
1

The ENTRAPID Protocol Development Environment
X.W. Huang, R. Sharma, and S. Keshav

Cornell Network Research Group
Department of Computer Science,

Cornell University, Ithaca, NY 14853
{xwh, sharma, skeshav}@cs.cornell.edu

Abstract-As Internet services rapidly become an
essential part of the global infrastructure, it is necessary for
the protocols underlying these services to be robust and fail-
safe. To achieve this goal, protocol developers should be able
to design, implement, simulate, visualize, and validate their
work in a protocol development environment before
deployment in the field. In this paper we describe the
ENTRAPID protocol development environment, outline its
implementation, and present a performance evaluation.

I. INTRODUCTION

A protocol development environment (PDE) aids the
creation of correct, efficient, scaleable, and robust
protocols. This controlled environment allows developers to
implement, visualize, and verify their work before
deployment in the field. Research into protocol
development environments is particularly timely because of
the proliferation of new services in the Internet. These
services, such as stock trading, weather information, audio
broadcast, and electronic commerce are far more complex
than the original services of telnet, FTP, and email. Three
recent developments reinforce this trend:
• Partners in the Open Signaling initiative [1], under the

auspices of an IEEE subcommittee [2], are successfully
pressing router vendors and switch manufacturers to
support an open programming platform for creation of
third-party services.

• Recent improvements in flow matching algorithms
allow flows to be identified, and flow state to be looked
up, at line speed [3, 4]. Thus, future routers and
switches may allow users to customize data handling
on a per-flow basis.

• Third, while the Internet’s open architecture has always
been conducive to the creation of new services, now
telephone operators too are opening up their service
infrastructure, allowing third parties to develop
customized services on a shared public infrastructure.
Environments such as AT&T’s Geoplex [5] and MCI’s
Vault [6] allow creation of services that span the
telephone and the Internet, resulting in a similar
proliferation of services and a similar need for protocol
development environments.

These developments indicate that not only will future
networks provide more services to customers, customers
will potentially create specialized services for their own
purposes. However, we do not yet understand how to

analytically model large systems of interacting protocols.
Implementation details and quirks in protocol handling
code, even at lower layers of the protocol stack, can heavily
influence the behavior of such systems, particularly under
failure. A protocol development environment that allows
exact emulation of protocols and networking subsystems is
invaluable in the implementation and debugging of the
protocols underlying complex services.

II. REQUIREMENTS

A. Ease of use

An ideal PDE should allow developers to implement,
modify, and test protocols normally resident in kernel space
(such as TCP and IP) entirely in user space. It should allow
developers to intuitively specify large test topologies and
their associated workloads. It should also allow developers
to easily select probe points to monitor protocol state.

B. Exact emulation

To allow rapid development, it should be easy for protocol
developers to move code from the PDE to the Internet and
vice versa. This imposes two subsidiary requirements. First,
the PDE should support an Application Programmer
Interface (API) that is identical to APIs commonly used on
the Internet (typically Berkeley sockets and Winsock32).
Second, PDE components that interact with the protocol
under test should behave exactly the same as their
counterparts in the Internet. The first requirement is
relatively simple. The second requirement, however, is both
subtle and difficult to implement. It requires, for example,
that an application should experience the same packet loss,
flow control, routing, and link outages as it would were it
running on the Internet. In this sense, the PDE should be
‘transparent’ to the application developer. Although no
practical PDE can achieve exact emulation, we believe that
a PDE should be judged by the degree of emulation it can
achieve.

C. Controllability

The PDE should allow a developer to set up complex
network scenarios. In particular, it should allow developers
to model an existing configuration, such as the one in a
campus Intranet or an ISP backbone. Moreover, developers
should be allowed to induce controlled errors, such as

To appear, Proceedings of IEEE INFOCOM’99, March 1999.



2

packet losses, packet corruption, line failures, and routing
protocol corruption, to stress the protocol under test.

D. Visualization

Protocols tend to be hard to design, and inexperienced
developers have difficulty understanding them, and
especially their interactions. Good visualization can play a
key role in developing correct and efficient protocols.

E. Extensibility

Good developers tend to customize their development
environment to quickly solve routine tasks. Besides
allowing customization of the user interface, an ideal PDE
should allow developers to add protocol components as
required. The PDE should also allow developers to add new
link types, such as wireless links, or even new network
types, such as the telephone network, cable modem
networks, and satellite networks.

F. Scalability

Some protocol design problems show up only in large
networks. These scaling problems are often the most
insidious ones, and designing scaleable protocols is almost
always a matter of instinct and good judgement rather than
scientific design. Good judgement, however, is a rare
commodity, so we would like an ideal PDE to scale to large
networks, so that scaling problems can be identified in a
controlled setting.

G. Verification

Where possible, the PDE should allow developers to verify
that their protocol does not suffer from obvious problems
such as deadlock and livelock. Thus, the PDE should
incorporate formal verification tools, such as those
described in [7, 8].

III. STATE OF THE ART

Protocol developers in the Internet today can choose from
one of three main options: (a) develop directly on the
Internet, (b) use kernel extensions, and (c) use a network
simulator. We describe these options in greater detail next.

A. Protocol development directly on the Internet

A developer can implement and test a protocol directly on
the Internet. This is acceptable for services and protocols
that do not modify the transport layer protocol (TCP) or
below. For example, it is an acceptable alternative for
protocols layered above HTTP. For such protocols,
developing on the Internet provides ease of use, exact
emulation and extensibility. However, there is little or no
support for controllability (for example, changing the
number of clients or servers dynamically), visualization,
scalability (for example, adding a large number of clients),

or verification. Thus, even in this limited environment,
direct development on the Internet is not easy.

Things are harder when a protocol tries to modify or exploit
the details of TCP, IP, or the MAC layer. For these types of
protocols, such as the load distribution protocol in a cluster-
based server [9], wireless snoop protocols [10], or various
extensions to TCP, direct development on the Internet
requires extensive kernel modifications. Such modifications
are not only complex, they are also non-portable and
require specialized knowledge of the kernel environment.
This difficulty is reflected both in the paucity of such
services, and with the frequency with which
implementation bugs are detected in such services
(practically every TCP implementation, even after years of
experience, seems to be buggy [11]!). For such protocols,
the Internet protocol development environment offers exact
emulation and little else.

B.  Kernel extensions

A second approach to protocol development is to insert
‘hooks’ into a kernel and expose these hooks in user space,
so that the kernel-resident protocol behavior can be
customized at the user level. This general idea has been
exploited in a number of systems including U-Net [12], the
USC TCP-Vegas testbed [13], the Harvard simulator [14],
and the NIST emulator [15]. The key benefit of the
approach is that it allows protocol developers who want to
modify or exploit TCP, IP, or a MAC protocol the same
ease of development as protocol developers dealing with
higher layer protocols. There is some loss of emulation,
because the exact timing of events is lost, but for most
purposes the emulation is sufficiently accurate. The system
is also extensible, since the same hooks can be used for a
variety of purposes. However, this environment fails to
meet our other criteria. First, the PDE is not controllable or
scalable, since it does not allow developers to develop
protocols that span multiple kernels: such protocols must be
developed on two separate machines. Moreover, most of
these environments have little or no support for
visualization and verification.

Recently, researchers at Torrent Networks and Harvard
have independently built extensions to FreeBSD that
provide exact emulation, extensibility, controllability, and
scalability [16, 14]. In their approach, a single FreeBSD
kernel maintains multiple copies of the kernel’s networking
state. While this still requires a protocol developer to deal
with kernel-level debugging, protocols that span multiple
kernels can be developed and tested on a single machine.
This greatly eases the development of routing protocols,
which, by their nature, span multiple machines.



3

C. Network simulators

A typical network simulator provides the programmer with
the abstraction of multiple threads of control and
lightweight inter-thread communication. Threads
implement protocols described either by a finite-state
machine, native C or C++ code, or a combination of the
two. Simulator packages typically come with a set of pre-
coded modules, with the ability to customize these modules
or add new ones. Some network simulators provide
extensive support for visualization and animation (such as
the nam package used with ns [17]). Examples of widely
used network simulators include, in the public domain: ns
[17], VINT  [18], and REAL [19], and commercially:
OPNET [20] and BONeS [21].

Although network simulators are usually used to test
protocol performance, they can also be used as protocol
development environments. Given a sufficiently accurate
emulation of a network and protocol stack, developers can
leverage this controlled, reproducible environment to stress-
test protocols using microbenchmarks. However, most
current network simulators omit many details, thus losing
exact emulation, to gain ease of use, controllability,
extensibility, and scalability. Thus, transitioning ‘real’ code
into a simulator is not trivial. For example, porting TCP
into any network simulator package is hard, and it is
reasonable to question how accurately a simulator’s TCP
implementation matches the behavior, of say, the
implementation of TCP in the NetBSD kernel (which is the
de facto industry standard). Thus, network simulators are
very close to the ideal protocol development environment:
their main failing is the lack of support for exact emulation.
Some of the simulators listed above also do not scale
beyond a few hundred nodes.

Direct Kernel
extensions

General-purpose
simulators

Examples NIST
emulator,
Torrent,
Harvard
simulator

ns, REAL, MARS,
OPNET, BONeS

Ease of use * *

Exact emulation * *

Controllability * (Torrent) *

Extensibility * * *

Visualization *

Scalability * (Torrent) *

Verification

                       Table 1: Comparison of current PDE approaches.

The relative merits of the three approaches are compared in
Table 1. Note that no single approach satisfies all the
criteria for an ideal protocol development environment.

IV. DESIGN

The  ENTRAPID protocol development environment
combines the best features of the multi-kernel approach and
general-purpose network simulation. Figure 1 outlines the
architecture of the system. At the top level, ENTRAPID is a
process that runs entirely in user space and can interact both
with other processes and with physical network interfaces.
Its switch box component listens for commands and
supplies status information. Developers connect to the
switch box with a telnet connection to give configuration
commands in a simple language (described in Section V).
The switch box also generates status and monitoring
information for use by an external visualization engine.

The ENTRAPID process supports multiple Virtualized
Networking Kernels (VNKs). Each VNK exactly
implements the networking services found in the 4.4 BSD
kernel. Multiple virtualized processes can run on each
VNK. Each virtualized process carries out a user-level
protocol and redirects its system calls to the VNK. VNKs
can be connected using wires that represent communication
links. Examples of wires are Ethernet busses and point-to-
point links. The final abstraction in ENTRAPID is that of
an external process. An external process is not virtualized,
but is able to communicate both with virtualized processes
and with other external processes by means of a proxy
process.

From a developer’s perspective, ENTRAPID provides the
abstraction of a ‘network in a box’. Each VNK corresponds
to a machine on the Internet, and each virtualized process
corresponds to a process running on that machine. Since
ENTRAPID can support several hundred VNKs, developers
can work with large topologies when developing and testing
protocols. A developer can instantiate new protocols either
directly on a VNK, or as an external process, and test its
behavior when interacting with other network protocols
already implemented within ENTRAPID. Note that because
ENTRAPID is entirely in user space, a developer with
access to the source code can monitor or modify any aspect
of the entire protocol stack without having to make any
changes to the kernel.



4

Much of ENTRAPID’s power comes from our design of a
VNK. As stated earlier, the VNK is derived from 4.4 BSD
networking code. Applications built using the BSD socket
API can be ported immediately to a VNK. More
importantly, even applications that need to use non-standard
lower-level APIs such as the kvm_read interface can be
ported to ENTRAPID with no modification. This allows us
to directly port common commands and protocols such as
mrouted, gated, routed, ping, netstat, and
ifconfig to ENTRAPID. Consequently, the set of
commands used to configure one of the VNKs is identical
to the set of commands used to configure an actual BSD
machine. While ENTRAPID is written in C++, it can
interoperate with Java applets. A Java interface component
links calls in the net class to a proxy virtualized process.
This allows all Java applications to use the ENTRAPID
infrastructure with no change.

Finally, ENTRAPID can directly control a physical network
device through a VNK. ENTRAPID therefore interfaces
seamlessly with all Internet protocols at layer 3 and above.
For example, if we connect a machine running ENTRAPID
to another, unmodified machine using an Ethernet hub, the
unmodified machine cannot distinguish between packets

forwarded among ENTRAPID VNKs and packets
forwarded on the Internet. Thus, a program like
traceroute can be used to find the path to a destination
within a simulated network, and an HTTP server running
within ENTRAPID can be used to serve web pages to a
browser running on an external machine. We can also use
this interface to link multiple ENTRAPID processes
together, allowing us to emulate large topologies.

V. IMPLEMENTATION

The core technologies underlying ENTRAPID are kernel
virtualization, process virtualization, direct control of
physical network devices, external process support, and
visualization. We discuss each of these below.

A. Kernel virtualization

Virtualization is the combination of multiplexing and
indirection that allows a physical resource to be shared
among multiple entities without their knowing it. For
example, with virtual memory, programs share physical
memory, but are never aware of the existence of other
address spaces: as far as each program is concerned, it is the
sole owner of the entire physical memory. The key to
virtualization is the ability to trap every reference to a

User space

Kernel space

ENTRAPID
External
process

Commands in

Status out

Physical
network device

To the Internet

Message
exchange
subsystem

Switch box

Virtualized
process

Virtualized
networking
kernel (VNK)

Wire

TCP
connection
to proxy
process

Java
interface

Java
applet

                                                             Figure 1: ENTRAPID architecture



5

physical resource and map it through an appropriate
indirection table to a managed partition. For instance, with
virtual memory, every memory reference is mapped by a
memory manager to a physical address in the range actually
owned by the process.

Virtualizing a kernel or, more precisely, the networking
portion of the kernel is accomplished by carefully
extracting the networking code from the kernel, then
determining every non-local reference. Each such reference
is mapped through an indirection table to the appropriate
portion of the shared resource. It turns out that the FreeBSD
networking subsystem is closely tied together and makes
only a few external references, (primarily to the network
device for I/O, to the scheduler for timed sleep events, and
to user-level processes to read and write data streams).
Thus, with some care, it is possible to virtualize the
networking portion of a kernel with no change to its
functionality.

In order to support multiple VNKs within a single process,
we make heavy use of threads, which are available in most
modern operating systems. The ENTRAPID process is
associated with a pool of ‘worker’ threads that are
dynamically assigned to VNKs. Requests for service by a
VNK are translated to a task request that is registered with
the ENTRAPID thread scheduler. At a future time, an
available worker thread handles the request. In order to
minimize race conditions, we ensure that only a single
thread is within a particular VNK at any given moment. (If
it should prove necessary, we can allow multiple threads
within a VNK by remapping the splhi and splx calls in
the virtualized code.)

One of the more troublesome aspects in kernel
virtualization is dealing with interactions with the file
system. BSD sockets and regular files allocate file
descriptors from the same space. Since we do not wish to
virtualize the entire file system, calls by a process on non-
socket file descriptors must be passed to the actual kernel
(suitably massaged, as described next), and calls to socket
file descriptors should be passed to the associated VNK.
We distinguish between socket and non-socket file
descriptors using a hash table that is updated appropriately
by the socket and close calls. We also associate each
VNK with its own virtual ‘root’ in the actual file system.
All calls to the file system that contain an absolute path are
prepended with this root string. This allows multiple VNKs
to cleanly share a common file system.

We note that although the current version of ENTRAPID
virtualizes the networking portion of the FreeBSD protocol
stack, we can use an identical approach to virtualize any
kernel, or, more generally, the implementation of any API.
To virtualize an implementation, we determine, for each
call in the API, whether access is made to a shared

resource. If it is, then the call is redirected, using a library,
to an indirection routine that uses the virtual instance
identifier to appropriately remap the call. So, for example,
we can extend our approach to support a virtualized
Windows NT kernel or a virtualized Solaris kernel. Thus,
with our approach, we can leverage network protocol
implementations in a variety of existing development
environments. We can also emulate heterogeneous protocol
development environments.

B. Process virtualization

Process virtualization allows us to run multiple copies of a
program within a single ENTRAPID process. As with
kernel virtualization, it requires modifications of the
process source code to remap all accesses to shared
resources. We have automated some of these modifications
by providing a virtualization library that massages common
system calls that access shared resources. Within the
virtualization library, these system calls are mapped to
messages that are relayed to the ENTRAPID task scheduler,
which carries them out in due course. For instance, consider
a virtualized process that makes the read system call on a
socket file descriptor. Since the process is linked with our
library, the read system call is remapped to a procedure that
serializes the parameters of the system call, encapsulates
the serialized stream in a message, and schedules the
message for eventual handling by the ENTRAPID task
scheduler. The task scheduler, on seeing the message,
dispatches a worker thread to execute the read function in
the appropriate VNK. If this read accesses a simulated
interface, then data arriving on the simulated interface are
available to the read with no further intervention.
Otherwise, the read call is shepherded by another worker
thread to the actual OS kernel for further handling. When
the OS call succeeds, the reply is returned to the appropriate
VNK, and eventually to the calling process.

C.  External process support

While process virtualization is easy for some processes, it is
much harder for those that make use of advanced system
services such as sysctl, or those that are written as non-
reentrant code (because a VNK cannot simultaneously
execute multiple copies of non-reentrant code). In such
cases, it turns out to be easier to run the process externally,
and, instead, set up a connection between the external
process and a proxy virtualized process running within
ENTRAPID (see Figure 1). External processes have the
added advantage that process state is external to the
simulator, so implementation bugs are contained. We create
an external process by linking unmodified source code with
a proxy library that converts networking and file system
calls to messages sent to a proxy virtualized process (each
external process is associated with its own proxy virtualized
process). The proxy virtualized process simply decodes the
message and executes the appropriate system call in the



6

ENTRAPID context. For concreteness, consider a read
system call made by an external process. When linked to
the proxy library, the read call is converted to a read
message that is sent via a TCP/IP connection to the switch
box, which forwards it to the appropriate proxy virtualized
process. The proxy decodes the message and carries out the
read. The results of the read are then returned, via the
switch box, to the external process. As far as the external
process is concerned, it cannot distinguish between this
read, and a read done on an actual FreeBSD kernel. We
have also modified a standard Java virtual machine to run
as an external process, so that ENTRAPID can support
unmodified native Java bytecode.

D. Direct control of physical network devices

The ENTRAPID process can directly control a physical
network device. This allows it to capture incoming IP
packets on that interface and forward them to virtualized
interfaces. VNKs can also create IP packets that are
forwarded to the Internet. Thus, the network simulated
within ENTRAPID becomes indistinguishable from the
actual Internet. We can attach an unmodified machine to a
machine running ENTRAPID with an Ethernet cable, then
proceed to ping ENTRAPID nodes, or traceroute to
internal nodes.

We implemented direct control in Windows NT by adding a
custom NDIS shim to the operating system. It was
relatively simple to add the shim because it did not need to
deal with security issues. We also implemented a simple
DNS name resolver as an external process. This allows
external machines to transparently resolve internal
ENTRAPID names to internal IP addresses.

E. Visualization

The ENTRAPID visualization environment provides:
• Topology creation and network configuration
• Packet-trace generation and animation
• A graphical front end for simulation control
We now describe these three features in more detail. A
screen shot of the visualization tool is shown in Figure 2.

Simulating a network requires a developer to describe the
set of machines being simulated, their interfaces, their
default routes, and their interconnection. Moreover, each
machine may need to be customized with parameters such
as the TCP receive window size and the socket buffer size.
Our visualization environment allows a developer to view
these parameters at a glance. Nodes and links can be
created using a graphical topology editor. All configuration
parameters are available as drop-down windows keyed off
nodes and links.

Each VNK supports several trace points: points in the VNK
code where significant events happen. The default set of
trace points are packet arrival, packet departure, and packet
loss (additional code points can be added by a developer).
On reaching a trace point, the VNK emits a status line in
tcpdump format on the status channel. External packet
filters parse this status line. If the filter declares a match,
then an associated handler is executed. The handler can
create a log event (the default) or carry out arbitrary
actions. This general mechanism allows a developer to
easily create highly customized event logs and animations.

By simulation control we mean the ability for a developer
to load and store network topologies; to stop and start
simulations based on specific events; to graph a time series
of values of a simulation variable; and to step through event
sequences in order to debug them. In a sense, this extends
the debugging metaphor of a tool like dbx to a network of
machines. The ENTRAPID visualization environment
supports these features.

VI. PERFORMANCE

In this section, we present a preliminary performance
evaluation of our system. At this time, we have not
optimized its performance in any way. These numbers,
therefore, serve primarily as a baseline against which we
will compare future improvements. They also give a sense
for the overheads inherent in exact emulation and
virtualization.  The performance results are of two kinds.
The first type of results measure the overheads in using the
simulator, instead of directly developing a protocol on the
Internet. The second type of results examines the limits to
scaling the simulator.

Figure 2: Screenshot of visualization GUI



7

A. Overhead

Virtualization necessarily increases the time to make a
system call. The table below compares the time taken by a
normal process to make a null system call in the Solaris and
Windows NT operating system with the time for a
virtualized and an external process to make a similar null
system call to a VNK. Note that the external process’s
system call time includes the overhead in communicating to
a virtualized proxy process over a TCP/IP socket,
corresponding to two additional context switches and data
copies.

Null system
call to a
kernel by a
normal
process

Null system call
to VNK from a
virtualized
process
(slowdown ratio)

Null system call
to VNK from an
external process
(slowdown
ratio)

Solaris 3.6 us 221 us (61) 1870 us (519)
Windows
NT

14 us 134 us (9.6) 1700 us (121)

These measurements were made on two different systems
(both high-end PCs but with differing cache architectures
and CPU speeds). Thus, the relevant number is the absolute
cost of a system call from a virtualized or external process,
and its ratio to ‘normal’ system call on the same operating
system. Note that, despite the overhead of socket
communication, the cost of an system call for an external
process is under 2 ms for both operating systems.
Virtualization causes an order of magnitude degradation in
the cost of a system call, and external process
communication adds another order of magnitude overhead.
While we believe that this degradation is an acceptable
tradeoff, we intend to investigate techniques to reduce this
ratio in future work.

The second test for overhead compares the throughput
achieved between a TCP client and a TCP server that are
trying to exchange data as fast as possible. The
measurements were conducted on a 300 MHz Pentium II
PC running Windows NT with 128 Mb main memory and
512 Kb on-chip cache for multiple runs of a 100-million
byte transfer. The client sends data as 1024-byte packets
and always has a packet to send, regulated only by TCP’s
window flow control mechanism. The results of this
measurement are shown in the table below.

Configuration Throughput in
Mbps

Ratio

Client and server are regular NT processes
on the same NT kernel

2.7 1.0

Client and server are virtual processes on
the same VNK

2.1 0.78

Client and server are virtual processes on
two VNKs connected by a wire

1.6 0.59

Client and server are virtual processes on
two VNKs separated by two wires and a
VNK acting as an IP router

1.0 0.37

We see that the degradation in going from two processes on
the same NT kernel to two virtualized processes on a VNK
is rather small. Although each system call is an order of
magnitude costlier, the bulk of the work in the data transfer
is in copying data from user space to kernel space, from
kernel space to the device and the same process in reverse.
Thus, the two virtualized processes achieve nearly 80% of
the throughput between to two normal processes. However,
as we increase the number of active kernels and start
simulating wires and routers, the overall throughput
decreases. With a single wire connecting to VNKs, the
throughput drops to a little under 60%. This is because we
must now simulate not only two entire VNKs, but copy
packets from the VNK to the wire and out again. Not
suprisingly, adding a router VNK adds two more copies,
and brings the throughput down to just about a third of the
original rate. The main lesson here is that data copying is
expensive. We propose to use well-known copy avoidance
techniques to deal with this problem [22, 12, 23].

B. Scaling

It is hard to quantitatively measure the scalability of a
protocol development environment. The number of VNKs
that can be supported is a function not only of the protocols
run at each VNK, but also the number of messages
exchanged, and the degree to which the working set of
pages fits in the processor’s memory hierarchy. Here, we
present a preliminary attempt to characterize the scaling
properties of our system.

We measured the size of the ENTRAPID process as a
function of the number of VNKs when each VNK supports
zero virtualized processes (so this represents the most
optimistic scaling possible). We found that the system
allows up to nearly a thousand VNKs. The memory
required by each additional VNK, after the initial few, is
about 60 Kbytes.

In practice, the limit on scaling comes not from the memory
size required for the process, but from the CPU time
required to emulate several hundred VNKs and associated
virtualized and external processes. To measure this
overhead, we sent ping packets from an external process to
each of the VNKs in a linear topology and computed the
mean time to ping each VNK. Figure 3 shows the mean
time taken to ping a VNK from an external process as a
function of the number of hops needed to reach that VNK.
We see that the ping time increases linearly with VNK
distance (the straight line in the plot is the trend curve and
the variations in the ping time are due to the large context
switch times in the Windows NT kernel). Since VNKs not
on the path do not consume any CPU, this leads us to
believe that the time to simulate a large topology will scale
linearly both with the number of nodes and with the number
of packets exchanged in the network.



8

To sum up, we have shown that ENTRAPID creates an
order of magnitude increase in the time for a system call,
though this increase does not necessarily result in an order
of magnitude degradation in protocol performance.
Moreover, the system scales to a large number of nodes,
and we believe that the scaling is linear both with number
of VNKs and with number of packets exchanged. (We will
have a more exhaustive analysis of the overhead and
scaling performance in the final version of this paper.)

VII. APPLICATIONS.

Besides the obvious application of protocol development,
ENTRAPID serves as the foundation for a variety of
applications, including:
• Service creation
• Testing routing protocols
• Configuration and capacity planning
• Testing and benchmarking
• Training and research

VIII. DISCUSSION

The key idea in ENTRAPID is kernel virtualization. While
other systems have virtualized device drivers (as in U-Net
[12]) and entire operating systems (as in IBM’s Virtual
Machine from the 1960’s [24]), our choice of virtualizing
only the networking component of an operating system
gives us almost the same power as a virtual machine, but
with far less development overhead. Kernel virtualization
simultaneously provides both exact emulation and ease of
use, two of the main requirements for an ideal PDE. The
other requirements are met by adding a ‘switch box’, a
clean metalanguage, and an external visualization GUI.

We now discuss the degree to which we believe
ENTRAPID has met its goals. As discussed earlier, we
think that ENTRAPID meets many of the requirements of
an ideal protocol development environment.

• It is easy to use, since ir uses the standard BSD
sockets packet send/receive API.

• It provides exact emulation of the entire set of
kernel services. While it does not model specific
Internet impairments, the impairments found in
any particular impairment can be easily added to
the code base.

• ENTRAPID is controllable. The ENTRAPID
topology control language allows developers to set
up arbitrary network topologies. Moreover, source
code changes in user-level programs allow the
behavior of the entire environment, including the
behavior of kernel-level components such as
device drivers and IP, to be easily modified.

• The ENTRAPID visualization and animation
engine allows developers to use a GUI to set up
topology and simulation parameters, and to
visualize the results of simulation runs.

• The environment can be extended with new
protocols either as virtualized processes or as
external processes. This allows arbitrary
customization of the simulation environment.

• The current version of the simulator scales to
several hundred nodes. Scaling is determined
essentially by the available memory and CPU. As
these increase exponentially over time, so will the
size of the simulations..

• Finally, while ENTRAPID does not currently
support verification, we hope to add it shortly.

IX. FUTURE WORK

Although ENTRAPID meets many of the requirements for
an ideal protocol development environment, there are still
two areas that need improvement.

First, we would like to improve overall performance by
reducing packet copy costs. At the moment, data from a
user is copied to a VNK, from the VNK to the wire, from
the wire to the receiving VNK, and from the receiving
VNK to the receiving process. We can get rid of these
copies using a zero-copy architecture such as the ones
described in [22, 12, 23].

Second, ENTRAPID does not scale well when emulating
networks with large bandwidth delay products. Such
networks require substantial per-node buffers. We hope to
exploit techniques to collapse router buffers, such as those
described in [25], to reduce this overhead.

X. CONCLUSIONS

The ENTRAPID protocol development environment
satisfies all the requirements of an ideal protocol
development environment. It presents programmers with
the abstraction of a ‘network in a box’. This allows rapid
protocol development and testing. We believe that the
environment can be used for a wide range of applications

0

10

20

30

40

50

60

0 10 20 30 40 50 60

             Figure 3: Ping time as a function of hop count



9

that build on this core technology. We are pleased to
announce that ENTRAPID is available to academic
institutions at no charge. For details, please refer to
http://www.ensim.com.

XI.  REFERENCES

[1] Open Signaling Initiative, http://comet.ctr.columbia.edu/opensig/
documentation/

[2] IEEE P1520 Proposed IEEE Standard for Application Programming
Interfaces for Networks, http://www.ieee-pin.org/

[3] T.V. Lakshman and D. Stiliadis, High Speed Policy-based Packet
Forwarding Using Efficient Multi-dimensional Range Matching, Proc.
ACM SIGCOMM ’98,  1998.

[4] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel,  Fast Scalable
Algorithms for Level Four Switching, Proc. ACM SIGCOMM ’98,  1998.

[5] AT&T Geoplex, AT&T Labs Internet Platforms,
http://www.geoplex.com

[6] MCI Corp, Vault press release,
http://www.mci.com/mcisearch/aboutyou/interests/technology/ontech/vaul
t.shtml

[7] G.J. Holzmann, The Model Checker Spin, IEEE Trans. on Software
Engineering, Vol. 23, 5, pp. 279-295, May 1997, (Special issue on Formal
Methods in Software Practice).

[8] F. Schneider S.M. Easterbrook J.R. Callahan and G.J. Holzmann,
Validating Requirements for Fault Tolerant Systems using Model
Checking, Proc. International Conference on Requirements Engineering,
Colorado Springs Co. USA, April 1998.

[9] K. Birman, R. Friedman, M. Hayden, and I. Rhee. Middleware Support
for Distributed Multimedia and Collaborative Computing. To appear in
Proc. MMCN 1998, 1998.

[10] H. Balakrishnan, S. Seshan, and R.H. Katz., Improving Reliable
Transport and Handoff Performance in Cellular Wireless Networks, ACM
Wireless Networks, 1(4), December 1995.

[11] V. Paxson, Automated Packet Trace Analysis of TCP
Implementations, Proc. ACM SIGCOMM '97, September 1997, Cannes,
France.

[12] T. von Eicken, A. Basu, V. Buch, W. Vogels, U-Net: A User-Level
Network Interface for Parallel and Distributed Computing, Proc.  ACM
Symposium on Operating Systems Principles, December 1995.

[13] J.S. Ahn, P.B. Danzig, Z. Liu, and L. Yan, Experience with TCP
Vegas: Emulation and Experiment, Proc.  ACM SIGCOMM ‘95, Boston,
August 1995.

[14] S.Y. Wang and H.T. Kung, A Simple Methodology for Constructing
an Extensible and High-Fidelity TCP/IP Network Simulator, Proc.
Infocom 1999.

[15] NIST Network emulator, http://www.antd.nist.gov/itg/nistnet/

[16] Torrent Networks, Multi-kernel Network Emulator, Personal
Communication, 1997.

[17] ns network simulator, http://www-mash.cs.berkeley.edu/ns/

[18] VINT home page, http://netweb.usc.edu/vint/

[19] S. Keshav, REAL 5.0 Network Simulator,
http://www.cs.cornell.edu/skeshav/real/overview.html

[20] Opnet Network Simulator, http://www.mil3.com

[21] Cadence Inc., BONeS simulator, http://www.cadence.com/alta
/products/bonesdat.html

[22] A. Edwards and S. Muir, Experiences Implementing a High-
Performance TCP in User-Space, Proceedings of  ACM SIGCOMM ‘95,
Cambridge, September 1995, pp. 196-205.

[23] C.A. Thekkath, T.D. Nguyen, E. Moy, and E.D. Lazowska,
Implementing Network Protocols at User Level, Proceedings of  ACM
SIGCOMM’93, San Francisco, September 1993.

[24] A. Silberschatz and P. Galvin, Operating Systems Concepts, Addison-
Wesley, November 1997.

[25] J.S. Ahn, P. B. Danzig, D. Estrin, and B. Timmerman, A Hybrid
Technique for Simulating High Bandwidth--Delay Product Computer
Networks, USC CS Technical Report 92-528, 1992.


