadcast protocol, to

provide agreement. In order to provide a fair comparison with

ZooKeeper, which includes additional abstractions that may intro-

duce extra overhead, we created ZKCanopus, a modi�ed version

of ZooKeeper that replaces Zab with Canopus and performed all

of our comparisons to ZooKeeper using ZKCanopus.

8.1 Single Datacenter Deployment

In this section, we evaluate the performance of Canopus and

EPaxos when all the nodes are located in the same datacenter.

Experimental setup: We conducted our experiments on a three

rack cluster where each rack consists of 13 machines. Each ma-

chine contains 32GB of memory, a 200GB Intel S3700 SSD, and two

Intel Xeon E5-2620 processors. The machines in each rack are con-

nected through a Mellanox SX1012 top-of-rack switch via 10Gbps

links. Rack switches are connected through 2x10Gbps links to a

common Mellanox SX1012 aggregation switch. Thus, the network

oversubscription is 1.5, 2.5, 3.5, and 4.5 for experiments with 9, 15,

21, and 27 nodes respectively.

For our ZooKeeper and ZKCanopus experiments, both systems

were con�gured to write logs and snapshots of the current sys-

tem state asynchronously to the �lesystem. We use an in-memory

�lesystem to simplify our experimental setup. To ensure that using

an in-memory �lesystem does not appreciably a�ect our results,

we perform additional experiments in which logs are stored to an

SSD. The results show that, for both ZooKeeper and ZKCanopus,

throughput is not a�ected and median completion time increases

by less than 0.5 ms.

Each experiment runs for 50 seconds and is repeated �ve times.

We discard the �rst and last 5 seconds to capture the steady state

performance. The error bars in the graphs show 95% con�dence

intervals.

Workload: Our experimental workloads are driven by 180 clients,

which are uniformly distributed across 15 dedicatedmachines with

5 machines per rack. Each client connects to a uniformly-selected

node in the same rack. The clients send requests to nodes accord-

ing to a Poisson process at a given inter-arrival rate. Each request

consists of a 16-byte key-value pair where the key is randomly se-

lected from 1 million keys.

LOT con�guration in Canopus: Canopus nodes are organized

into three super-leaves in a LOT of height 2. To vary the group

size, we change the super-leaf size to 3, 5, 7, and 9 nodes. Due to

the size of our cluster, we did not run experiments with taller trees.

In our current implementation, nodes reliably broadcast messages

within a super-leaf without hardware assistance. Instead, they use

the Raft-based reliable broadcast protocol described in Section 4.3

in which nodes communicate using unicast messages.

Performancemetrics:The two key performancemetrics wemea-

sure in our experiments are throughput and request completion

time. We determine the throughput of a system by increasing the

request inter-arrival rate until the throughput reaches a plateau.

Our empirical results show that, for all of the tested systems and

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav

9 15 21 27

Num ber of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

 (
x

1
0

6
)

Canopus
20% writes

Canopus
50% writes

Canopus
100% writes

(a) Throughput (b) Median completion time

Figure 4: Throughput and median request completion times of Canopus and EPaxos while scaling the number of nodes in the

system.

con�gurations, the plateau is reached before the median request

completion time reaches 10 ms. To simplify our testing procedure,

our experiments run until the request completion time is above 10

ms and we use the last data point as the throughput result for that

run. For each run, we manually verify that we have reached the

system’s maximum throughput.

As it is di�cult to determine the exact inter-arrival rate at which

maximum throughput has been reached, together with the com-

mon operating practice of running critical systems below their

maximum load, we report the median request completion time of

the tested systems when they are operating at 70% of their max-

imum throughput. We believe this is more representative of the

completion times that applications will experience when interact-

ing with these systems compared to the median completion time

at 100% load.

8.1.1 Comparison with EPaxos. In this experiment, we com-

pare the performance of Canopus with EPaxos at di�erent sys-

tem sizes. Figure 4(a) shows the maximum throughput of the two

systems. The �rst three bars in each group show the Canopus’

throughput at 20%, 50%, and 100% write requests, and the last two

bars show the throughput of EPaxos at its default batch duration

of 5 ms, in which requests are delayed for up to 5 ms in order to col-

lect a larger batch of requests, and a reduced batch duration of 2ms.

For EPaxos, we ensure there is 0% command interference to eval-

uate its performance under the best possible condition. As EPaxos

sends reads over the network to other nodes, its performance is

largely independent of the write percentage; we show its results

using the 20% write request workload.

The performance results show that with 20% and 50% write

requests, Canopus provides signi�cantly higher throughput than

EPaxos with the performance gap increasing with larger system

sizes. With 27 nodes and 20% write requests, Canopus provides

more than 3 times the throughput of EPaxos with 5 ms batching.

This is because Canopus can serve read requests locally without

disseminating the request to the rest of the nodes in the group

while still providing linearizable consistency. For the 100% write

request workload, Canopus provides similar throughput to EPaxos

with a 5 ms batching duration. This is in part due to network band-

width being relatively abundant in a single datacenter deployment.

EPaxos with a 2 ms batching duration shows a signi�cant drop in

throughput as we increase the number of nodes in the system. This

illustrates that EPaxos has scalability limitations when con�gured

with smaller batch sizes.

Figure 4(b) shows the median request completion times of the

two systems. From 9 to 27 nodes, Canopus’ request completion

time is mostly independent of write request percentage, and is sig-

ni�cantly shorter than EPaxos.

EPaxos’ high request completion time is primarily due to its

batching duration. By reducing its batching duration to 2 ms,

EPaxos’ median request completion time reduces by more than

half and is within 1 ms of Canopus’ request completion time. How-

ever, as we saw previously, EPaxos relies on large batch sizes

to scale. Therefore, our results show that EPaxos must tradeo�

request completion time for scalability, whereas Canopus’ read

throughput increases with more nodes, its write throughput re-

mains largely constant up to at least 27 nodes, and its median re-

quest completion time only marginally increases going from 9 to

27 nodes.

8.1.2 Comparison with ZooKeeper. In this experiment, we

compare the performance of ZooKeeper with ZKCanopus, our

Canopus-integrated version of ZooKeeper. This comparison serves

three purposes. First, it compares the performance of Canopus

with that of a centralized coordinator-based consensus protocol.

Second, it shows the e�ectiveness of Canopus in scaling an exist-

ing system by eliminating the centralized coordinator bottleneck.

Finally, these experiments evaluate the end-to-end performance of

complete coordination services, instead of evaluating just the per-

formance of the consensus protocols.

We con�gure ZooKeeper to have only �ve followers with the

rest of the nodes set as observers that do not participate in the Zab

atomic broadcast protocol but asynchronously receive update re-

quests. This choice is mainly to reduce the load on the centralized

leader node. Although observers do not provide additional fault

Canopus: A Scalable and Massively Parallel Consensus Protocol CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

Table 1: Latencies (ms) between the datacenters used in the

experiments.

IR CA VA TK OR SY FF

IR 0.2

CA 133 0.2

VA 66 60 0.25

TK 243 113 145 0.13

OR 154 20 80 100 0.26

SY 295 168 226 103 161 0.2

FF 22 145 89 226 156 322 0.23

tolerance, they can improve read request performance by servic-

ing read requests. In the case of ZKCanopus, every node partici-

pates fully in the Canopus consensus protocol. We use one znode

in these experiments and the clients read from and write to the

same znode.

Figure 5 shows the throughput to median request completion

time results for ZKCanopus and ZooKeeper with 9 and 27 nodes.

For ZKCanopus, we do not show the request completion time at

low throughputs in order to improve the readability of the graphs.

The results show that, when the system is not loaded, ZKCanopus

has a median request completion time that is between 0.2 ms to

0.5 ms higher than ZooKeeper. This is in part due to the additional

network round trips required to disseminate write requests using

a tree overlay instead of through direct broadcast. However, we

believe the small increase in request completion time is acceptable

given the signi�cant improvement in scalability and throughput

that ZKCanopus provides over ZooKeeper.

8.2 Multi-Datacenter Deployment

In this section, we evaluate the performance of Canopus in a wide

area deployment. We run the experiments on Amazon EC2 cloud

using three, �ve, and seven datacenters. Each datacenter consists

of three nodes located in the same site. Each node runs on an

EC2 c3.4xlarge instance, which consists of 30GB memory and In-

tel Xeon E5-2680 processor. Each datacenter has 100 clients that

connect to a uniform-randomly selected node in the same datacen-

ter and concurrently perform read and write operations at a given

rate. Theworkload consists of 20%write requests, unless otherwise

mentioned. The messages consists of 16-byte key-value pairs. The

inter-datacenter latencies are given in the Table 1.

For Canopus, each datacenter contains a super-leaf, although

the nodes might not be located in the same rack.We enable pipelin-

ing to overcome the long delays across datacenters. Each node

starts a new consensus cycle every 5ms or after 1000 requests have

accumulated, whichever happens earlier. For EPaxos, we used the

same batch size as Canopus, and theworkload consists of zero com-

mand interference.We enable latency-probing in EPaxos to dynam-

ically select the nodes in the quorum. We disable thrifty optimiza-

tion in EPaxos because our experiments show lower throughput

with the thrifty optimization turned on.

Figure 6 shows the throughput and median request completion

times of Canopus and EPaxos when deployed in three, �ve, and

seven datacenters. Each datacenter consists of three nodes. The

vertical lines in the graph show the throughput when the latency

touches 1.5 times the base latency.

Scaling across the datacenters, Canopus is able to achieve about

2.6, 3.8, and 4.7 millions requests per second, which is nearly 4x to

13.6x higher throughput than EPaxos. Canopus is able to achieve

high throughput because of its more e�cient utilization of CPU

and network resources. Unlike EPaxos, Canopus does not dissemi-

nate read requests across the nodes, not even the read keys, which

reduces the number and size of messages exchanged between the

nodes. For ready-heavy workloads, this signi�cantly impacts the

utilization of CPU and network resources. Furthermore, due to

the hierarchical and network-aware design of Canopus, a proposal

message is exchanged between each pair of super-leaves only once.

This approach places a lower load onwide-area network links com-

pared to the broadcast-based approach used in EPaxos.

8.2.1 Writes to Reads Ratio in the Workload. In this section, we

evaluate the performance of Canopus and EPaxos with di�erent ra-

tios of writes in the workload. We run these experiments with nine

nodes deployed in three datacenters. Figure 7 shows the results

when the workload consists of 1%, 20%, and 50% write requests.

For EPaxos, our results show the same results with di�erent write-

ratios in the workloads. Therefore, we only show the results for

20% writes workload.

As expected, Canopus has higher throughput for more read-

heavy workloads, reaching up to 3.6 million requests per second

with 1%writes workload , as compared to the 2.65millions requests

per second with 20% writes workload. However, even with a write

intensive workload consisting of 50% writes, Canopus achieves

2.5x higher throughput than EPaxos.

9 DISCUSSION

This paper describes the current design of Canopus and evaluates

its performance in comparison with other protocols. Additional ca-

pabilities may be necessary in order to satisfy the requirements of

speci�c applications.

Full-rack failures: In Canopus, nodes belonging to the same

super-leaf are placed in the same rack. Therefore, catastrophic

failures that cause complete rack failures result in super-leaf fail-

ures, which halts the consensus process. Although, top-of-rack

switch failures are rare [12] and the fault-tolerant design of data-

centers [21, 22, 37, 39] reduce the possibility of rack failures, there

can be applications that have more stringent availability require-

ments. For such applications, we are currently investigating a rack-

failure recovery mechanism.

Experiments at large scale: In order to limit the cost of our ex-

periments, we only evaluated Canopus with up to 27 nodes across

seven datacenters. However, we expect Canopus to scale to a large

number of nodes by carefully constructing the LOT hierarchy. The

number of nodes in Canopus can be increased either by increasing

the size of the super-leaves, or by increasing the number of super-

leaves in the system. The LOT should be structured such that the

time it takes to complete the operations within a super-leaf is less

than the round-trip time between super-leaves. If necessary, the

height of the tree can be increased to satisfy this condition.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav

Figure 5: Throughput and median request completion times of ZKCanopus and ZooKeeper when the system consists of 9

nodes (left) and 27 nodes (right). Note that the x-axis is in log scale.

0 1 2 3 4 5 6
0

100

200

300

400

500

600

M
e

d
ia

n
 r

e
q

u
e

s
t

c
o

m
p

le
ti

o
n

 t
im

e
 (

m
s
)

9 nodes

Canopus EPaxos

0 1 2 3 4 5 6

Throughput (x106)

0

100

200

300

400

500

600

15 nodes

0 1 2 3 4 5 6
0

100

200

300

400

500

600

21 nodes

Figure 6: Throughput and median request completion times of Canopus and EPaxos in the multi-datacenter experiment with

20% writes workload.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Throughput (x106)

0

100

200

300

400

500

M
e

d
ia

n
 r

e
q

u
e

s
t

c
o

m
p

le
ti

o
n

 t
im

e
 (

m
s
)

Canopus 1% writes

Canopus 50% writes

Canopus 20% writes

EPaxos 20% writes

Figure 7: Performance of Canopus and EPaxos with di�er-

ent ratios of writes in the workload.

Byzantine fault tolerance: Private blockchains use consensus

protocols to achieve agreement on the ordering and timing of

operations between the participating nodes. In many private

blockchains, nodes do not trust each other as they can act mali-

ciously, either intentionally or due to being hacked. A common ap-

proach to solve the trust problem is to use Byzantine fault-tolerant

(BFT) consensus algorithms. An alternative approach to establish

trust is to create a trusted computing environment [4] using hard-

ware assisted secure enclaves. In this way, the nodes can use non-

BFT consensus protocols, such as Canopus, to solve the trust issue.

We are in the process of extending Canopus to support BFT.

10 CONCLUSION

In this paper, we have presented Canopus, a highly parallel, scal-

able, and network-aware consensus protocol. Evaluation results us-

ing our prototype implementation show that Canopus can perform

millions of requests per secondwith 27 nodes in a single datacenter

deployment, which is more than 4x higher than EPaxos. Further-

more, our Canopus-integrated version of ZooKeeper increases the

throughput of ZooKeeper by more than 16x for read-heavy work-

loads.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their valu-

able feedback. This work was supported by the Natural Sciences

and Engineering Research Council of Canada (NSERC). This work

bene�ted from the use of the SyN Facility at the University of Wa-

terloo.

Canopus: A Scalable and Massively Parallel Consensus Protocol CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

REFERENCES
[1] 2017. Chain Blockchain Infrastructure. (2017). Retrieved June 19, 2017 from

https://chain.com
[2] 2017. Hyperledger Blockchain Technologies. (2017). Retrieved June 19, 2017

from https://www.hyperledger.org
[3] 2017. Kadena Permissioned Blockchain. (2017). Retrieved June 19, 2017 from

http://kadena.io
[4] 2017. The Coco Framework. (2017). Retrieved October 16, 2017 from https://

github.com/Azure/coco-framework
[5] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable,

Commodity Data Center Network Architecture. In Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication (SIGCOMM ’08). ACM, 63–74.

[6] André Allavena, Qiang Wang, Ihab Ilyas, and Srinivasan Keshav. 2006. LOT: A
robust overlay for distributed range query processing. Technical Report. CS-2006-
21, University of Waterloo.

[7] Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
2011. Megastore: Providing scalable, highly available storage for interactive ser-
vices. In Proceedings of the Conference on Innovative Data system Research (CIDR).
223–234.

[8] Martin Biely, Zoran Milosevic, Nuno Santos, and Andre Schiper. 2012. S-Paxos:
O�oading the leader for high throughput state machine replication. In Proceed-
ings of the IEEE Symposium on Reliable Distributed Systems (SRDS). IEEE, 111–
120.

[9] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
Made Switch-y. SIGCOMM Computer Communication Review (CCR) 46, 2 (May
2016), 18–24.

[10] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at Network Speed. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software De�ned Networking Research (SOSR).
ACM, 5:1–5:7.

[11] Nathan Farrington and Alexey Andreyev. 2013. Facebook’s Data Center Net-
work Architecture. In IEEE Optical Interconnects Conference. 5–7.

[12] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
Network Failures in Data Centers: Measurement, Analysis, and Implications. In
Proceedings of the ACM SIGCOMM Conference (SIGCOMM ’11). ACM, 350–361.

[13] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta
Sengupta. 2011. VL2: a scalable and �exible data center network. Commun.
ACM 54, 3 (2011), 95–104.

[14] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings of
the 2010 USENIX Conference on USENIX Annual Technical Conference (USENIX
ATC ’10). USENIX Association, 9.

[15] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016. Consen-
sus in a Box: Inexpensive Coordination in Hardware. In Proceedings of the 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
’16). USENIX Association, Santa Clara, CA, 425–438. https://www.usenix.org/
conference/nsdi16/technical-sessions/presentation/istvan

[16] Flavio P Junqueira, Benjamin C Reed, and Marco Sera�ni. 2011. Zab: High-
performance broadcast for primary-backup systems. In Proceedings of the
IEEE/IFIP 41st International Conference on Dependable Systems Networks (DSN
’11). IEEE, 245–256.

[17] Leslie Lamport. 1998. The part-time parliament. ACM Transactions on Computer
Systems (TOCS) 16, 2 (1998), 133–169.

[18] Leslie Lamport. 2005. Generalized consensus and Paxos. Technical Report. MSR-
TR-2005-33, Microsoft Research.

[19] Leslie Lamport. 2006. Fast paxos. Springer Distributed Computing 19, 2 (2006),
79–103.

[20] Jialin Li, EllisMichael, Naveen Kr. Sharma, Adriana Szekeres, andDan R. K. Ports.
2016. Just Say NO to Paxos Overhead: Replacing Consensus with Network Or-
dering. In Proceedings of 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). USENIX Association, 467–483.

[21] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.
2013. F10: A fault-tolerant engineered network. In In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13).
USENIX Association, 399–412.

[22] Vincent Liu, Danyang Zhuo, Simon Peter, Arvind Krishnamurthy, and Thomas
Anderson. 2015. Subways: A Case for Redundant, Inexpensive Data Center Edge

Links. In Proceedings of the 11th ACM Conference on Emerging Networking Exper-
iments and Technologies (CoNEXT ’15). ACM, 27:1–27:13.

[23] Ra�kMakhlou�, Guillaume Doyen, Grégory Bonnet, and Dominique Gaïti. 2014.
A survey and performance evaluation of decentralized aggregation schemes for
autonomic management. International Journal of Network Management 24, 6
(2014), 469–498.

[24] Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. 2008. Mencius: build-
ing e�cient replicated state machines for WANs. In Proceedings of the 8th
USENIX conference on Operating systems design and implementation (OSDI ’08),
Vol. 8. 369–384.

[25] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. 2012. Multi-ring Paxos.
In Proceedings of the 2012 IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN ’12). IEEE, 1–12.

[26] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and Fernando Pedone. 2010.
Ring Paxos: A high-throughput atomic broadcast protocol. In Proceedings of the
2010 IEEE/IFIP International Conference on Dependable Systems Networks (DSN
’10). IEEE, 527–536.

[27] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is More
Consensus in Egalitarian Parliaments. In Proceedings of the 24th ACMSymposium
on Operating Systems Principles (SOSP ’13). ACM, 358–372.

[28] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2014. EPaxos source
code. (2014). Retrieved June 19, 2017 from https://github.com/e�cient/epaxos

[29] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2014. Paxos Quorum
Leases: Fast Reads Without Sacri�cing Writes. In Proceedings of SoCC. ACM.

[30] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2014. Paxos quorum
leases: Fast reads without sacri�cing writes. In Proceedings of the ACM Sympo-
sium on Cloud Computing. ACM, 1–13.

[31] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Consolidating
concurrency control and consensus for commits under con�icts. In Proceedings
of USENIX OSDI. USENIX Association, 517–532.

[32] Diego Ongaro and John Ousterhout. 2014. In search of an understandable con-
sensus algorithm. In Proceedings of USENIX ATC. USENIX Association, 305–320.

[33] Marius Poke, Torsten Hoe�er, and Colin W. Glass. 2017. AllConcur: Leaderless
Concurrent Atomic Broadcast. In Proceedings of the 26th International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC) (HPDC
’17). ACM, 205–218.

[34] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Kr-
ishnamurthy. 2015. Designing Distributed Systems Using Approximate Syn-
chrony in Data Center Networks. In Proceedings of 12th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 43–57. https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/ports

[35] John Risson and Tim Moors. 2006. Survey of research towards robust peer-to-
peer networks: search methods. Computer networks 50, 17 (2006), 3485–3521.

[36] Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav. 2017. Canopus: A Scalable
and Massively Parallel Consensus Protocol. Technical Report. CS-2017-08, Univer-
sity of Waterloo.

[37] Brandon Schlinker, Radhika Niranjan Mysore, Sean Smith, Je�rey C. Mogul,
Amin Vahdat, Minlan Yu, Ethan Katz-Bassett, and Michael Rubin. 2015. Con-
dor: Better Topologies Through Declarative Design. In Proceedings of the ACM
SIGCOMM 2015 Conference. ACM, 449–463.

[38] Xuanhua Shi, Haohong Lin, Hai Jin, Bing Bing Zhou, Zuoning Yin, Sheng Di,
and Song Wu. 2014. GIRAFFE: A scalable distributed coordination service for
large-scale systems. In Proceedings of IEEE Cluster Computing (CLUSTER). IEEE,
38–47.

[39] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, and others.
2015. Jupiter Rising: A Decade of Clos Topologies and Centralized Control in
Google’s Datacenter Network. In Porceedings of SIGCOMM. ACM, 183–197.

[40] Pierre Sutra and Marc Shapiro. 2011. Fast genuine generalized consensus. In
Proceedings of the IEEE Symposium on Reliable Distributed Systems (SRDS). IEEE,
255–264.

[41] Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. 2003. Astrolabe:
A Robust and Scalable Technology for Distributed System Monitoring, Manage-
ment, and Data Mining. ACM Transactions on Computer Systems (TOCS) 21, 2
(May 2003), 164–206.

[42] Marko Vukolić. 2015. The quest for scalable blockchain fabric: Proof-of-work vs.
BFT replication. In International Workshop on Open Problems in Network Security.
Springer, 112–125.

https://chain.com
https://www.hyperledger.org
http://kadena.io
https://github.com/Azure/coco-framework
https://github.com/Azure/coco-framework
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/istvan
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/istvan
https://github.com/efficient/epaxos
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ports
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ports

	Abstract
	1 Introduction
	2 Related Work
	2.1 Centralized Coordination
	2.2 Decentralized Coordination
	2.3 Consensus Exploiting Network Hardware
	2.4 Group Communication Protocols
	2.5 Private Blockchains
	2.6 Scalability of Read Requests

	3 System Assumptions
	4 Canopus
	4.1 Leaf-Only Trees
	4.2 Consensus Cycle
	4.3 Reliable-Broadcast in a Super-Leaf
	4.4 Self-Synchronization
	4.5 Super-Leaf Representatives
	4.6 Emulation Table
	4.7 An Illustrative Example

	5 Linearizability
	6 Correctness Properties
	7 Optimizations
	7.1 Pipelining
	7.2 Optimizing Read Operations

	8 Evaluation
	8.1 Single Datacenter Deployment
	8.2 Multi-Datacenter Deployment

	9 Discussion
	10 Conclusion
	References

