
Design and Analysis of a Flow Control Algorithm for a Net-
work of Rate Allocating Servers

Srinivasan Keshava, Ashok K. Agrawalab and Samar Singhc

aComputer Science Division, Department of EECS, University of California, Berkeley,
Berkeley, CA 94720, USA

bDepartment of Computer Science, University of Maryland, College Park, MD 20742,
USA

cDepartment of Computer Science and Engineering, Indian Institute of Technology, New
Delhi - 110016, India

Abstract
Packet-switched networks where the router queue-service discipline is based on round-

robin can be modeled as networks of rate allocating servers [2, 3, 13]. We model a virtual
circuit in such networks as a sequence of D/D/1 queues, prove some interesting properties,
and use this simple model to derive a new flow control scheme that we call 2P. 2P uses a
novel technique based on short packet bursts to estimate the service rate of the circuit and to
adapt the sending rate as the network state changes. We describe an implementation of 2P
and analyze its response to network transients. Simulations of the scheme compare it with
some well known flow control schemes and show that it performs well in deterministic sce-
narios.

1. INTRODUCTION
Currently, most computer networks with a connectionless network layer have routers

that obey a first-come-first-served (FCFS) queueing discipline. Thus, existing transport layer
flow control protocols are optimized for such networks. Recently, some new service disci-
plines based on round-robin service have been proposed [2, 3, 13]. These disciplines have

aSupported in part by AT&T Bell Laboratories and in part by National Science Foundation
Infrastructure Grant number CDA-8722788 under the Mammoth Project.

bPartly supported by RADC and the Defense Advanced Research Projects Agency under
contract F30602-90-C-0010 to UMIACS at the University of Maryland.

cPartly supported by a UNDP traveling fellowship under the E&R Network program at IIT
Delhi.

several interesting features, such as the automatic restriction of misbehaved sources, provi-
sion for resource reservation, and the separation of throughput and delay requirements. Net-
works composed of such servers enable novel flow control algorithms. In this paper, we pre-
sent the design and analysis of such a new flow control scheme called Packet-Pair or 2P.

Section 2 of this paper briefly describes unifying notions underlying the new service
disciplines. We then present a simple deterministic model for networks of such servers and
prove some interesting properties. This motivates the design of 2P in Section 4. 2P is ana-
lyzed in Section 5 and Section 6 presents simulation results. The discussion in Section 7
summarizes our results.

2. FAIR QUEUEING, VIRTUAL CLOCK AND EARLIEST-DUE-DATE SCHEDUL-
ING

We focus attention on the queue service discipline in the routers of a communication
network. Three new service disciplines have been presented in the recent past, Fair Queue-
ing (FQ) [2], Virtual Clock (VCL) [13] and Earliest-Due-Date (EDD) [3]. We claim that
these disciplines are isomorphic to each other since they all attempt to service an incoming
stream of packets in a virtual Time Division Multiplexed (TDM) manner. All three schemes
assign incoming packets a priority index that corresponds to the service completion time of
the packet had the server been doing TDM. Service is in order of increasing priority index,
and this has the effect of doing TDM without the attendant inefficiencies. The priority index
is called the finish number (in FQ), the virtual service time (in VCL) or the deadline (in
EDD), but in each case, it serves the same purpose. Due to this isomorphism, we will call all
such servers Rate Allocating Servers (RAS); the reason for this name will shortly become
apparent.

One outcome of servicing packets in order of their priority index is that it decouples
packets from different conversations1. All packets from the same conversation are allocated
monotonically increasing priority indices, and as long as that conversation is active, to a first
approximation, its index is independent of the indices allocated to any other conversation.
Put another way, since the indices define the service order, each conversation gets a service
rate that is independent of the service rate of any other conversation2. Thus, a RAS can be
modeled as a server that services each of the incoming conversations at some service rate,
and the service rate for some conversation is approximately independent of the service rate
for any other conversation.

While VCL and EDD scheduling disciplines were originally presented in the context of
a connection-oriented network layer, in our treatment, we will consider their behavior in con-
nectionless network layers. This raises an important point. In connection-oriented networks,
during call set-up, a conversation specifies a desired service rate to the servers that lie in its
path. This information allows each server to prevent overbooking of its bandwidth and the
_ ______________
A conversation is a (source, destination) pair; see the discussion in [2]. We will interchange-
ably use the term ‘virtual circuit’ or VC.
We use ‘service rate’ to denote the inverse of the deterministic service time, as opposed to a
time average.

service rate that a conversation receives is constant. However, in connectionless networks, a
server is not allowed to refuse any conversations, and so the bandwidth could be overbooked.
We assume that in such a situation, a RAS will divide bandwidth in the same way as a FQ
server, that is, equally amongst the currently active conversations. Thus, the rate allocated to
a conversation could change with time.

Specifically, there are two reasons why a RAS might change the rate at which it ser-
vices a conversation:

1) The number of conversations served can vary with time. If the service rate of any
conversation is defined to be inversely proportional to the number of active conversa-
tions, then the service rate of a conversation changes as the total number of active con-
versations changes.

2) If some conversation has a low service rate, or has a bursty arrival pattern, there are
intervals where it does not have any packets to send, and the RAS will treat such a con-
versation as idle. Thus, the effective number of active conversations decreases, and the
rate allocated to the other conversations increases. When the traffic on that conversation
resumes, the allocated rate to each conversation will again decrease.

However, this behavior is much better than that of an FCFS server. In an FCFS server the
service rate of a conversation is linked in detail to the arrival pattern of every other conversa-
tion in the server, and so the service rate varies much more rapidly. We will make the impor-
tant assumption that in RAS networks of interest, the rate of service of a conversation varies
infrequently as compared to its round-trip-time delay.

Network model
Since RAS servers provide conversations with nearly fixed service rates, as a simplifi-

cation, we model a RAS server deterministically, that is, as a server that provides each
incoming conversation with a constant service rate. While this is a major simplification, we
believe that is appropriate as a first step. Further, congestion depends on the transient behav-
ior of the network, and while existing stochastic models do not deal adequately with tran-
sients, they are easily handled by a deterministic analysis. Thus, a deterministic approach
seems appropriate, and we use it here to analyze the transient response of 2P. We do realize
the inadequacy of the model, and are currently investigating a stochastic extension to the
model.

Other authors too have implicitly or explicitly used some deterministic analysis when
discussing the performance of transport protocols [4, 5, 8] For example, Jain has explicitly
modeled a virtual circuit as a series of D/D/1 queues in [6]. Waclawsky and Agrawala have
developed and analyzed a similar deterministic model for studying the behavior of window
protocols on a virtual circuit [10, 12].

We model a virtual circuit in a RAS network as a series of servers (routers or switches)
connected by links. A packet is a point object that starts out from the source and traverses the
links and servers until it reaches the destination. The time taken to traverse a link is zero,
while the time taken to get service (at each server) is finite but deterministic.

We number the servers in the path of the VC as 1,2,3..., and the source is numbered 0. If
the ith server is idle when a packet arrives, the time taken for service is s i , and the service
rate is defined to be ρ i = 1/ s i . If there are other packets from that VC at the server, the
packet waits for its turn to get service (we assume a FCFS queueing discipline per VC). We
assume a work-conserving discipline, which implies that a server will never be idle whenever

it has a packet ready to be served. The source sending rate is denoted by ρ 0 and the source is
assumed to send data spaced apart exactly s 0 = 1/ρ 0 time units apart.
We define

s b =
i

max (s i « 0 ≤ i ≤ n)

to be the bottleneck service time in the circuit, and b is the index of the bottleneck server.
The ordered set SL is defined as { sl i ∈ ∈ 0 , 1 , ... , b « if j > i , ρ sl j

< ρ sl i
}, that is, SL is

the ordered subset of successively strictly slower servers from the source to the bottleneck.
Each element of SL is called a rate-throttle. This notation is summarized at the end of the
paper in Section 10.

To complete the picture, we assume another set of links and servers that constitute a
return path from the destination back to the server. This is the path taken by acknowledgment
packets (acks). We assume that every packet is acknowledged, so the destination is just
another server, and the returning ack is modeled as the same packet looping back to the
source. Strictly speaking, this assumption is not required, but we make it for the sake of con-
venience.

We now prove some lemmas about the properties of such VCs. Similar results and a
more detailed analysis can be found in [11, 12].

Lemma 1 : (Basic lemma) Consider data arriving at an initially idle server j at a rate r.

(a) If r ≤ ρ j , there is no queueing at j, and the departure rate from server j is r.

(b) If r > ρ j , there is queueing at j, and the departure rate from server j is ρ j .
Proof :(a) Initially, since the server is idle, its queue is empty. If the first packet arrives at

time t 0, it will depart at time t 0 + s j . Packets in the arriving stream are spaced 1/ r
time units apart. Thus, the next packet arrives at time t 0 + 1/ r. Since
ρ j ≥r , 1/ r ≥ 1/ρ j and t 0 + 1/ r ≥ t 0 + s j , so the next packet arrives only after the
first one has left. Thus, there is no queueing at the server. Simple induction on the
sequence number of the arriving packet gives us the result on queueing.
The departure rate of the packets is constrained only by the arrival rate, and hence the
output stream from the server has a rate r.

(b) Since the departure of the first packet happens after the arrival of the next packet,
the second packet will be queued in the server. If there is a queue already, and a packet
arrives before the departure of the previous packet, it will only add to the queue. Induc-
tion on the packet sequence number gives us the queueing result.
Since the departure stream from the server has a inter-packet spacing of s j , the output
stream is at rate ρ j .

Lemma 2 : (Composition) Consider two adjacent servers j and j + 1. If data enters server j
at a rate r such that ρ j ≥ r > ρ j + 1 queueing occurs only at server j + 1.

Proof :Since r ≤ ρ j , there is no queueing at server j (Lemma 1). Hence, the departure rate of
packets from server j, as well as the arrival rate at server j + 1 is r. Since r > ρ j + 1,
there is queueing at server j + 1 (Lemma 1).

Lemma 3 : (Single bottleneck) If data enters a segment of the VC numbered k, k+1, .. L, at
a rate r such that ρ L < r < ρ , ρ ∈ ∈ { ρ k , ρ k + 1 , . . . , ρ L − 1}, then queueing occurs
only at L.

Proof :Since r < ρ k , there is no queueing at server k and the departure rate from server k is r
(Lemma 1). We can thus delete server k from the chain, and repeat the argument for the
servers k+1, k+2, ... L. For the servers L-1, L, we use Lemma 2 to get the desired
result.

Lemma 4 : (Chain of rate-throttles) Queueing can happen only in elements of SL.
Proof: Break up the server chain 1,2, ... , b into sub-chains 1,2, ... sl 1; sl 1 + 1 , . . . , sl 2; ...;

such that only sl i ∈ ∈ SL. Consider the first such chain. If ρ 0 < ρ sl 1
, there is no

queueing at sl 1. Hence, to get the worst possible scenario, we assume that ρ 0 > ρ sl 1
.

In that case, from Lemma 3, the only queueing at the first chain will be at sl 1 (if ρ 0 is
very large, sl 1 could just be 1). By definition of SL, the departure rate from sl 1, ρ sl 1

,
satisfies the requirements for Lemma 3, so there will be queueing at sl 2, and at no other
node in that subchain. From an induction on the sequence number of the subchain, we
get the desired result.

Lemma 5 : (Probing) If a source sends packets spaced s 0 time units apart, and ρ 0 ≥ ρ b , the
acks will be received at the the source at intervals of s b time units.

Proof :By definition of the bottleneck, and Lemmas 1 and 4, the departure rate of packets at
the bottleneck is ρ b . Since acks are created for each packet instantaneously, the acks
will be spaced apart by s b .

Define ∆ j to be ρ sl j − 1
− ρ sl j

.

Lemma 6 : (Burst dynamics) If a source sends a burst of K packets at a rate s 0 >> ρ i , for
all i, then the queue at sl j builds up at the rate ∆ j , reaches its peak at time
t j =

i = 0
Σ

j − 1
s i +

ρ sl j − 1

K_ _____, and decays at the rate ρ sl j
.

Proof : Consider the situation at sl j . It receives packets at a rate ρ sl j − 1
, and serves them at

the rate of ρ sl j
. Thus, the queue builds up at the rate ∆ j . The queue reaches the maxi-

mum size when the last packet from the previous rate-throttle arrives. Since this is at a
rate of ρ sl j − 1

, the time to receive K packets is K /ρ sl j − 1
. To this we add

i = 0
Σ

j − 1
s i , which is

the time for the first packet to arrive, to get the desired result. Finally, the queue will
decay at the service rate of the rate-throttle, i.e. ρ sl j

.
Note that in our model, it is not possible to have more than one bottleneck. While

queueing may occur at more than one node, the service rate of the circuit is determined by
the lowest indexed server with a service rate of ρ b , and this will be the bottleneck.

3. RATE PROBING SCHEMES

How should one design a flow control scheme for a RAS network? Given the fact that
in these networks a conversation will obtain a slowly time-varying service rate at the bottle-
neck server, a simple flow control scheme would be to probe the server to determine its cur-
rent service rate for that conversation, and then send data at that rate. Sending it any slower
would result in loss of throughput and any faster would result in queueing at the bottleneck.
Thus, it is clear that we are interested mainly in what have been called rate-based flow con-
trol schemes [1]. Note that rate-based flow control schemes are explicitly enabled by RAS
networks, as opposed to FCFS networks.

Rate based flow control
Our first attempt at designing a rate based flow control scheme modifies an idea

described by Clark et al. for NETBLT [1]. If a source sends data at a rate ρ s , and receives
acknowledgments at a rate ρ b , then our control scheme is:

if ρ s > ρ b , decrease ρ s , else increase it.

The idea is that the rate at which acknowledgments are received is approximately the rate
which the RAS has allocated to the conversation. We would like to match the sending rate to
this rate.

The increase and decrease policies are multiplicative, that is the algorithm is

if (ρ s > ρ b) ρ s = α .ρ s else ρ s = β .ρ s

where α < 1 and β > 1. We expect that as the service rate changes, this adaptive scheme
will converge on the new rate, and the system should stabilize at the correct rate.

However, there are a few problems. Note that a source cannot determine an increase in
available capacity except by sending at a slightly increased rate and looking at the ack
stream. Thus, a sudden large increase in the service rate can be adjusted for only after sev-
eral round trip times. This is undesirable, particularly in high speed networks, where the
bandwidth delay product can be large. Similarly, it takes a few round trip times to adjust to a
sharp decrease in service rate. In the meantime, the bottleneck queue builds up. Since after a
decrease, the source sends at very nearly the service rate, the built up queues never shrink,
and the network becomes more prone to packet loss. Finally, the rate probe tends to push the
network towards congestion, since the source is always trying an increased sending rate, until
the rate can no longer be supported. These problems point to a need for a better rate control
algorithm, such as 2P.

4. THE 2P SCHEME

We describe 2P in three stages. First, we describe the heuristic basis for the algorithm.
Next, we give a full description, and finally present the implementation details.

4.1. Theory
2P is based on three observations, that we state informally:
If two packets are sent to a RAS at a rate faster than ρ b, then the inter-ack spacing is
s b = 1/ρ b (Probing Lemma).

If a source sends a pair of packets back-to-back, the spacing between the acknowledgments
(acks) for these packets is an accurate probe of the service rate.

If a source is sending data to a RAS, and has a rate allocation ρ b and a round trip
propagation delay R, it operates at the knee of the network load-throughput curve when
it has R .ρ b packets outstanding (and the pipeline is full)3.

Since V = R / s b , and R and s b could change with time, it is necessary to periodically mea-
sure these quantities. We measure s b using observation 1 above. R is the time between
sending out a packet and receiving an ack when all the queues in the VC are empty. This can
be approximated by measuring r t , the round trip time, though r t will have a component due
to the queueing delay.

If the pipeline depth V can increase or decrease by at most ∆V in any interval of time
r t, then keeping ∆V packets in the bottleneck queue’s buffers will ensure that usually
the bottleneck will not be idle.
If an increase in R or ρ b increases the pipeline depth by ∆V, bottleneck bandwidth will

be lost until the source reacts to the change. Since a source will take at least R time units to
react to the change, we want to have enough slack in the buffer to take up any transients. If
the bottleneck queues ∆V packets, when V increases, the buffer will be drained, and no loss
of throughput occurs. Thus, 2P tries to ensure that at any given time, at least ∆V packets are
present in the bottleneck queue. We assume a buffer capacity of at least 2∆V per conversa-
tion at every switching node.

Note that this scheme avoids wasted bandwidth but adds a delay (of ∆V . s b) to every
packet served. A user can adjust the bottleneck queue size to obtain a range of delay vs. lost
throughput tradeoffs. We denote the target bottleneck queue size by n b , and in the rest of the
paper, n b is assumed to be ∆V.

4.2. Algorithm
There are three phases in the operation of 2P: start-up, queue priming and normal trans-

mission.
At start-up, we do not know the value of s b . Since we do not want to overload the bot-

tleneck with packets, some sort of ‘slow-start’ is desirable. We combine this with an initial
measurement of the VC parameters by sending a packet-pair, two packets sent as fast as pos-
sible (back-to-back). The round-trip time of the first packet gives us R e , the estimator for R
and the inter-arrival time of the two packets gives us s e , the estimator for s b .

Once the source computes V e , an estimator of V = Re / se, it can decide what n b should
be. Deciding n b a priori is possible, but not desirable, since we might want n b to be some

A plot of throughput versus network load reveals that throughput increases linearly with
load, until queueing occurs. The point at which queueing is incipient is called the knee [5].
At the knee, there is no queueing at the bottleneck, and the maximum possible throughput is
achieved.

fraction of V e . During queue priming, the source sends out a burst of n b back-to-back pack-
ets so that the n b packets accumulate in the bottleneck queue.

During normal transmission the source transmits packet-pairs every 2s e time units and
updates s e to the inter-arrival time between paired acks. R e , the estimate for R, is updated to
r t − n b . s e . To react immediately to changes in V e , we recompute R e / s e on the arrival of
every pair. Let V new , V old be the old and new values of V e using the old and new estimates
respectively. If V new < V old , we calculate the quantity

n skip = max (� (V old −V new) /2 � , 0)

where � z � computes the smallest integer greater than or equal to z. The source then skips
n skip transmission slots with a duration of the new value of s e , and then continues to send
pairs of packets at regular intervals of 2s e . If V new > V old , the source immediately trans-
mits a burst of V new − V old back-to-back packets.

In practice, intermittent bursts of more than two packets may be useful to account for
statistical variations in s b . We will investigate this in future work.

4.3. Implementation
Figure 1 is the state diagram for a 2P implementation.

A 2P source usually is in the ‘receive’ state, waiting for an interrupt, one of

a) A signal indicating receipt of an acknowledgment packet. (ACK)
b) A ‘tick’ indicating that at the current sending rate, the next packet is due to be sent. (TICK)
c) A signal indicating that the output line is now free. (INT)
d) A signal indicating that the last packet sent out has been timed out. (TIMEOUT)

There are two important state variables. linefree indicates that the output line from the
source is free. num_in_burst is the number of packets enqueued in the output queue
that belong to a burst. As long as num_in_burst is positive, a packet will be dequeued
and sent on the arrival of every INT.

When an ACK arrives, if the ack is the first of a pair, R e is updated. If it is the second
of a pair, s e is updated, and the source computes V e and n skip . If V new > V old , a burst of
V new − V old packets are queued on the output queue. When an acknowledgment is
received, some of the packets it acknowledges may have been timed out, and may be
enqueued waiting to be sent out. So, at this point, all queued retransmissions that have
become invalid are discarded. If the acks received are for the first pair, 2 packets are
enqueued on the output queue and the TICK timer is set to 2s e .

If a TICK is received and n skip is non-zero, it is decremented, the TICK timer is
reloaded with 2s e , and we return to the receive state. Else, two packets (from the client) are
enqueued on the output queue. If the line is free, one of the packets is dequeued and sent,
else the source waits for an INT to arrive.

When an INT arrives, if there are burst packets to be sent, one of them is dequeued and
transmitted, else the source marks the line as free and returns to the receive state. We
assume one retransmission timer per packet, and selective retransmission. Each time a
packet is sent, its retransmission timer is set to X(R e + n b . s e), where X is some small inte-
ger, and can be used as a tuning parameter (we used X = 3). On a TIMEOUT the timed out
packet is placed in the output queue, waiting to be retransmitted. The new timeout value for

ACK TICK

CRQ(nb) vnew < vold

start_up

CRQ(vnew-vold)

get nskip

linefree=1

CRQ(2)

linefree

enqueue pkt

RECEIVE

FREE

TIMEOUT

N

Y

Y

N

Y N

nskip > 0
Y

N

burst_size > 0
Y N

DEQUEUE/SEND

Figure 1: State Diagram for 2P Implementation. CRQ(x) means accept x packet from the
user and enqueue them on the output queue for transmission.

the packet is twice the old value.

5. ANALYSIS OF 2P

We will analyze the the behavior of 2P in the steady state (that is, when R and s b do not
change), and its response to transient changes in the virtual circuit. We will make four sim-
plifying assumptions:
• Flow control is being done on behalf of an infinite source, that always has some data

ready to send.
• Changes in V are bounded from above by ∆V, and that the source knows or can estimate

this value.
• Each server reserves B ≥ 2∆V buffers for each source.
• Transients are assumed to be due to a sharp, rather than a gradual, change in the system

state. We assume that the value of a parameter, such as R, is constant until time t 0, at
which point it changes discontinuously to its new value. We denote the value of R(t)
before the change as R(t 0 − ε), and after as R(t 0 + ε). We define s b (t 0 − ε) and
s b (t 0 + ε) similarly.

Optimal flow control
We introduce the notion of optimal flow control and show that in the steady state, 2P is

optimal. An optimal transmission flow control scheme should always operate at the knee of
the load-throughput curve, so that maximum throughput is achieved with minimum delay
[5]. As the conditions at the server change, the source flow control must adapt itself to the
change. However, if we consider the speed-of-light propagation delay in this control loop for
wide-area networks, it is clear that no realizable flow control scheme can always operate at
the knee. Hence, we propose a weaker definition of optimality that is suitable for high
throughput applications.

Let the bottleneck have B buffer spaces available for a source. Then, a flow control
scheme is optimal in the interval [T 0 , T 1] if in every time interval [t 1 , t 2] ∈ ∈ [T 0 , T 1],
there are no buffer overflows, and there is no loss of bandwidth at the bottleneck node. To
be precise, at the bottleneck node, if the buffer occupancy at time t 1 is k,

0 ≤
t 1

∫
t 2

(ρ 0 (t − d 1) − ρ b (t)) dt ≤ B − k

where ρ 0 (t) is the source sending rate at time t, ρ b (t) is the bottleneck service rate at time t
and d 1 is the propagation delay from the source to the bottleneck.

Steady state behavior of 2P
In the steady state, 2P will keep n b packets in the bottleneck queue, and send packets at

exactly the service rate, ρ b . Proposition 1 proves optimality of 2P in the steady state.
Proposition 1: Let the transmission at the source start at time T 0 and end at time T 1. If V is

constant in (T 0 , T 1] then 2P is an optimal flow control scheme in [T 0 + 2R(0) , T 1].
Proof:At time T 0 + R(0), the source knows ρ b . Since ∆V = 0, n b = 0, and priming the

queue is not necessary. Thus, the source will immediately start to send a packet-pair
every 2s b time units. The first pair reaches the bottleneck latest by T 0 + 2R(0).
Since service is at the rate of ρ b , there is no build up of the queue. Clearly, no band-
width is lost, and optimality conditions are trivially satisfied in [T 0 + 2R(0) , T 1].

Remark
Note that many schemes described in the literature do not satisfy this weak notion of

optimality even in the steady state. The Jacobson-Karels TCP modifications [4] drop packets
if the maximum possible window size is larger than the buffer capacity at the bottleneck
queue. The DECbit scheme keeps the queues at an average queue length of 1, and so will
lose bandwidth when V increases [5]. As we showed earlier, NETBLT causes queues to
build up whenever V decreases, and they are never adjusted for. Hence, a sequence of
decreases in V will cause NETBLT to drop packets. Jain’s delay based scheme [6] will
respond poorly if V decreases due to a decrease in R, since it interprets the decrease in delay
as a signal to increase the window size, which will cause further queueing, and possible
packet loss. A more detailed analysis of these schemes can be found in [9].

Response to transients
In our model, the only network parameters visible to a source are ρ b and r t . Thus, a

flow control scheme can react to a change only in either of these variables, and we will study
the response of 2P to these changes. For each change, we study the packet or bandwidth loss,
and the time taken to return to steady state.

Note that r t itself depends on R and on the queueing delay in the bottleneck node. In the
steady state, the queueing delay is constant, and r t changes only if R or ρ b change. Thus, we
need only consider changes in R and ρ b . In either case, the effect is to change V = R.ρ b .

