[31]

[32]

33]

D. Tennenhouse, “Layered Multiplexing Considered Harmful,” IFIP Proc. Pro-
tocols for High Speed Networks, Elsevier Science Publishers, May 1989.

C.A. Thekkath, T.D. Nguyen, E. Moy, and E.D. Lazowska, “Implementing
Network Protocols at User Level,” Proc. ACM SIGCOMM’93, San Francisco,
September 1993.

L. Zhang and S. Shenker and D.D. Clark, “Observations on the Dynamics of a
Congestion Control Algorithm: The Effects of Two-Way Traffic,” Proc. ACM
SIGCOMM’91, September 1991.

30

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Kay and J. Pasquale, “The Importance of Non-Data Touching Processing
Overheads in TCP/IP,” Proc. ACM SIGCOMM’93, August 1993.

K. Keeton, T.E. Anderson, and D.A. Patterson, “LogP Quantified: The Case for
Low-Overhead Local Area Networks,” Proc. Hot Interconnects I1I: A Symposium
on High Performance Interconnects, Stanford University, Stanford, CA, August
10-12 1995.

S. Keshav, “REAL: A Network Simulator,” CSD TR 88/472, University of Cali-
fornia Technical Report, December 1988.

S. Keshav, “Packet-Pair Flow Control,” To Appear, IEEE/ACM Trans. on
Networking, preprint available from http:// www.cs.att.com/ csrc/keshav/ pa-
pers.html.

S. Keshav and S.P. Morgan, “SMART Retransmission: Performance with Ran-
dom Losses and Overload,” Preprint, January 1996.

S.J. Leffler, M.K. McKusick, M.J. Karels and J.S. Quarterman, “The Design and
Implementation of the 4.3BSD UNIX Operating System,” Addison- Wesley, 1989.

C.W. Mercer, “Operating System Resource Reservation for Real-Time and Multi-
media Applications,” PhD. Dissertation, Carnegie Mellon University, May 1996.

Klara Nahrstedt, Jonathan M. Smith, “The QoS Broker,” IEFE Multimedia,
Spring 1995, Vol.2, No.1, pp. 53-67.

Klara Nahrstedt and Ralf Steinmetz, “Resource Management in Multimedia Net-
worked Systems,” IEFE Computer, May 1995, pp. 52-64.

R. Pike, D. Presotto, S. Dorward, R. Flandrena, K. Thompson, H. Trickey, and
P. Winterbottom, In “Plan 9 - The Documents - Volume Two,” Harcourt Brace
& Company, pp 1-22, July 1995.

K.K. Ramakrishnan and R. Jain, “A Binary Feedback Scheme for Congestion
Avoidance in Computer Networks,” ACM TOCS, Vol. 8, No. 2, May 1990, pp.
158-181.

K.K. Ramakrishnan, “Performance Considerations in Designing Network Inter-
faces, ” IEEE Journal on Special Areas in Communications: Special Issue on
High Speed Computer/Network Interfaces, February 1993.

K.K. Ramakrishnan, L. Vaitzblit, C. Gray, U. Vahalia, D. Ting, P. Tzelnic, S.
Glaserand W. Duso “Operating System Support for a Video-On-Demand File
Service,” Proc. 4th International Workshop on Network and Operating System
Support for Digital Audio and Video, November 1993.

R. Sharma and S. Keshav, “Signalling and Operating System Support for Native-
Mode ATM Applications,” Proc ACM SIGCOMM’94, September 1994.

W.R. Stevens, “TCP/IP Tllustrated: Volume 1,” Addison- Wesley, 1994.

29

References

(1]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Campbell, G. Coulson and D. Hutchison, “A Multimedia Enhanced Transport
Service in a Quality of Service Architecture,” Proc. 4th International Workshop
on Network and Operating System Support for Digital Audio and Video, Novem-
ber 1993.

A. Campbell, G. Coulson and D. Hutchison, “A Quality of Service Architecture,”
ACM Computer Communications Review, April 1994.

D.D. Clark, V. Jacobson, J. Romkey and H. Salwen, “An Analysis of TCP Pro-
cessing Overhead,” IEFE Communications Magazine, June 1989, pp 23-29.

G.J. Armitage, “Multicast and Multiprotocol Support for ATM Based Internets,”
ACM SIGCOMM Computer Communication Review, Vol. 15, No. 2, April 1995.

E. Biagioni, E. Cooper and R. Sansom, “Designing a Practical ATM LAN,” IEEFE
Network Magazine, March 1993.

A.K. Choudhury and E.L. Hahne, “Dynamic Queue Length Thresholds in a
Shared Memory ATM Switch,” Proc IFEE INFOCOM’96, March 1996.

A. DeSimone and S. Nanda, “Wireless Data: Systems, Standards, and Services,”
Journal of Wireless Networks, Vol 1, February 1996.

A. Edwards and S. Muir, “Experiences Implementing a High-Performance TCP
in User-Space,” Proc. ACM SIGCOMM ’95, Cambridge, September 1995, pp.
196-205.

D.C. Feldmeier, “Multiplexing Issues in Communication System Design,” Proc.

ACM SIGCOMM’90, October 1990, pp. 209-219.

D.C. Feldmeier, “A Framework of Architectural Concepts for High Speed Com-
munications Systems, ” IFEFE Journal of Selected Arecas in Communications,
Vol.11 No.4, May 1993

D. Ferrari, “Client Requirements for Real-Time Communications Services,”
JIEEE Communications Magazine, Vol 28, No. 11, November 1990

ATM FORUM, “ATM: User Network Interface Specification Version 3.0, Prentice
Hall, September 1993

V. Jacobson, “Congestion Avoidance and Control,” Proc. ACM SIGCOMM’8S,
pp 314-329, 1988.

A. Jain and S. Keshav, “Native-mode ATM in FreeBSD: Experience and Perfor-
mance,” Proc. NOSSDAV °96, April 1996.

H. Kanakia, P.P. Mishra and A. Reibman, “An Adaptive Congestion Control
Scheme for Real-Time Packet Video Transport, ” Proc. ACM SIGCOMM’93,
August 1993.

28

operational.

An open area for research is in the implementation of the Resource Manager.
This component interacts strongly not only with the operating system scheduler,
but also with the disk sub-system and the graphics sub-system. We believe that
it is an open, but worthwhile challenge, to manage OS resource in the same
way we manage network resources in order to provide QoS guarantees in the
end-system. We refer the reader to References [28, 22, 23, 24] as representative
of work in this area.

10 Conclusion

We have described the design, implementation, and performance tuning of a
native-mode ATM protocol stack. The transport layer provides three classes
of service: reliable, guaranteed-service, and unreliable data transfer. An un-
usual feature is leaky-bucket policing at the transport layer for open-loop flow
control. Our design is novel in that it is targeted to AALS and inexpensive Per-
sonal Computers. We have also tried to provide Quality of Service guarantees
for reliable and guaranteed-performance connections by eliminating multiplex-
ing, QoS-aware task-scheduling, and providing error control, flow control, and
leaky-bucket shaping. We have implemented the transport layer in a research
operating system and have extensively measured its performance. This has al-
lowed us to tune our implementation to fit the resource constraints common in
current-generation Personal Computers.

Our stack has excellent performance, with throughputs of more than 50
Mbps Mbps user-to-user for unreliable data transfer. End-to-end delays in a
local-area network are smaller than 750 ps. This performance is possible because
of careful design to avoid data-copying overheads, amortizing costs over multiple
TPDUs, and minimizing wasted work at the receiver. We believe that these
insights are valuable to other protocol stack implementers.

Acknowledgments

The first version of the transport layer was written by R.P. Rustagi and R.N.
Moorthy of the Indian Institute of Technology, Delhi, as part of the IDLInet
project. Sandeep Gupta of the University of Maryland, College Park, added
mbuf code and removed extra data copies. Puneet Sharma from the University
of Southern California reverse-engineered the microcode download program and
wrote the first version of the ATM device driver. Qur thanks to them all.

We would also like to thank two anonymous referees for their perceptive
comments, which have considerably improved the presentation in the paper.

27

performance by tuning any single aspect of our implementation.

8 Related Work

It is useful to contrast the semantics of our transport layer with TCP. We use a
different retransmission scheme from TCP, and propose a rate-based flow control
scheme that does not shut down on packet losses. Further, unlike TCP, we do
not do data checksumming, relying, instead, on the AAL5 checksum.

Our work differs from IP-over-ATM in many ways. In the IP-over-ATM
approach, the application sees only the IP interface, which does not provide any
QoS guarantees. Thus, any guarantees available from the ATM network are
hidden. Second, the IP-over-ATM subsystem has to make signaling requests on
behalf of the application, which adds considerable complexity to the kernel. In
our approach, signaling 1s called directly from the application library. Third,
IP routing assumes a broadcast medium in the local area, which is critical for
the ARP protocol. IP-over-ATM has to spend a lot of effort emulating this over
the point to point ATM network. By using a native mode ATM stack, all these
problems are automatically eliminated.

Our work is closely related to that of Campbell et al [1] who have proposed
a multimedia enhanced transport service and a Quality of Service Protocol Ar-
chitecture [2]. As in our stack, they have placed flow regulation at the transport
layer, and have no logical multiplexing of streams. However, they have decom-
posed the service interface into guaranteed-performance and best-effort flows.
This hides the orthogonal aspects of flow control, error control, and QoS spec-
ification that our transport layer explicitly presents. As a consequence, their
interface does not allow for some combinations that may prove to be useful,
such as non error-controlled but feedback flow controlled flows, which is an al-
ternative way to carry Variable Bit Rate video traffic [15]. Second, their stack
provides a complex API - for example, applications are expected to provide
dummy upcalls for computing the average time taken for a user task. We think
that this complexity can result in poor performance. Finally, their choice of a
QoS specification seems premature since much is unknown about what is really
needed.

There have been numerous attempts to design transport-layer protocols in
the past. Reference [10] provides a an excellent survey of issues in high-speed
transport protocol design as well references to several other transport protocols.

9 Status and Future Work

The transport layer we have described in this paper is complete, and has been
operational on our testbed for the last year. We have released source code
to universities at no cost. A port to the FreeBSD operating system is also

26

7 Discussion

From the viewpoint of protocol performance, the main aims of our transport
layer are to provide high performance and differential qualities of service. Per-
formance measurements allow us to quantify the degree to which we achieved
both goals.

In terms of high performance, because of careful measurements and perfor-
mance tuning, as well as the absence of a data checksum in software, we are able
to achieve the same latency and nearly 60% of the throughput of a SparcStation
20 at a small fraction of its cost [17]. The throughput bottleneck is the CPU
on the receiving side. We hope to achieve much higher throughput by upgrad-
ing from a 66 MHz 80486 machine with an EISA bus to a 133 MHz Pentium
processor with a PCI bus. Similarly, much of the latency for small messages
i1s in waiting for the scheduler to become active. This latency is likely to be
smaller on a higher-speed CPU, where the CPU load of other processes would
be proportionately smaller. (The switch is not a performance bottleneck in our
environment, and is unlikely to be one in most local-area ATM networks.)

In terms of differential service quality, we are able to successfully regulate
an application to its stated leaky-bucket values. When combined with a net-
work that provides endpoint-to-endpoint guarantees of service quality to ‘well-
behaved’ sources, we can, therefore, guarantee application-to-application qual-
ity of service. Moreover, the task scheduler allows us to give higher priority
to guaranteed-service connections. (As we remarked earlier, the major open
problems with our implementation are the lack of coordination with the CPU
and disk scheduler and a lack of control over the host-adaptor card. We hope
to address this lacunae in future work.)

We now briefly retrace the steps we took to tune our implementation. First,
the task scheduler is awakened both by the device driver and by t_send on packet
receipt. This reduced the round-trip latency for small packets from 120 ms to
1.44 ms. This decrease in latency also considerably improved the performance
of the reliable service, which is sensitive to the round-trip delay. Second, we
detected and corrected the livelock condition in the interrupt service routine.
This improved the performance of guaranteed service and best-effort service
connections. Third, we introduced hysteresis in supplying buffers to the card
by using high- and low-watermarks, further improving their performance. The
point 1s that we were able to systematically improve protocol performance by
measuring and tuning our implementation.

One surprising conclusion we came to was that for large messages, the only
costs that matter are the copy cost and the time spent in the device driver.
For these messages, it does not matter how much time we spend in the rest of
the transport layer, as long as we keep these two major costs under control.
The lesson here is that for large message sizes we should make transport layer
processing as complex as necessary to optimally use the network. However,
for small messages, every instruction counts. We cannot gain improvement in

25

Cost of different parts of t_send
4000

Total Cost of t_send —o—
Mal | oc_and_dat acopy -+--

3500 Per..TPDU.fr.agflentatii.on. -g:::

'er MBQ COSt -

3000

2500

2000

1500

Tine to process (us)

1000

T ISR AT U -} LR -8
o
o 10000 20000 30000 40000 50000 60000 70000 80000
Message size (bytes)

Figure 10: Processing cost for different components of the t_send interface procedure
as a function of message size. Note that the per-byte overheads dominate for large
messages.

Figure 10 plots the cost of each component as a function of the message
size. We see that the per-message cost, which is the time spent in making the
write system call and enqueueing the message, is constant. This is around 95
ps, of which 41 ps is spent in making the write system call and acquiring the
Readers Writers lock (Section 5.5.3), and the remaining time is spent in other
per-message overhead.

The time spent in fragmenting the message into TPDUs and enqueueing
them (the per-TPDU cost) is a step function of message size. Tt has disconti-
nuities at the multiples of TPDU size. As the number of TPDUs required to
carry the message increases by one, this cost jumps by around 35 pus.

The third component is the time spent in copying data from user to kernel
space. This time also includes the time to allocate memory in the kernel for
copying data given by the user application. As seen in the plots, this time is
directly proportional to the message size and 1s about 50 us per Kilobyte.

It is clear from the plots that for small messages (less than around 1000
bytes), the major component of the cost of t_send is the per-message and per-
TPDU cost [16]. For larger messages, the cost of copying data dominates and
the per-message and per-TPDU costs together make up only a small part of the
total time spent in t_send. Thus, our measurements are consistent with those
in Reference [16]. (We note in passing that the raw costs of operations such as
data copy on a 66 MhZ 486 PC are consistently around 2/3 of the costs on a
DECstation 5000/200.)

24

messages are small, and for small messages, the per-message cost dominates [16].
To verify these claims, we measured the per-byte, per-TPDU, and per-message
costs on the transmit side, assuming unreliable service. The results of these
measurements are presented in this section (Figure 9).

We expected the major costs on the transmit side to be:

1. The cost of a context switch from the user context to the kernel context.

2. The cost of copying data from user-space to kernel space and other oper-
ations in t_send.

3. The cost of processing in the transport layer (in t_schedule_send).

4. The time spent in the device driver, which issues the transmit command
to the card. This time also includes the bus transfer time, and the cost of
housekeeping operations like recovering memory from TPDUs which have
been transmitted by the card.

We find that the context-switching cost is independent of the message size,
and forms a major component of the total cost only for messages smaller than
1K (Figure 9). The cost of t_send and the time spent in the device driver
increase linearly with message size. Thus, for large messages, these per-byte
costs dominate. Surprisingly, the schedulable portion of the transport layer (the
t_schedule_send task), has very little cost, and this cost is nearly independent
of the message size. On reflection, we realized that this task only adds an
appropriate header to each TPDU in message before handing it to the device
driver. Thus, it contributes rather little to the overall CPU cost. However, we
still would like to schedule this task, since it decides the order in which TPDUs
are served by the device driver. We can eliminate the task scheduler on the
transmit side if and only if the host-adaptor supported per-VCI queueing on
the transmit side, and provided per-VCI differential qualities of service.

We conclude that for large messages, the cost of the t_send procedure and
the time spent in the device driver dominate, while for small messages (j 1
Kbyte), other costs, such as context switching time, also become significant.
Because of its high cost, we now focus on the cost of each component of the
transport layer’s t_send function, which are as follows:

1. Time spent in the write system call, and in enqueueing the incoming
message in the PSB, not counting the cost of copying and fragmenting the
message. This 1s a per-message cost.

2. Time spent in fragmenting the message into TPDUs and enqueueing the
TPDUs in the transmission queue. This is a per-TPDU cost.

3. Time spent in copying data from user space to kernel space. This is a
per-byte cost.

23

Per |ayer cost
8000

’rﬂ/gtal Cost —=—
Giving APDU to card —+--
7000 d in. t.send

bxn

Context switch
Coste6f t_schedul e_send -a-

6000

5000

Tine to process (us)

4000 o
,»*’+// @
3000 —
<>/*(/<7.E' =
4
2000 SeeEl
e
o
- ‘E'D
1000 e
T
B
ez
° % B e x i
o 10000 20000 30000 40000 50000 60000 70000 80000
Message size (bytes)

Figure 9: Processing cost for different parts of the stack as a function of message
size. t_send is the interface routine, and t_schedule_send is the task that implements
transport-layer processing. Note that the per-byte costs dominate for large messages.

the loss rate increases. This is because we are not wasting any work in dropping
packets in the ISR. So the host processor, which is the bottleneck, does not
waste CPU cycles in dropping packets and fielding unnecessary interrupts.

In order to gauge the benefit of having a high and low watermark, we mea-
sured the performance of a kernel where we did not have these watermarks.
Without a high watermark, the host eventually runs out of buffers, and stops
supplying buffers to the card. However, in this case, as soon as even a single
buffer becomes free, the driver gives it to the card, and the card uses it up
immediately and gives a frame back to the host, again causing it to run out
of buffers. Since the interrupt and buffer resupply happen for single buffers,
we cannot amortize this overhead. With a high and low watermark, we can
amortize the interrupt overhead over many packets. As a result, the received
throughput i1s around 40Mbps when we do not use high and low watermarks, as
compared to more than 50Mbps when using these watermarks.

Note, however, that our scheme has a fairness problem. The current version
of the software on the FORE card has only one queue of received buffers (instead
of a per-VC queue). So, if the card drops frames, it cannot do that fairly -
it just drops the tail of the queue. Unfortunately, since we cannot control the
microcode on the card, we must compromise on per-VC fairness for performance.
We conclude that we should do per-VC queuing in the host-adaptor if we want
per-VC fairness.

6.3 CPU Cost as a Function of the Message Size

Conventional wisdom decrees that transport protocol implementers should try
to minimize per-byte costs, since these dominate the total CPU cost of an
implementation. Recent work by Kay and Pasquale claims that most application

22

Receive rates for Guaranteed Service (no livelock)
70

20Mbps —o—
30Mbps -
40Mbps -&---
60 50Mbp:
60Mbps -a--
Uncontrolled -x--
o . PSS S
P s e
e g
= x
g w ¥ - B EE =
= N =l
E ’
<= i
S %
g 30 [yt *
£
S
x/’
20
10
o
o 10000 20000 30000 40000 50000 60000 70000 80000

Message size (bytes)

Figure 8: Throughput measured at the receiver for different transmission rates (host-
adaptor drops excess packets). Note that there is no receive livelock, the throughput
does not drop as the sender sends faster.

mance instead of improving it! The reason is that when the transport layer
drops entire messages, it frees many buffers for reassembly at once. This makes
it less likely that future frames will be dropped in the ISR. Thus, even though
we are wasting work in the transport layer, we are avoiding wasted effort in the
ISR. This leads us to the conclusion that the loss of work in the ISR is more
critical than in the transport layer. We will now describe a scheme that ensures
that the ISR does not waste any work on an interrupt - any packet losses are
done by the host-adaptor card before an interrupt.

The easiest way to move packet losses from the ISR to the host-adaptor is
to mask the interrupt from the card during ISR processing, so that the card
does not interrupt the CPU when it is overloaded. Once the host processes the
pending work, it can again enable the interrupts on the card. Specifically, we
can have a high watermark and a low watermark on pending work for disabling
and enabling the interrupts. When the pending work goes beyond the high wa-
termark, we disable the interrupt, and when we have done sufficient processing
so that the backlog goes below the low watermark, we can enable the interrupts
again.

However, the FORE HPA-200 adaptor does not provide the ability to disable
and enable the interrupts while running. The card either always interrupts or
never interrupts, depending upon how it is initialized at boot time. So we
had to solve this problem indirectly. Instead of masking the interrupt, we stop
supplying free buffers to the card on crossing the high watermark. Soon the
card runs out of buffers, and stops interrupting the CPU. Once we go below a
low watermark, we start supplying buffers to the card again. Once we made
these changes, the throughput improved dramatically (Figure 8). Tt is clear that
we do not have the problem of receive livelock any more since an increase in the
transmission rate does not cause a decrease in the reception rate, even though

21

Receive rates for Guaranteed Service (with livelock)

70
20Mbps ——
30Mbps ~+--
40Mbps =+

60 50Mbp:
60Mbps -a-—
Uncontrolled -x -
50 % X > 5 bl
x x _a

7 A - R S

2 40 i e -

= e A PR P R *

& & *

S . / -

3 30 H %

= &<

oS
-
20
10
0
0 10000 20000 30000 40000 50000 60000 70000 80000

Message size (bytes)

Figure 7: Throughput measured at the receiver as a function of message size for
different transmission rates (ISR drops excess packets). Note that due to receive
livelock, the throughput actually decreases if the sender sends faster than the receiver
can process data. We do not show confidence intervals in this figure because it would
make it very hard to read. The confidence intervals here are comparable to those in
Figure 6.

ceiving rate is smaller than the sending rate because of losses in the receiver
(Figure 7) and actually decreases with increase in sending rate above around
50Mbps. The reason for this is interesting. The host adaptor copies incoming
AALSD frames into buffers provided by the device driver, which maintains a pool
of free buffers. On an interrupt, the driver places a newly filled buffer in a
per-VC queue. We set a limit on the number of buffers a connection can have
in its per-VC queue. This threshold, though currently fixed, can be dynami-
cally varied depending on the number of active connections [6]. This provides a
modicum of per-VC fairness, since no single connection can hog all the buffers
in the receiver.

When a packet is received for a connection that has reached its queue limit,
the interrupt service routine drops the packet. Thus the work done in reassem-
bling the packet and fielding the interrupt is wasted. As the sending rate in-
creases beyond the receiver’s capacity, more and more packets are dropped in
the ISR, wasting more and more CPU cycles, which leads to a decrease in re-
ceiving rate even though the sending rate is increased. This process is called
receive livelock [27].

Another cause of receive livelock is that our message semantics demanded
that unreliable connections should not get partial messages. So, on a loss, parts
of a message that have been correctly received have to be discarded, which
wastes work. We thought we could eliminate some of the wasted effort by
changing the message semantics for unreliable connections, and delivering mes-
sages even if they have one or more TPDUs missing, letting the application
decide what to do with them. Surprisingly enough, this degraded the perfor-

20

For reliable applications, the rate is controlled by using closed loop window
flow control (Section-5.3.3). Since the receiver is slower than the sender, the
receive rate determines the transmission rate. Figure 6 shows the rate at which
an application is allowed to send data on a reliable connection for different
message sizes. Error bars indicate the standard deviation over 50 repetitions.
Note that the throughput increases with message size, reaching its maximum of
around 47Mbps, and then falls with further increase in message size. We found
that this is the result of two opposing forces that come into play with increasing
message sizes. Per-message overheads (read and write system calls and at the
transport layer) get amortized with increasing message size. However larger
messages block more buffers in the receiver for reassembly (since an application
is handed complete messages), increasing the probability of loss due to lack of
buffers in the receiver. Moreover, for longer messages, it takes longer to locate
the correct position for an incoming TPDU. These opposing forces cause the
throughput to first increase, then decrease, as a function of the message size.

Figure 6 shows a somewhat non-intuitive decrease in the standard deviation
of the transfer rate with an increase in the message size. For small (4-20 Kbyte)
messages, the time to transfer a message is dominated by the scheduling and
system call overhead, and for large message sizes (30-64 Kbyte), by the data
copy time. Since the data copy time is relatively constant for a given message
size, as the message size increases, the standard deviation in the transfer rate
decreases.

We found it very important to reduce the delay-bandwidth product when
using window flow control. With TCP-style flow control, if this product is large,
each loss causes a window shutdown, and recovering from the loss takes multiple
round-trips. Moreover, on a loss, the receiver must wait at least one round-trip-
time for receiving the lost packet, and must block buffers for reassembly while
awailting this retransmission. So an increase in the latency for reliable transfer
can be expensive, especially at high bandwidths. We discovered that if we woke
up the scheduler once every 50ms, instead of on every interrupt (in order to
amortize the cost of waking up the kernel process) the throughput for reliable
connections reduces to as low as 15Mbps. By waking up the scheduler on every
interrupt, the throughput increases to 47Mbps.

Note that the peak achievable throughput with reliable service i1s quite im-
pressive for a PC that would, in 1996, barely qualify as bottom-of-the-line.
Keeton et al have measured the performance of a SparcStation 20 running So-
laris with TCP/IP over ATM, and report a peak achievable throughput of 82
Mbps [17]. We are able to achieve nearly 60% of their performance at roughly
15% of their cost!

6.2.2 Throughput for Guaranteed and Unreliable Service

For a reliable connection, the receiver receives data at exactly the rate at which
it is sent. For unreliable and guaranteed-service connections, however, the re-

19

Transmit throughput of reliable service
70

Throughput ——
Standard deviation ——

60

50

40 -1

30

Throughput (Mbps)

20

10

o 10000 20000 30000 40000 50000 60000 70000 80000
Message size (bytes)

Figure 6: Transmission rate measured at the sender for a reliable connection. Note
that the transmission rate increases, then decreases with increase in message size.

tion QoS. Nevertheless, the user-to-user latency of about 720 us is quite small
and limited only by the speed of the receiver’s CPU. Recently, Keeton et al
have measured a user-to-user latency of 700 ps between two SparcStation 20’s
with identical host adaptors and switches [17]. We are able to obtain identical
latency with an endpoint that costs a fifth as much. Indeed, we hope to achieve
correspondingly better performance with Pentium 133MHz processors and the
faster PCI bus.

Note that some components of the end-to-end latency are missing because
we do not have access to the source code of the microcode running on the
card. For example, we cannot measure how long it takes for the host adaptor
to process a 64 byte packet. We also could not adequately measure the receive
side performance because we could not source packets from the device driver to
create a bottleneck at different layers of the receiving stack. However, we expect
the latency on the receiving host to be more than that on the sending host
because we have two context switches on the receive side (from interrupt-mode
to kernel-mode, and from kernel-mode to user-mode) before the user application
gets its message.

6.2 Throughput
6.2.1 Throughput for Reliable service

We measured the throughput of our system by sending 10,000 messages as fast
as possible from one PC to another via the switch, and measuring either the
transmission rate in user space (for reliable service), or reception rate in user
space (for guaranteed and best-effort service). We repeated the measurement
50 times to obtain confidence bounds. We did not ‘warm up’ the system before
collecting measurements.

18

Individual and Sing Time (in s Activity

Witesystem cal, usr tokenel contet svith, acnuie Readers Wt ock
onthePs

TPOUs,

El
o | 287 Waiting for scheduler thread to be woken up and time spentin other tasks by O3
s | 3 (forunlitle tekelonger)
315 Enqueingthe TPDU incard stransit quese
? Latercyincard thecard
12 |21 o

? Delay inthe sitch quees
Dday

10 | 3

2) 397 Waiting for schedule tesk towakep
23 E) [436 Trengportlayer TPOU
2 | 45
5 108] exe
El 4] 605
115 sender, snich qeses, receiver)
1 720 Totd

Figure 5: Individual (shaded) and cumulative delay and standard deviation at various
points of the protocol stack when sending 64 byte packets between two otherwise
unloaded machines. We have estimated times that we could not measure because we
did not have access to the host adaptor microcode

Note that in most cases, since standard deviations add when subtracting
quantities, the deeper we are in the protocol stack, the more the standard devi-
ation in the cumulative measured delay. However, dependencies between events
can lead to a decrease in standard deviation of the cumulative delay, since de-
lay variations in an event can be partially offset by an opposing variation in a
subsequent correlated event.

The user-to-user round trip time for 64 byte packets (32 bytes of user data
and a 32 byte transport header) was &z120ms if we did not explicitly wake up the
task scheduler after scheduling a task on asynchronous send and receive events.
This latency was mainly due to the delay in scheduling, and is unacceptably
high. On an average, the processing of a packet was delayed by 25ms at each end,
while waiting for the scheduler to wakeup after its normal 50ms sleep period.
To reduce end to end latency, we modified the Interrupt Service Routine (ISR)
and the t_send routine to wake up the scheduler on receiving a packet from the
device, and on receiving a packet from the user application, respectively. These
changes reduced the round trip time to a mean of 1.44ms with a standard
deviation of 0.01ms as shown in Figure 5.

The total time taken by the transmitter before the data is given to the card
for transmission is roughly 315 ps. Even after explicitly waking up the task
scheduler on an asynchronous event, the bulk of this time 1s still in waiting for
the task scheduler to become active (the waiting time decreases from 25 ms to
around 140 ps). While we could have further cut down this latency by eliminat-
ing the task scheduler and making a direct call into the t_schedule_send task
from the t_send routine, this would have prevented us from prioritizing among
transport connections, which is necessary for providing per-transport connec-

17

resource-release function, which is called only on connection termination, does a
busy wait on this flag. Since this function is called only at the time of connection
teardown, the inefficiency associated with a busy-wait 1s still acceptable. As
before, the PSB flag is released when an application is put to sleep during the
read or write system call and is reacquired at the time of wakeup.

6 Performance Measurements and Tuning

The true test of our design is in the performance it delivers. In this section,
we present the results of a detailed performance analysis. Our results are in
three main parts - latency in the protocol processing, throughput achievable
with various services, and the costs of each component of the transport layer as
a function of message size.

We took measurements on a testbed consisting of two IBM PC-clones with
Intel 80486 processors running at 66 MHz. (As of early 1996, this would be
considered bottom-of-the-line PC hardware, but they were nearly top-of-the-line
when we started our work in mid-1994!) Each endpoint has a FORE Systems
HPA-200 ATM adaptor card on an EISA bus. The systems were connected via
a FORE Systems ASX 100 switch with TAXI 100 links running at 100 Mbps
nominal bandwidth. The systems were otherwise unloaded, except for the fact
that they were also connected to Ethernet, and were running a standard IP
stack in user space.

6.1 Latency

Since the resolution of the Brazil CPU clock (in milliseconds) is not sufficient
to measure processing delays, which are in microseconds, we had to measure
these quantities indirectly. The general methodology was to create a bottleneck
in the portion of the stack to be measured, then invert its throughput to de-
termine its processing delay. We measured the throughput by sending 10,000
64-byte messages ®. For example, to measure the cost of the write system call,
we generate messages as fast as possible from a user process, and drop the mes-
sage just before it would be handed to the transport layer. By measuring the
transmission rate available to the user application, we can determine the time
spent on processing each message. Similarly, to find out the cost of transport
layer processing, we drop the message after transport layer has done its process-
ing, and just before it hands the message to the device driver. This gives the
total cost up to and including the transport layer processing. Subtracting the
cost of making a write system call from this, we get the cost of transport layer
processing.

#Even though an application sends the same message (that resides in the same memory
area) every time, it is copied into a new TPDU inside the kernel on each write system call.
So our measurements are not affected by the fact that data is always in the processor’s cache.

16

makes locking easier to implement, but has a performance overhead, because
it forces tasks that are locked out to either sleep or busy-wait, both of which
are expensive operations. Locking too small a region also has a performance
overhead, because we need to frequently acquire and release locks. Thus, we had
to balance these two objective, using good taste and common sense to decide
where to place locks. We describe our choices in this and the next few sections.

The user application can do a read or write at any time. A write results in
enqueueing a message in the transport layer’s send queue, and a read leads to
dequeuing of a message from the transport layer’s receive queue. Since these
reads and writes are asynchronous with respect to the operation of transport
layer tasks, we need to lock these queues with a per-VC Send lock and Receive

lock.

5.5.3 Readers-Writers lock

In addition to the Send and Receive locks, there is another conflict that we
needed to resolve. Though we allow only one application to be associated with
a connection, which ensures that two applications cannot simultaneously do
a read or write on the same connection, the signaling entity can modify the
connection state while a read or write is in progress. Thus we have to avoid any
reads or writes on data connections when the signaling entity is changing the
connection status. This problem is simply a readers-writers problem with a write
by the signaling entity corresponding to a writer, and all other accesses being
operations by readers. An application is put to sleep if it tries to do a read when
the next message for the application is not yet completely received. Similarly,
an application is put to sleep if it tries to do a write when the transmission
queue of the application is full. However we cannot put the application to
sleep while it holds the readers-writers lock (RWlock), since this will prevent
the signaling entity from doing any communication with the kernel. Hence, the
readers-writers lock has to be released when the application is put to sleep, and
reacquired on wakeup.

5.5.4 Resource Release on Connection Teardown

The transport layer creates a Protocol Status Block (PSB) for each connection
at the time of connection setup. This PSB has to be freed when a connection
is torn down. However, connection teardown is an asynchronous event with
respect to other operations of the transport layer. This problem is similar to
a readers-writers problem, with the resource release function acting as a writer
and all other parts of the transport layer acting as readers. We could solve this
problem with a readers-writers lock as before. However acquiring locks before
every access to a PSB can be expensive. Hence we use a more efficient, albeit
less elegant, solution.

In our solution, when a PSB is in use, a flag is set in a per-PSB table. The

15

also sends an acknowledgment if the TPDU is for a reliable connection.
If the VC supports message semantics and the TPDU received is the last
TPDU of a message, the transport layer marks the message as complete
so that it can be picked up by the application as a complete message.

7. The application reads a message by calling ulib’s atm_read which selects
an appropriate kernel data-descriptor and makes a read system call. This
routine copies the data from the enqueued TPDUs of the next complete
message into the user space (thus doing reassembly). If the next message
is not yet complete or if there is nothing to receive, the read call blocks,
and the application is put to sleep. The application 1s awakened by the
t_schedule recv function when the next message is complete. Note that
there are two data copies on the receive side: the DMA from the card to
kernel space, and a copy from kernel space to user space during the read
system call.

5.5 Implementation Experience

In this section, we will discuss some problems we ran into during the Brazil
implementation.

5.5.1 Data copy in interface procedure

As described in Section 5.1, we wanted our interface procedures to quickly return
after handling an asynchronous event, such as a read or a write from a user
process, to minimize the response time. The task scheduler can then prioritize
access to the CPU among more CPU-intensive tasks, allowing us to provide VCs
with differential qualities of service. Unfortunately, we were unable to place the
time-consuming data-copy operation in a task, because a user process can delete
a buffer after writing it to the transport layer. Therefore, unless the interface
procedure immediately copies the data into kernel space, it 1s possible that by
the time a task is scheduled, the data has already been overwritten. While we
could have blocked the user process in the write system call, awaiting the task
scheduler to schedule a data copy task, in the interests of minimizing a user’s
response time, we decided to copy data into the kernel during the write interface
procedure. This makes it a heavier weight operation that we would like. As we
gain experience with the protocol stack, we may reconsider our decision. Our
implementation structure 1s flexible enough to allow us to easily switch between
the two alternatives.

5.5.2 Send and Recelve Locks

Locking proved to be a major problem in doing an in-kernel implementation of
our design. If locks are not carefully set and removed, the kernel can deadlock,
a situation that is very hard to replicate and debug. Locking too large a region

14

User level

SOURCE

DESTINATION

‘ Application

‘ Applic ation

)

Session
(ulib)

y

Y|

‘ atm_write ‘

‘ atm_read ‘

User

Transport

scheduler

I)
) |
t_send
(fragment)

LA
t_recv
(re-assemble)

|
,,,,,,,,,,]

7777;t t_schedule_send ‘

)

Kernel

- scheduler

ATM
Adaptation
Layer

‘ a_send

T

| —
=

T

1

ATM
Driver

enqueue_tx

— interrupt
=

card cpu

scheduler ifiiiiij schedule_send ‘

Figure 4: Data flow from source to destination. Asynchronous events are handled
by interface procedures that spawn tasks which are handled by a task scheduler. A

detailed explanation is in Section 5.4

,,,,, card cpu
77777 = scheduler

ATM device driver’s enqueue_tx routine that enqueues the packet in the
device transmission queue along with the DMA address of the TPDU to
be sent.

. The card picks up the TPDU from the transmission queue and transmits
it on the line after adding an AALD trailer and segmenting the AALD
frame into ATM cells. When transmission completes, the card marks the
TPDU as sent so that the host can free the memory area being blocked
by this TPDU if it doesn’t need to be retransmitted. Note that there
are two copies on the send side: from user to kernel space, during the
write system call, and from the kernel to the physical medium by the
host-adaptor card.

. On receiving a packet on the receive side, the card DMA’s it into a queue
in host memory and interrupts the host CPU. The card checks the AALD
trailer and drops incomplete or incorrect frames.

. On receiving an interrupt, the interrupt service routine (ISR) picks up the
packet from the card receive queue and puts it into a per VCI queue for
the AAL layer. The ISR schedules the transport layer’s t _schedule recv
routine and returns.

. The t_schedule _recv task calls a_recv which retrieves the packet from
the per-VCI AAL queue. The task checks the packet for validity and
enqueues the packet at the right place in the received message queue. It

13

should be located close to the application, so that it can quickly provide feed-
back to the application about its allowed flow rate. Specifically, an application
sending data faster than its leaky bucket rate fills its input buffer and is put to
sleep by the shaper. This control is much easier to implement at the transport
layer than at the host adaptor or a remote Network Interface Unit (NIU), as is
usually the case, because the host-adaptor or NIU cannot turn off user processes
as easily as the transport layer.

Implementing leaky bucket shaping is simple - for each virtual circuit, the
transport layer keeps track of the time that the last TPDU was sent. On arrival
of a message from an application, the transport layer compares the current time
with that time to determine how many tokens must have arrived in the interim.
This determines how many TPDUs can be sent immediately and the earliest
time that the next TPDU can be sent. The shaper sends as many TPDUs as it
can and also sets a timer for the earliest time the next TPDU can be sent.

5.4 Data Flow

The transport layer provides four interface procedures visible to the outside
world (see Figure 4). These functions provide an asynchronous interface to the
outside world, and hence are designed to have minimal functionality, returning
as soon as possible. All other transport layer processing is done by task which
are executed synchronously under the control of the task scheduler, to take
care of the heavy-weight protocol processing. Since tasks can be scheduled from
asynchronous events, we need to lock queueing and dequeuing of tasks in the
task queue with a global task lock. We refer the reader to Section 5.5 for a more
detailed description of the locks in our implementation. Here, we will note only
that all tasks are procedure calls from the task scheduler. Therefore, we do not
need to lock data structure shared among tasks. We only need to lock access
the task scheduler itself, and data structure shared between tasks and interface
procedures (such as send and receive buffers).

The overall data flow from the source to the destination (Figure 4), involves
the following steps.

1. The user application calls the ulib function atm_write, which acts as the
session layer, selecting the appropriate data-descriptor in case of a duplex
connection, and making a write system call on it. This, in turn, calls
the t_send interface procedure in the kernel, which fragments the user
message into TPDUs while simultaneously copying the data from user
space to kernel space. The procedure schedules the t_schedule_send task
and returns.

2. The task scheduler calls t_schedule send which attaches a transport
header to TPDUs marked as eligible by the flow control protocol, and
calls the AAL layer’s a_send routine. a_send hands the packet to the

12

plexity of a selective acknowledgment scheme. A detailed performance analysis
of SMART can be found in Reference [20].

To reorder out-of-order TPDUs, the receiver must have a buffer at least as
large as the error-control window. The error-control window size is negotiated
by the peer transport layers during the three way handshake.

5.3.3 Feedback Flow Control

Flow control allows an endpoint to regulate the data transmission rate to match
the maximum sustainable flow, by that VC, in the network. The transport layer
provides feedback flow control and open-loop flow control (see Section 5.3.4).

If the scheduling discipline at all the switches along the path is round-
robin like, feedback flow control is based on Packet-pair flow control [19]. In
this scheme, all TPDUs are sent out in back to back pairs, and the inter-
acknowledgment spacing is measured to estimate the current bottleneck capac-
ity, that is, the capacity of the slowest server on the path from the source to the
destination (the bottleneck may be in the network or the receiving end-system).
This time series of estimates is used to make a prediction of future capacity, and
a simple predictive control scheme is used to determine the source sending rate.
It has been shown that for a wide variety of scenarios, Packet-pair flow control
performs nearly as well as the optimal flow control scheme, that is, a scheme
that operates with infinite buffers at all bottlenecks [19]

Our transport layer tries to cleanly separate flow control and error control.
Windows are used for error control and to size buffers at the transmitter and
receiver. Rate-based flow control is used to match the source transmission rate
with the current bottleneck capacity. When windows are used both for flow
control and error control, as in TCP, packet losses trigger a slowdown in the
sending rate [26, 13], which may not be warranted by the current congestion
level. Thus, for example, on a lossy wireless link, a TCP transmitter is unable
to use the link capacity, since TCP assumes every loss is dues to congestion,
and shuts down the flow control window [7].

If the network does not support round-robin scheduling, the transport layer
is forced to use a dynamic-window flow control scheme similar to TCP flow
control [13]. This has the same problem as TCP, that is, error control and flow
control are linked. However, unlike TCP, we use the SMART retransmission
strategy, instead of Go-back-N. This allows us to recover much faster from packet
loss, improving flow control behavior as a side effect.

5.3.4 Open-loop Flow Control

The transport layer shapes guaranteed-performance traffic with a leaky bucket
to provide open-loop flow control. We believe that the traffic shaping function

occurs.

11

Protocol
Transport layer
m jes

(send or receive)

(PSB table)

VCI
Table
data data Per VC queues with Device Driver

freelist

buffer }—’\ buffer }—-\ buffer }—-\ buffer h

Figure 3: Data structures used for storing messages. FEach protocol status block
(PSB) has pointers to send and receive message lists. A message consists of a number
of transport protocol data units (TPDUs), and each TPDU corresponds to a single
AAL 5 frame.

described in more detail in Reference [20]. (Note that the transport layer does
not do checksumming, since this i1s already taken care of by the AAL layer.
Since checksumming requires the transport layer to touch every data byte, by
avoiding it, we gain a substantial improvement in performance.)

The transport layer uses per-TPDU cumulative acknowledgments. and the
acknowledgment also carries the sequence number of the TPDU that generated
the acknowledgment. This allows sources to determine which sequence numbers
have been correctly received. For example, if the receiver receives packets 1,2,
and 4, it sends acks (1,1), (2, 2), and (2,4), where the first element of the tuple
is the cumulative acknowledgment, and the second is the packet causing the
acknowledgment to be sent. A source receiving these tuples can decide that
packets 1, 2, and 4 have been correctly received, and that 3 has been lost (since
ATM networks do not reorder packets). In SMART, a retransmission is trig-
gered either by a repeated cumulative acknowledgment (fast retransmission) or
by a retransmission timeout. During a fast retransmission, the sender scans
the sequence numbers in the range from the cumulative acknowledgment to the
packet being acknowledged, and retransmits packets not correctly received and
not already retransmitted. During a timeout, only packets not correctly re-
ceived are retransmitted - thus packets retransmitted by a fast retransmit but
subsequently lost are retransmitted a second time by the timeout. To make the
retransmission even more independent of timeouts, we check every two round
trip times if the cumulative ack has increased. If not, the transport layer retrans-
mits the packet at the head of the error-control window. This scheme combines
the efficiency of selective retransmission with the robustness of Go-back-N re-
transmission. It allows a sender to quickly fill a gap in the error-control window
without stalling while waiting for a timeout,” or paying the overhead and com-

"The scheme is so robust that a timeout is a rare event. In fact, a bug in the code that
handles timeouts in the protocol went undetected for several months because timeout seldom

10

mally terminated application. Specifically, if an application dies, the resource
manager requests the signaling entity to tear down any associated connections.
Symmetrically, if the signaling entity receives a teardown message, it requests
the resource manager to mark the connection as unavailable. The details of this
interaction are described in Reference [29].

5.3 Transport Layer

Having looked at the environment in which the transport layer is placed, we now
turn our attention to the transport layer itself. The transport layer provides
simplex virtual circuits, error control, and flow control (duplex service is pro-
vided by ulib, which opens and manages two simplex transport connections).
In addition, it segments application layer buffers into TPDUs and reassembles
them on the receive side. Here, we outline the mechanisms required to provide
these semantics.

5.3.1 Segmentation and Reassembly

There are two reasons why the transport layer may want to fragment an ap-
plication message into TPDUs. First, in our implementation, each TPDU cor-
responds to a single AALD frame, which is at most 64 Kbytes long. A user
message that is larger than this size must, therefore, be fragmented. A more
compelling reason has to do with error control. The unit of error detection
and retransmission is a TPDU. If this is large, then each loss causes a large re-
transmission overhead. By keeping TPDUs small, the retransmission efficiency
i1s maximized. Thus, the TPDU size should be chosen for each environment to
trade off per-fragment overhead, the connection’s error characteristics and the
available timer resolution. Indeed, this is the choice of ‘Multiplexing Block’ in
Reference [9].

In our implementation, we experimented with TPDU sizes of 4 Kbytes and 8
Kbytes, which matched the virtual memory page size of 4 Kbytes. Performance
measurements, not presented here, showed that for reliable service (where we
perform timeouts and retransmissions), we could achieve higher throughput
with 4 Kbyte TPDUs than with 8 Kbyte TPDUs, because the retransmission
overhead 1s larger for 8 Kbyte TPDUs. For convenience, we use 4 Kbyte TPDUs
for all service classes. Adaptively matching the TPDU size to the operating
environment is clearly an area for future work.

5.3.2 Error Control

While the AAL 5 checksum detects corruption and loss within an AAL frame,
this, by itself, is not sufficient for error control. For a reliable connection, lost
or corrupted data must be retransmitted. This 1s done at the transport layer
using a novel retransmission scheme called SMART that is outlined below and

tasks with two arguments: the VCI to act on and the maximum amount of work,
in number of units, it can do in the call. The function does its processing and
returns the amount of work it actually did in that call. In our implementation,
processing one transport protocol data unit (AAL 5 frame) is defined as one
unit of work.

The scheduler can implement any scheduling discipline in order to allo-
cate the processing resources to different tasks. Currently we have a multi-
level weighted-round-robin scheduler, that assigns different priorities to different
VCIs, and schedules tasks round-robin within the same priority. Hence we can
allocate different QoS to different connections. Specifically, we give the highest
priority to guaranteed-performance connections, with a weight corresponding
to their bandwidth allocation, so that they are able to meet their delay and
bandwidth bounds. Reliable connections get an intermediate priority and a
unit weight. Finally, best-effort connections get the lowest priority. Best-effort
tasks are handled only when no higher-priority tasks await service. Within each
service class, tasks are serviced in round-robin order.

Our design has several advantages. First, interface procedures provide quick
response to asynchronous events while CPU-intensive work is prioritized by the
task scheduler. This allows high priority packets make their way through the
transport layer faster than low priority packets. Second, since the task scheduler
and all the tasks run in the same address space, and each task is just a procedure
call, calling a task is very cheap. This allows us to easily exploit fine-grained
multitasking. Of course, no task may block. A task that might block reschedules
itself at a future time when it can check on the status of a blocking event. The
scheduler provides a set of efficient timer routines for this purpose.

5.2 OS Support: Resource Manager

The resource manager is responsible mainly for admission control at the time of
call setup. The admission test requires the manager to know the amount of CPU
and network resources available to the transport layer, and the fraction of these
resources that are already consumed. While performance measurements allow
us to determine exactly how much CPU processing time each Transport Protocol
Data Unit (TPDU) needs, since our kernel is not real-time, we do not as yet have
a way to reserve CPU time for the transport layer from the kernel. Thus, the
current implementation of the resource manager does not do admission control.
Further work needs to be done to implement admission control, in conjunction
with improvements in the task scheduler and the CPU scheduler, so that the
task scheduler can schedule tasks on the basis of the resources allocated to a VC,
and, in turn, can reserve time from the CPU scheduler. We intend to explore
the use of resource reserves [22] for this purpose.

The resource manager is also responsible for cleaning up after an abnor-

and having poor granularity in setting timers.

End System

Application entity -~ Transport entity Signaling entity
User User library S /\ :
AN [gnaling Signaling
application (ulib) Support Protocol

Device Transport
Driver OS Support Layer

Task scheduler Resource Manager

Figure 2: Components of the ATM stack. This paper deals mostly with the transport
entity.

us that a user-space implementation of the transport layer would have poor
performance because of the extra data copies and context switches for every
message read and write. Recent work by Thekkath et al [32] and Edwards and
Muir [8] suggest that with careful design, it might be possible to implement the
transport layer in user space and still achieve good performance. We intend to
explore this in future work.

We now focus our attention on the transport entity.

5 The Transport Entity

The three components of the transport entity are the transport layer, the device
driver, and an OS support module (Figure 2). The OS support module in turn
consists of a task scheduler and a resource manager for managing local resources.
We now describe the functionality of the transport entity in detail, starting with
the OS support module.

5.1 OS Support: The Task Scheduler

The transport layer is implemented as a set of interface procedures and tasks.
An interface procedure handles asynchronous events such as packet arrival, user
read or write request, or completion of packet transmission. An interface proce-
dure is supposed to complete quickly, scheduling a task for handling any CPU-
intensive work. A task is a C-language function that is non-preemptively exe-
cuted by a procedure call from the task scheduler. Each task finishes in a known
time and can schedule other tasks to complete its work.

In the Brazil kernel, the task scheduler is a kernel thread that periodically (in
our case, every 50 ms®) handles any expired timers, and then calls any scheduled

6In Brazil, the smallest possible scheduling period is 10ms. The smaller the polling period,
the better the granularity of handling timers, but the greater the CPU scheduler overhead. A
scheduling period of 50 ms represents a compromise between overloading the CPU scheduler

consists of three main entities: the application entity and the signaling entity
in user space, and the transport entity inside the kernel. Note that to make
the stack easily portable, each of these entities is divided into system-dependent
and system-independent parts. We now sketch the functions provided by each
entity.

The application (user program) is linked to an OS-specific user library (ulib)
that provides network access, session layer services (such as duplex channels)
and isolates the application from the underlying OS and hardware platform.
The services provided by ulib are similar to the Berkeley socket interface [21],
except that applications can specify QoS parameters during connection set-up.
The question of what QoS parameters an application should specify is a matter
of much debate. For the moment, an application may only ask for a bandwidth,
which is assumed to be its peak rate requirement, and reserved as such. We will
make this specification richer as we gain more experience with QoS-sensitive
applications.

The similarity of the user library interface to the socket interface allows
us to easily port applications written for Berkeley sockets. For example, we
successfully ported a video-on-demand client and server written using TCP /TP
and Berkeley sockets to our stack in about an hour: only the socket-related
system calls had to be replaced with equivalent calls to user library. More
details on the ulib interface can be found in Reference [29].

The signaling entity establishes connections on behalf of user applications
and tears down connections either when requested by an application or in the
event the application crashes [29]. Since the signaling entity must survive ap-
plication crashes, it cannot be part of the user library. All applications on
an end-system share a single signaling entity. The signaling entity is parti-
tioned into the signaling support and signaling protocol components to allow
us to change the signaling protocol without affecting the rest of the code. For
example, the FORE Systems’ SPANS protocol that we implement now could
be replaced with Q.2931 without affecting the part of the signaling entity that
cleans up after an application crash. The signaling entity is in user space so that
it 1s easy to modify and to port to other platforms. On a production platform,
for efficiency and security, this should probably reside in the kernel.

The transport entity has components both in the data plane and the control
plane. In the data plane, it moves data between the application and the host
adaptor. (We assume that the host-adaptor provides AAL5 frame transport, as
is the case with all modern host-adaptors.) In the control plane, it is responsible
for call admission and allocating resources to VClIs for guaranteeing bandwidth.

The transport entity consists of the transport layer, the device driver, and the
OS support module (Figure 2), which all reside in the kernel. The main reason
for placing the transport entity in the kernel is to achieve high performance.
Second, we felt that a user-space implementation would have a harder time
accessing OS resources such as clocks, timers, and interrupt handlers. Our
experience with Brazil’s IP implementation, which is in user space, convinced

Application entity Signaling entity (sig)

<-n- = : :
Application _Pc ,,LP,(_;,,,J_ | Signaling
Signaling | protocol
User Library (ulib) Support '
i l
)]
—— | User
ATM Data Port Ui e Sg kel ‘ ATM Sig Port ‘ Kernel
~ ~
i !
e . <---= Control
Transport os
Layer <=—= Data
d Support
y
ATM Adaptation L ayer ATM
Datalink Layer Device
Simulator Driver

Transport entity

IPC: Inter Process Communication

Figure 1: Top level view of the ATM stack. The stack consists of three entities: the
application entity, the signaling entity, and the transport entity.

signaling. For example, connection management, traditionally a transport layer
function, is relegated to signaling. Similarly, data checksumming is done only
by the ATM adaptation layer.

Finally, we want our implementation to be highly portable. Our transport
layer is implemented in three different testbeds, each with 1ts own hardware,
operating system (OS), and signaling protocol. To minimize work in porting
our implementation, we have isolated all OS and hardware dependant code
with general, clean and well-defined interfaces (Figure 1. We also wrote our
own memory management, task scheduling, timers, locking, and signaling code.
The only support the protocol stack needs from the OS is a way to handle
packet-arrival interrupts, a way to read time, a memory allocation utility, and
a way to occasionally call the task scheduler. These functions are available in
all modern operating systems.

We believe we have achieved our goal of portability since the stack (including
the transport layer) was first implemented and tested on the REAL packet-level
simulator [18], and then ported to the DOS, IRIX, Solaris, FreeBSD, and Brazil®
operating systems on PC, SPARC, and Silicon Graphics hardware. For clarity,
this paper discusses only the Brazil implementation on PCs. The FreeBSD
implementation is described in Reference [14].

4 Implementation Overview

This section gives a brief overview of the protocol stack. The rest of the paper
will discuss only the transport layer of the stack.
An end-system implementing our stack is shown in Figure 1. The ATM stack

5Brazil is a research version of the Plan 9 operating system from Bell Labs [25]

ment) is made available to the network and every layer of the protocol stack,
so that adequate resources may be reserved. Reliable service provides error-
detection, timeouts and retransmissions (for error control) and feedback flow
control. With best-effort service, there is no flow control, error control (other
than that provided by AAL5), or provision of QoS guarantees. No resources are
reserved for reliable and best-effort service. 2 Our transport layer, as currently
implemented, can support multicast for unreliable and guaranteed-performance
services if multicast-VCs are available at the ATM level. It does not provide
reliable multicast service. We will develop other services derived from the basic
services above, as the need arises.

3 Design Principles

We use five basic principles in designing our stack. First, we want to eliminate
multiplexing of virtual circuits [9, 31] other than at the physical layer. Some
network layers multiplex multiple transport connections onto a single network
layer connection (or, in the case of IP, a single network layer address). This
simplifies routing, since there is only one network layer address per machine.
However, during multiplexing, application QoS parameters are lost. Since ATM
networks provide many virtual circuits per-endpoint, we need not multiplex
transport connections, allowing us to provide per-VC QoS all the way from
the ATM layer to the application. * Of course, this does not preclude an
application from multiplexing multiple media streams on to a single transport
connection. Qur aim 1s to give applications the option of opening a separate
transport connection per media stream.

Second, we want a clean separation of transport layer services, so that they
could be mixed and matched. Thus, an application can choose between different
error control and flow control options as it desires. In contrast, with TCP, both
error and flow control are implemented using windowing, so that losses in the
network automatically affect the flow rate. This severely degrades performance
in high-loss environments, such as wireless links.

Third, we want to provide minimal functionality in the critical path, with
optimization for the common case. As Clark et al have shown [3], this has the
potential to considerably enhance protocol performance. Indeed, our perfor-
mance results validate their insightful conclusions.

Fourth, we do not want to replicate functionality provided by AAL5 or ATM

3Unfortunately, in the implementation described in this paper, we did not have access to the
host-adaptor card’s microcode. So, we were neither able to reserve resources for guaranteed-
service connections on the card, nor give certain connections priority over others.

4Unfortunately, the host-adaptor used in our implementation, a FORE Systems HPA-200
card, uses a single receive queue for queueing packets from all receivers. Since we do not have
access to the microcode on the card, we cannot avoid this level of multiplexing. However, on
a card interrupt, we immediately move packets to per-VC buffers, so that the effect of sharing
the queue is minimized.

achieve high performance, we had to tune every aspect of the protocol stack.
Even small changes in the implementation can dramatically affect performance.
Other workers in this field have also come to the same disheartening conclusion
[3, 16]. Fourth, it is hard to implement locking in the kernel. Choosing how
large a section to lock and when to release a lock are often matters of good
taste rather than hard science. Unfortunately, poor choices can lead to degraded
performance, or worse, deadlock. Finally, we found that Personal Computers
are not as low-end a platform as one might imagine. With careful design and
implementation, it is possible to extract workstation-quality performance from
a platform that is cheap, easily available, and costs a fifth as much!

2 Service Description

We believe that the set of services provided by the transport layer should match
the anticipated application workload. Specifically, we anticipate a demand for
two types of service qualities from future applications [11]. Continuous me-
dia applications need QoS guarantees from the network (expressed in terms of
guarantees of minimum bandwidth, priority, maximum end-to-end delay and
loss rate), while conforming to some traffic contract. For these applications, the
transport layer should reserve resources in the kernel and host-adaptor card,
and should ensure that the application stays within its specified traffic enve-
lope. We would also like to support data applications, which demand reliability
(that is, the abstraction of error-free, in-sequence packet delivery), and as high
a throughput as possible. To provide these applications with their desired QoS,
the transport layer must provide error-control, flow-control, and high perfor-
mance. Finally, some applications may require a raw bit-stream abstraction
upon which they can build custom flow and error control mechanisms. For
these applications, the transport layer should allow raw access to the AALD
virtual circuit, simultaneously ensuring that data transfer from this class of
connections does not adversely affect the performance guarantees of the other
two classes. Note that the second and third service classes correspond roughly
to the Internet’s TCP and UDP protocols.

Instead of providing a service corresponding to each anticipated application
workload, we provide a set of orthogonal services which can be combined in
order to match application requirements. These are: 1) simplex data transfer,
2) error control, 3) open-loop and feedback flow control, 4) unlimited application
message size, 5) a choice of blocking and non-blocking application interface, and
6) a choice of byte stream and message transfer semantics.

Currently, we support three combinations of the above services. These are
guaranteed-performance service, reliable service and best-effort service. All three
services support options 4, 5, and 6. Guaranteed-performance service ensures
that an application conforms to pre-specified leaky-bucket parameters. More-
over, an application’s QoS specification (currently, only the bandwidth require-

term, is likely to soon prove inadequate for three reasons. First, ATM networks
will provide end-to-end Quality of Service (QoS) guarantees to individual vir-
tual circuits [12]. These guarantees are lost by IP, since it multiplexes multiple
transport connections with disparate QoS requirements onto a single VC [9, 31].
Moreover, TCP cannot directly use the QoS guarantees provided by an ATM
network because it neither obeys a leaky-bucket behavior envelope, nor responds
to ABR resource management cells. Second, TCP checksums a packet to detect
corruption. Since checksumming requires every byte of a packet to be touched,
it is a significant overhead [3, 16]. However, ATM Adaptation Layer 5 (AAL5)
already does data checksumming. Thus, this TCP functionality is redundant
and costly. A transport layer that turns off data checksumming will deliver
higher throughput than TCP/IP-over-ATM, since can eliminate this overhead.
Third, TCP has inherited the patches and fixes of two decades of protocol tun-
ing [30]. Despite this, or, perhaps, due to it, TCP performance is unpredictable
and heavily dependant on particulars of the operating environment [33]. Even
small changes, such as the in the loss rate or the buffer size in intermediate
routers, can dramatically affect performance [7].

We believe there is a need for a transport layer that (a) can provide guar-
anteed service quality relatively independent of the operating environment, (b)
exploits the services of an underlying AAL5 layer, and (c¢) that has been de-
signed afresh to provide clean semantics. We describe the design, implementa-
tion, and performance measurement of such a transport layer, that is targeted
specifically for Asynchronous Transfer Mode (ATM) networks i.e. a native-mode
ATM transport layer. The layer embodies much of our past work in flow and
congestion control [19].

In this paper, we not only sketch out the design of our transport layer, but
also give insights into its implementation. 2 We had to redesign many aspects
of our implementation to achieve our dual goals of high performance and per-
connection service quality. We describe how we measured and tuned our system
step-by-step to achieve workstation-quality performance on low-end Personal
Computers.

Perhaps the main insight from our work 1s that it 1s hard to achieve per-
virtual circuit quality of service guarantees with current operating systems and
host-adaptor cards. Most Unix-like operating systems have no support for real-
time processes, hard process priorities, or fine-grained timers. In the absence
of these facilities, it is impossible to guarantee strict performance bounds to
real-time applications. Second, we did not have access to the microcode on
the host-adaptor card. Thus, we had to work around its deficiencies, such as
supporting only a single receive queue shared by all VCs, which allows low-
priority connections to adversely affect higher-priority connections. Third, to

2The transport layer described in this paper was originally designed and implemented as
part of the IDLInet project at the Indian Institute of Technology, Delhi. The implementation
described in this paper, though similar in spirit to the original, is almost totally rewritten,
reflecting substantial improvements in the design.

Design, Implementation, and Performance
Measurement of a Native-Mode ATM Transport
Layer (Extended Version)

R. Ahuja, S. Keshav, and H. Saran
April 30, 1996

Abstract

We describe the design, implementation, and performance measure-
ment of a transport layer targeted specifically for Asynchronous Transfer
Mode (ATM) networks. The layer has been built from scratch to minimize
overhead in the critical path, provide per-virtual circuit Quality of Service
guarantees, and take advantage of ATM Adaptation Layer 5 functionality.
It provides reliable and unreliable data delivery with a choice of feedback
and leaky-bucket flow control. These services can be combined to cre-
ate per-virtual-circuit customized transport services. Our work is novel
in that it provides high-performance, reliable, flow-controlled transport
service using cheap Personal Computers (PCs).

We describe the mechanisms and the operating system support needed
to provide these services in detail. An extensive performance measurement
allows us to pinpoint and eliminate inefficiencies in our implementation.
With this tuning, we are able to achieve a user-to-user throughput of 55
Mbps between two 66 MHz Intel 80486 Personal Computers with FORE
Systems’ HPA-200 EISA-bus host adaptors. The user-to-user latency for
small messages is around 720 us. These figures compare favorably with
the performance from far more expensive workstations and validate the
correctness of our design choices.’

Keywords: ATM, Transport Layer, Personal Computer, AAL 5, Native-
mode ATM.
1 Introduction

Most current ATM networks use TCP as the transport layer, with IP-over-ATM
providing the network layer [5, 4]. This approach, though necessary in the short-

1 An earlier version of this paper was presented at the IEEE Infocom’96 Conference. The
paper was selected by the conference as one of its top papers and referred to the Transactions
for possible publication after the Transactions’ own independent review.

