
Achieving Quality of Service through Network Performance Management

S. Keshav and R. Sharma
Cornell Network Research Group
Department of Computer Science

Cornell University, Ithaca, NY 14853
{skeshav, sharma}@cs.cornell.edu

http://www.cs.cornell.edu/cnrg

Abstract

We believe that current mechanisms for providing quality
of service guarantees in integrated services networks have
two major flaws. First, these mechanisms, such as
signaling, scheduling, and reservations, require
significant changes to the existing Internet. Second, they
do not provide mechanisms for management of QoS state.
In this paper, we present an alternative approach which
attempts to provide ‘macroscopic’ QoS guarantees
through effective network management.

1. Introduction

The Internet is exponentially increasing inbreadth and
depth. By an increase inbreadth, we mean that the
Internet is reaching ever more users, doubling its user
population every year. This increase is likely to continue
as developing countries get connected and small-footprint
TCP/IP implementations bring embedded computers
online. There is a parallel increase indepth, that is, in the
set of services available to an endpoint. For many years,
this set was small, and was provided by applications such
as FTP, telnet, Usenet, and email. In recent years, the set
has rapidly increased and now includes the World Wide
Web, financial services like stock trading, distance
education through audio and video multicast, and access to
numerous databases.

Because of its rapid increase in breadth and depth, the
Internet is widely accepted as an essential part of the
global communication infrastructure. How well does it fit
this role? A study of Internet performance reveals that the
user experience is highly variable and often poor. While
there are many millions of satisfied users, it is not hard to
find angry customers unable to complete a stock trade,
confused students whose video feed has been mysteriously
cut off, or users who just cannot connect to popular
websites. In view of the social and economic cost of these

problems, there has been a great effort, over the last
decade, to build networks that can guarantee some form of
quality of service. (The solution of this general problem
automatically solves the more restricted problem of
supporting continuous-media applications in an integrated
services network.)

Providing users with a consistent and reliable quality of
service has usually been studied from the perspectives of
scheduling, traffic profiling, signaling, and reservations. In
practice, this may prove to be too narrow a view of the
network. We believe that the service quality experienced
by a typical Internet user today is determined more by the
quality of network management than by scheduling and
reservation mechanisms. This is particularly true of users
on legacy networks that rarely support per-user or per-
application quality of service guarantees. In such
networks, network performance management tools that
help in judiciously selecting link capacities and routing
metrics may do more to improve a user’s service quality
than the introduction of complex mechanisms such as
Weighted Fair Queueing, RSVP, and differential pricing.
Moreover, even if more sophisticated mechanisms are
introduced and become popular, we would still need tools
to administer policies and manage network performance
by tuning parameters such as the degree of aggregation
and the weights associated with each service class.

Unfortunately, existing network management systems do a
poor job of managing current networks, let alone the
complex mechanisms that may be introduced in future
networks. They are usually ‘GUI-centric’, painting pretty
pictures of network status, rather than helping to find and
fix network performance problems (for example, see HP’s
NetMetrix [1]). In the absence of good tools, scientific
process and good engineering practice gives way to trial-
and-error and a ‘gut-feeling’ approach to performance
management. For instance, network operators plan the
layout and configuration of their network in anad hoc
manner. However, naively adding capacity to a network

can actually lead to a decrease in the performance of the
network! Similarly, at present, one cannot test a network
component without actually plugging it into the network--
the only way to completely test a router’s BGP
configuration is to plug it into the Internet. However, a
wrongly configured backbone router can accidentally
partition the Internet, a fact that may be easy to discover
but hard to correct. Clearly, we need better tools to plan
network topology, configure components, and to test a
component without compromising the integrity of the
network.

Our research goal, therefore, is to create a suite of network
performance management tools that allow network
administrators to provide quality of service to users. We
do so by developing algorithms and tools for network
discovery and monitoring, visualization, fast simulation,
capacity planning, router configuration, and fault
diagnosis. We believe these form the basis for the next
generation of network performance management systems,
which not only observe network functioning, but also
actively participate in diagnosing and managing network
performance. In the rest of this paper, we outline the
current state of our tools.

2. The network lifecycle

Our approach to network management is based on the
observation there are five stages in the evolution and
management of networks (Figure 1).

Figure 1. Network performance management lifecycle

These are (a) discovering existing topology, (b) collecting
statistics, (c) identifying performance problems, (d)
dealing with performance problems, and (e) configuring
new hardware. We are developing algorithms and tools for
each of these stages, as outlined next. We note in passing
that current network management solutions deal only with
stages (a) and (b). A significant exception is the Netsys
suite of tools from Cisco [2], which offers tools for all five
phases of the lifecycle. This product, however, is

proprietary, and we are not aware of public descriptions
either of its algorithms or its effectiveness. Moreover, it is
targeted primarily at dealing with L-2 problems in
networks of Cisco routers: we hope to model and manage
heterogeneous L-3 networks.

2.1. Discovering topology

Network topology refers not only to the physical layout of
components and cables within a given domain, but also the
logical partitioning of the domain into subnets. The basic
idea in our algorithm is to mark discovered nodes
(corresponding to IP addresses) as ‘temporary’ or
‘permanent’ (by analogy with Dijkstra’s algorithm). Each
temporary node, when accurately identified as a router or
an end-system, is added to the permanent set. Neighbors of
the newly added permanent node are then added to the
temporary set for further processing. Thus, network
discovery problem reduces to coming up with algorithms
for discovering temporary nodes and for identifying
permanent nodes. Some of the heuristics we use for
generating temporary nodes are to (a) do a DNS domain
transfer, which lists every name and IP address in the
domain, (b)ping a random IP address in the domain,
adding it to the temporary set if it responds (c)
traceroute a random IP address in the domain and add
every node along the discovered path, and (d) use SNMP
to get a router’s routing table, then extract all the nodes in
the table. Next we cast out spurious addresses, then
discover routers, links, and link speeds. We discover a
router either using SNMP (an SNMP GET returns the
identity) or DNS (a lookup returns multiple IP addresses).
We discover links by SNMP queries on routers or by
carefully chosentraceroutes . Finally, we discover
link speeds using Jacobson’spathchar program [3].
The discovered topology information is stored in a
hierarchical file system. The attributes of each node are
stored as files within a directory devoted to the node. This
simplifies access to the topology. For instance, to ping all
the hosts in subnet 128.84.154 we simply typecd
128.84.154; foreach i(*); ping $i; end;

Although our discovery tool still needs tuning, it can
discover all the 10,000 hosts and routers in the
cornell.edu domain, and over a million nodes in the
Internet at large. We are currently experimenting with a
new discovery algorithm that correlatestraceroutes
to the same randomly chosen IP address from different
sites in the Internet to discover Internet backbone
topology. For instance, a traceroute to
ncst.ernet.in from hosts in Stanford and Berkeley
uniquely identifies the ISP connecting this host to the
Internet.

Topology discovery

Fix problems (AI and
simulation)

Collect statistics
(monitoring)

Identify problems (display
and simulation)

Configure new hardware
(simulation)

2.2. Collecting statistics

Traditional network management tools use SNMP to
collect statistics from managed objects. SNMP requires
the manager to poll the managed object to obtain
information about dynamically changing MIB variables.
However, if there is a large delay between the manager
and the managed object, we cannot do fine-grained polling
or implement efficient network control algorithms.
Moreover, during periods of congestion, precisely when
control is important, SNMP requests may be lost.
Therefore, in addition to using SNMP to collect network
statistics, we have developed an extension to SNMP called
‘Active SNMP’ that solves these problems [4]. Active
SNMP allows a Java applet to execute on a Java runtime
'near' the managed object, carrying out computation on
MIB variables on behalf of the manager. For instance, the
applet could monitor the number of IP packet losses and
use this to adjust the advertised link weight. By placing
processing near the MIB, Active SNMP allows us to
perform fine-grained control, and avoid the 'horizon effect'
where event information in a remote domain is invisible
because of aggregation.

While Active SNMP solves some problems with
monitoring, the question of decidingwhich nodes to
monitor is still open. To solve this, we fit the traces
collected from a particular site to an empirically
determined mean. If a coarse-grained trace reveals that
parameters of a fitted curve deviate substantially from
normal, we automatically install an Active SNMP applet to
more carefully monitor the situation.

2.3. Topology display

Discovery and monitoring create data sets that need to be
efficiently and intuitively displayed. Instead of using a
Visual Basic, Tcl, or Xlib GUI, we decided to use a
standard Web browser as the user interface. We have
created a scripting language that extends Javascript by
wrapping methods in the Java AWT. Thus, window
events, normally visible only to Java, are now exposed to
Javascript. This allows us to rapidly create UI components
in Javascript. Moreover, by writing a small windowing
system in Dynamic HTML, we can represent multiple
views of the topology, as well as current monitoring data
within a browser. Our approach allows network
management to be carried out from practically anywhere,
and to display network performance information to
interested users without a costly investment in a
proprietary GUI.

2.4 Identifying performance problems

Performance problems in networks can be categorized
roughly into Level-2 and Level-3 problems. Level-2

problems can be detected by monitoring collisions at
routers and hubs, which we can do using the Active SNMP
framework outlined above. (We also intend to come up
with algorithms to map from collision statistics to probable
causes of frequent collisions.) At Level-3, we can not only
passively detect problems such as loss of connectivity
using SNMP, but canactively probe the network in two
ways. The first approach involves proactively testing paths
in the network for routing loops and black holes with IP
loose source routing. The second approach, which is more
sophisticated, draws on network simulation techniques.
We have designed and implemented an object-oriented
network simulator called SurREAL that allows us to run
multiple instances of the 4.4 BSD kernel networking code
within a single Solaris or Windows NT address space.
Moreover, existing applications can be ported to this
environment with nearly no change. Our careful design
allows the simulated network to appear to be equivalent to
an actual network in every way. Thus, simulated nodes can
be ping ed, and also supportifconfig scripts. This is
an extremely powerful technique to test networks. For
instance, we can create simulated test networks that
generate and respond to routing updates to test the
behavior of the actual network. As another example, we
can simulate link and router failures to test its effect on the
rest of the network. We can also deploy and test
algorithms for differential service, resource reservation,
and routing in a tightly controlled environment.

2.5 Correcting network performance problems

We plan to exploit SurREAL to correct network
performance problems. Our approach is to use our
discovery and monitoring tools to accurately model
network topology, protocols, and workloads within a
simulator, then use this to recreate observed performance
problems. Then, network administrators can test out
potential solutions (such as adding new hardware, or
changing routing parameters) before implementing them in
the network. To successfully carry out this phase of the
work, we may need to simulate packet transmission and
routing for networks with thousands of nodes and tens of
thousands of simultaneous sessions. This is impossible
with the existing packet-level simulation approaches
(including SurREAL). Thus, we plan to come up with
techniques forsession-level simulationthat will enable us
to meet this goal. In this approach, we plan to create a map
from the number of simultaneous TCP or UDP sessions to
the expected performance of each such session from
empirical observations. The map will therefore allow us to
simultaneously compute the traffic flows traversing each
router (from the routing simulation) and the performance
of each flow (from the empirical map). While the details
of this approach and its effectiveness still are under study,
we believe that this will allow us to capture network
performance at least to first order.

2.6 Configuring new hardware

One outcome of the previous steps may be the need to
procure new hardware such as routers and hubs. These
network components are not easy to configure. For
instance, current routers require users to specify numerous
interdependent configuration variables. Mistakes in router
configuration are the most common reason for network
outages. We plan to solve this problem in two ways. First,
we plan to hook up a network component to SurREAL and
put it through its paces before it is plugged in, thus
identifying misconfiguration and potential performance
problems before they occur. Second, we plan to build and
test policy servers to centralize the administration of
network components. This integration of policy
management and simulation is a powerful tool for network
performance management.

3. Conclusions

We believe that as the Internet becomes more and more
important in daily life, there is a serious need not only to
provide QoS guarantees in terms of delay and bandwidth
for audio and video traffic, but also in terms of
connectivity, robustness, and good performance for
traditional best-effort traffic. We believe that current
approaches to providing service quality are too narrow to
achieve this goal. In contrast, our pragmatic approach
combines tools for discovery, monitoring, display, and
simulation that allow network administrators to build and
maintain high-quality networks. While this paper describes
work that is still in progress, our initial results are
encouraging. Our experience leads us to believe that, in
the long run, our approach may be only one actually able
to deliver QoS to users.

4. References

[1] HP NetMetrix, http://www.tmo.hp.com/tmo/ntd/
products/products.html

[2] Cisco Netsys, http://www.cisco.com/warp/public/734/
toolkit/index.html

[2] V. Jacobson, “Pathchar” binary, ftp://ftp.ee.lbl.gov/
pathchar/

[3] R. Sharma, S. Keshav, M. Wu, and L. Wu,
“ Environments for Active Networks,”Proc. NOSSDAV
'97, May 1997.

