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� CONCLUSION ��

� Conclusion

We have described the design� implementation� and performance tuning of a nativemode ATM protocol stack� Our

design is novel in that it is tuned to AAL� frame transport� and a design from scratch has allowed us to incorporate

new error and �ow control protocols� Our transport layer provides reliable or unreliable data transfer� An unusual

feature is leakybucket policing at the transport layer� We have implemented the transport layer in a research

operating system and have extensively measured its performance� This has allowed us to tune our implementation

to �t the resource constraints common in currentgeneration Personal Computers�

Our stack has excellent performance� with throughputs greater than �� Mbps usertouser for unreliable data

transfer� Endtoend delays are smaller than ��� �s� This performance is possible because of careful design to avoid

datacopying overheads� amortizing costs over multiple TPDUs� and minimizing wasted work at the receiver� We

believe that these insights are valuable to other protocol stack implementers�
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� RELATED WORK ��

� Related Work

It is useful to contrast the semantics of our transport layer with TCP� While TCP�s error control uses similar

mechanisms� the �ow control mechanisms di�er considerably since we propose rate based �ow control independent

of the error control window size� Further� unlike TCP� data checksumming is done at the network layer�

Our work di�ers from IPoverATM in many ways� In the IPoverATM approach� the application sees only the

IP interface� which does not provide any QoS guarantees� Thus� any guarantees available from the ATM network

are hidden� Second� the IPoverATM subsystem has to make signaling requests on behalf of the application� which

adds considerable complexity to the kernel� In our approach� signaling is called directly from the application library�

Third� IP routing assumes a broadcast medium in the local area� which is critical for the ARP protocol� IPover

ATM has to spend a lot of e�ort emulating this over the point to point ATM network� By using a native mode

ATM stack� all these problems are automatically eliminated�

Our work is closely related to that of Campbell et al ��� who have proposed a multimedia enhanced transport

service and a Quality of Service Protocol Architecture �
�� As in our stack� they have placed �ow regulation at the

transport layer� and have no logical multiplexing of streams� However� they have decomposed the service interface

into guaranteedperformance and beste�ort �ows� This hides the orthogonal aspects of �ow control� error control�

and QoS speci�cation that our transport layer explicitly presents� As a consequence� their interface does not allow

for some combinations that may prove to be useful� such as nonerror controlled but feedback �ow controlled �ows�

which is an alternative way to carry Variable Bit Rate video tra�c ����� Second� their stack provides a complex

API  for example� applications are expected to provide dummy upcalls for computing the average time taken for a

user task� We think that this complexity can result in poor performance� Finally� their choice of a QoS speci�cation

seems premature since much is unknown about what is really needed�

There have been numerous attempts to design transport layer protocols in the past� Of these� one of the more

complete attempts is the TP�� project ���� TP�� has several interesting features such as forward error correction�

timerbased connections and congestion control based on backpressure� While perVCI backpressure can require

considerable feedback from switches� which is hard to legislate in a multivendor framework� several of their ideas

are orthogonal to our innovations� and we plan to consider them in future work�

� Status and Future Work

The transport layer we have described in this paper is essentially complete� and has been operational on our testbed

for the last three months� While we have reported several performance tuning experiments� other experiments are

also in progress� We hope to release this code into the public domain shortly� A port to the FreeBSD operating

system is also in progress�

The one open area for research is in the implementation of the Resource Manager� This component interacts

strongly not only with the operating system scheduler� but also with the disk subsystem and the graphics sub

system� We believe that it is an open� but worthwhile challenge� to manage OS resource in the same way we manage

network resources in order to provide QoS guarantees in the endsystem�
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Figure ��� Processing cost for di�erent parts of the stack as a function of message size� Note that the perbyte messages

dominate for large messages�

�� The cost of context switch� from the user context in which the write system call is made� to the context of the

task scheduler which executes the t schedule send task�


� The cost of processing done by t schedule send� which hands over the TPDU to the device driver after

processing�

�� The time spent on the TPDU in the device driver� which issues the transmit command to the card� telling it

which VCI and AAL to use for sending this TPDU� and the DMA address and size of the TPDU in the host

memory� This also includes the time spent in other housekeeping operations like recovering memory of the

TPDUs which have been transmitted by the card� and the bus transfer time�

The context switching cost is more or less constant and remains same irrespective of the message size� It forms

a major component of the total cost for very small messages �less than �K�� the other major component being the

cost of t send� The task t schedule send does very small amount of processing for unreliable connections� All it

has to do is to take the next TPDU from the queue and hand it over to the device driver� after putting in the right

message identi�er� and the sequence number and o�set within the message� As messages become slightly bigger� the

time spent in the device driver and the device itself increases rapidly� and the main parts of the total cost are now

the cost of t send and the cost of processing in the device driver� Both these components increase almost linearly

with increase in message size� due to which the total processing cost also increases almost linearly�
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Figure ��� Processing cost for di�erent components of the t send interface procedure as a function of message size� Note that

the perbyte overheads dominate for large messages�


� Time spent in enqueuing the incoming message in the PSB without fragmenting the message or doing any

datacopy� This is a permessage cost�

�� Time spent to fragment the message into TPDUs and enqueueing them in the transmission queue� This gives

us the perTPDU cost�

�� Time spent in copying data from user space to kernel space� This gives us the perbyte cost�

Figure �
 plots the time spent in doing di�erent types of processing in t send as a function of the message

size� The permessage cost� which is the time spent in making the write system call and enqueueing the message�

is constant� This time is around 	� �s� of which �� �s is spent in making the write system call and acquiring the

Readers Writers lock �Section ����
�� The time spent in fragmenting the message into TPDUs and enqueuing them

is a step function of message size� It has discontinuities at the multiples of TPDU size� As the number of TPDUs

required to carry the message increases by one� this cost jumps by around �� �s� The third component is the time

spent in copying data from user to kernel space� This time also includes the time to allocate memory in the kernel

for copying data given by the user application� As seen in the plots� this time is directly proportional to the message

size and is about �� �s per Kilobyte� It is clear from the plots that for small messages �less than around ���� bytes��

the major component of the cost is the permessage and perTPDU cost ����� After that� the cost of copying data

starts dominating� The permessage and perTPDU costs together make up only a small part of the total time spent

in t send for larger messages�

The remaining processing costs can be divided into the following components �Figure ����
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Figure ��� Loss rate at the receiver as a function of transmission rates �hostadaptor drops excess packets�� Zero loss is indicated

by a value of ������ Note that the loss rate is still very large when the sender overloads the receiver� However� since the adaptor

drops data� this loss does not result in receive livelock�

In order to gauge the bene�t of having a high and low watermark� we measured the performance of a kernel

where we did not have these watermarks� Without a high watermark� the host eventually runs out of bu�ers� and

will stop supplying bu�ers to the card� However� in this case� as soon as even a single bu�er becomes free� the

driver gives it to the card� and the card uses it up immediately and gives a frame back to the host� again causing

it to run out of bu�ers� Since the interrupt and bu�er resupply happen for single bu�ers� we cannot amortize this

overhead� With a high and low watermark� we can amortize the interrupt overhead over many packets� As a result�

the received throughput is around ��Mbps when we do not use high and low watermarks� as compared to more than

��Mbps when using these watermarks�

When the ISR drops packets� the receive performance of a reliable connection is better than the receive perfor

mance of a beste�ort connection� but now the situation is reversed� This is because best e�ort connections earlier

su�ered from receive livelock� unlike reliable connections� which is not the case any more�

��� Per�Layer Cost

There is considerable variation in the amount of work done in each part of the protocol stack� Some parts of the

stack do constant work per message� some parts do constant work per TPDU� and others have an overhead per byte�

In this section� we divide the entire work into di�erent components and see where CPU cycles are being consumed�

First we consider di�erent components of the transport layer�s t send function� which are as follows�

�� Time spent to make a write system call� which is a permessage cost�
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Figure ��� Throughput measured at the receiver for di�erent transmission rates �hostadaptor drops excess packets�� Note that

there is no receive livelock� the throughput does not drop as the sender sends faster�

only one queue of received bu�ers �instead of a perVC queue�� So� if the card drops frames� it cannot do that

fairly  it will just drop the tail of the queue� Unfortunately� since we cannot control the microcode on the card�

we must compromise on perVC fairness for performance� We conclude that we should do perVC queuing in the

hostadapter if we want perVC fairness�

The easiest way to move packet losses from the ISR to the hostadaptor is to mask the interrupt from the card

during ISR processing� so that the card does not interrupt the CPU when it is overloaded� Once the host processes

the pending work� it can again enable the interrupts on the card� Speci�cally� we can have a high watermark and

a low watermark on pending work for disabling and enabling the interrupts� When the pending work goes beyond

the high watermark� we disable the interrupt� and when we have done su�cient processing so that the backlog goes

below the low watermark� we can enable the interrupts again� However the Fore HPA
�� adaptor does not provide

the ability to disable and enable the interrupts while running� The card either always interrupts or never interrupts�

depending upon how it is initialized at boot time� So we had to solve this problem indirectly� Instead of masking

the interrupt� we stop supplying free bu�ers to the card on crossing the high watermark� Soon the card runs out

of bu�ers for reassembly� and hence starts dropping packets without interrupting the CPU� Once we go below low

watermark� we start supplying bu�ers to the card again�

Once we made these changes� the throughput improved dramatically �Figure ���� It is clear that we do not

have the problem of receive livelock any more since an increase in the transmission rate does not cause a decrease

in the reception rate� even though the loss rate increases�This is because we are not wasting any work in dropping

packets in the ISR� So the host processor� which is the bottleneck� does not waste CPU cycles in dropping packets

and �elding unnecessary interrupts�
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Figure �� Loss rate at the receiver as a function of transmission rates �ISR drops excess packets�� Zero loss is indicated by a

value of ������ Note that the error rate becomes very large when the sender overloads the receiver�

interrupt� the driver places a newly �lled bu�er in a perVC queue� and hands freed bu�ers to the card for receiving

future AAL � frames� We set a limit on the number of bu�ers a connection can have in its perVC queue� This is to

provide limited perVC fairness so that one connection does not hog all the bu�ers in the receiver� blocking other�

slower connections�

When a packet is received for a connection that has reached its queue limit� the interrupt service routine drops

the packet� Thus the work done in reassembling the packet and �elding the interrupt is wasted� As the sending rate

increases beyond the receiver�s capacity� more and more packets are dropped in the ISR� wasting more and more

CPU cycles� which leads to a decrease in receiving rate even though the sending rate is increased� This process is

called receive livelock�

��

Another cause of receive livelock is that our message semantics demanded that unreliable connections should

not get partial messages� So� on a loss� parts of a message that have been correctly received have to be discarded�

which wastes work� We thought we could eliminate some of the wasted e�ort by changing the message semantics for

unreliable connections� and delivering messages even if they have one or more TPDUs missing� letting the application

decide what to do with them� Surprisingly enough� this degraded the performance instead of improving it� The

reason is that when the transport layer drops entire messages� it frees many bu�ers for reassembly at once� This

makes it less likely that future frames will be dropped in the ISR� Thus� even though we are wasting work in the

transport layer� we are avoiding wasted e�ort in the ISR� This leads us to the conclusion that the loss of work in

the ISR is more critical than in the transport layer� We will now describe a scheme that ensures that the ISR does

not waste any work on an interrupt  any packet losses are done by the hostadaptor card before an interrupt�

Note �rst that this scheme has a fairness problem� The current version of the software on the Fore card has
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Figure �� Throughput measured at the receiver for di�erent transmission rates �ISR drops excess packets�� Note that due to

receive livelock� the throughput actually drops if the sender sends faster than the receiver can process data�

write system calls� and the permessage transport overhead gets amortized with increasing message size� However

larger messages block more bu�ers in the receiver for reassembly �since an application is handed complete messages��

increasing the probability of loss due to lack of bu�ers in the receiver� Further� if the message is many TPDUs long�

it takes longer to scan the list of TPDUs to �nd the correct position for an incoming TPDU� These opposing forces

cause the throughput to �rst increase� then decrease� as a function of the message size�

We found it very important to try to minimize the delaybandwidth product when using window �ow control�

With TCPstyle �ow control� if this product is large� each loss causes a window shutdown� and recovering from the

loss takes multiple roundtrips� So an increase in the latency for reliable transfer can be expensive� especially at high

bandwidths� In fact� if we do not wake up the scheduler on every interrupt� in order to amortize the cost of waking

up the kernel process� reliable connections su�er dramatically� The throughput goes down to as low as ��Mbps

when the kernel process wakes up periodically �every ��ms�� and is not woken up by the ISR at all� Even a small

increase in latency on receive side can seriously a�ect performance because� on a loss� we must wait at least one

roundtriptime for receiving the lost packet� and we must block bu�ers for reassembly awaiting this retransmission�

����� Throughput and Loss at the Receiver

For a reliable connection� the receiver receives data at exactly the rate at which it is sent� For unreliable and

guaranteedservice connections� however� the receiving rate is smaller than the sending rate because of losses in the

receiver �Figure ��� The loss rate �Figure 	� increases with increase in sending rate� so much so that the receive

rate decreases with increase in sending rate� The reason for this is interesting� The host adaptor copies incoming

AAL� frames into bu�ers provided by the device driver� which maintains a pool of free bu�ers �Figure ��� On an



� PERFORMANCE MEASUREMENTS AND TUNING �	

0

10

20

30

40

50

60

70

0 10000 20000 30000 40000 50000 60000 70000 80000

Th
ro

ug
hp

ut
 (M

bp
s)

Message size (bytes)

Transmit rates for Guaranteed Service

10Mbps
20Mbps
30Mbps
40Mbps
50Mbps
60Mbps

Uncontrolled

Figure �� Transmission rate measured at the sender for a guaranteedservice connection� Note that the measured rate matches

the requested rate for speeds up to �� Mbps� After that� the actual sending rate is slightly below the requested rate�
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Figure �� Transmission rate measured at the sender for a reliable connection� This is also the rate seen at the receiver� since

the sender and receiver in a reliable connection are in lockstep� Note that the transmission rate increases� then decreases� As

the message size increases� the amortized permessage cost decreases� but the perbyte cost increases�
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Figure �� Individual �shaded� and cumulative delay and standard deviation at various points of the protocol stack when sending

�� byte packets between two otherwise unloaded machines� We have estimated times that we could not measure because we did

not have access to the host adapter microcode

two context switches on the receive side before the user application gets its message� Nevertheless� the usertouser

latency of about �
� �s is quite small and CPU bound� We hope to achieve correspondingly better performance

with Pentium ���MHz processors and the faster PCI bus�

��� Throughput

����� Guaranteed�service

We measured the usertouser throughput with a TPDU size of � Kbytes ��
 bytes of transport header and ����

bytes of user data�� Guaranteedservice applications are ratecontrolled by a leaky bucket at the transport layer

�Section������� As Figure � shows� for transmission rates less than �� Mbps� the sending rate is almost perfectly

controlled� However� if the application tries to send at higher rates� the host CPU becomes a bottleneck� and the

transmission rate starts dropping below the nominal value�

����� Reliable service

For reliable applications� the rate is controlled by using closed loop window �ow control �Section������� Since the

receiver is slower than the sender� the receive rate determines the transmission rate� Figure � shows the rate at which

an application is allowed to send data on a reliable connection for di�erent message sizes� Error bars indicate the

standard deviation over �� repetitions� Note that the throughput increases with message size for a while� reaching

its maximum of around ��Mbps� and then starts falling with further increase in message size� This can be explained

by two opposing forces that come into play with increasing message sizes� The permessage overhead of read and
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� Performance Measurements and Tuning

Thus far� we have looked at the design and implementation of the stack� The true test of our design is in the

performance it delivers� In this section� we present the results of a detailed performance analysis� Our results help

us to understand the bottlenecks in performance� and to tune the layer for better performance� Our results are in

three parts  latency in the protocol processing� throughput on the send and receive side� and perlayer costs as a

function of message size�

��� Latency

We studied latency on a small testbed consisting of two IBM PCclones with Intel ����� processors running at ��

MHz� They each had a Fore Systems HPA
�� ATM adaptor card on an EISA bus� The systems were connected via

a Fore Systems ASX ��� switch with TAXI ��� links running at ���Mbps nominal bandwidth� The systems were

otherwise unloaded�

Since the resolution of the CPU clock �in ms� is not su�cient to measure processing delays� which are in

microseconds� we had to measure these quantities indirectly� We measured the throughput obtained for ������ ��

byte messages when a message is processed up to di�erent stages of the protocol stack� For example� to measure

the cost of the write system call� the message is dropped just before it would be handed to the transport layer� By

measuring the rate of transmission available to the user application� we can determine the time spent on processing

each message� Similarly� to �nd out the cost of transport layer processing� we drop the message after transport layer

has done its processing� and just before it hands the message to the device driver� This gives the total cost up to

and including the transport layer processing� Subtracting the cost of making a write system call from this� we get

the cost of transport layer processing� Note that in most cases� since standard deviations add when subtracting

quantities� the deeper we are in the protocol stack� the more the standard deviation in the cumulative measured

delay� However� dependencies between events can lead to a decrease in standard deviation of the cumulative delay�

since delay variations in an event can be partially o�set by an opposing variation in a subsequent correlated event�

The usertouser round trip time for �� byte packets �with �
 bytes of user data and �
 bytes of transport header�

was ��
�ms if we did not wake up the task scheduler after scheduling a task on asynchronous send and receive events�

The main part of this latency was due to the delay in scheduling� On an average� the processing of a packet was

delayed by 
�ms at each end� while it is waiting for the scheduler to wakeup after its normal ��ms sleep period� This

delay was unacceptably high� So� to reduce end to end latency� the scheduler is woken up by the ISR on receiving a

packet from the device� and by t send routine on receiving a packet from the user application� This change reduced

the round trip time to a mean of ����ms with a standard deviation of ����ms over �� repetitions� This time can be

broken up as shown in Figure ��

The total time taken by the sending PC before the data is given to the card for transmission is roughly ��� �s�

The bulk of this time is waiting for the task scheduler to become active� While we could have cut down this latency

by eliminating the task scheduler and making a direct call into the t schedule send routine from the t send routine�

this would have prevented us from prioritizing between transport connections� which is necessary for providing per

transport connection QoS� Some components of the endtoend latency are missing because we do not have access

to the source code of the microcode running on the card� For example� we cannot measure how long it takes for

the host adaptor to process a �� byte packet� This is also a problem� with measuring the receive side performance�

However� we expect the latency on the receiving host to be more than that on the sending host because we have
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��� Implementation Experience

We gained a lot of experience with the transport layer by implementing it in the Brazil OS and measuring its perfor

mance� In this section� we will discuss some interesting problems we ran into while doing the Brazil implementation�

����� Send and Receive Locks

Locking proved to be a major problem in doing an inkernel implementation of our design� The user application

can do a read or write at any time� A write results in enqueueing a message in the transport layer�s send queue�

and a read leads to dequeuing of a message from the transport layer�s receive queue� Since these reads and writes

are asynchronous with respect to the operation of the transport layer� we need to lock these queues with a perVC

Send lock and Receive lock� Each change in the send queue is locked with the corresponding send lock� and every

modi�cation in the receive queue is locked using the Receive lock for that connection� This lets us synchronize

between the read and write operations of a user application and the transport layer�

����� Readers�Writers lock

In addition to the Send and Receive locks discussed above� there is another con�ict that we needed to resolve�

Though we allow only one application to be associated with a connection� which ensures that two applications

cannot simultaneously do a read or write on the same connection� the signaling entity can modify the connection

state while a read or write is in progress� Thus we have to avoid any reads or writes on data connections when the

signaling entity is changing the connection status� This problem is simply a readerswriters problem with a write by

the signaling entity corresponding to a writer� and all other accesses being operations by readers� We use a Brazil

RWlock datastructure for proper locking of these reads and writes� This solves the problem� except for one detail�

that we discuss below�

An application is put to sleep when it tries to do a read and the next message for the application is not yet

completely received� Similarly� an application is put to sleep if it tries to do a write when the transmission queue of

the application is full� However we cannot put the application to sleep while it holds any locks� since this will prevent

the signaling entity from doing any communication with the kernel� Hence� the readerswriters lock is released if

the application is put to sleep� and reacquired on wakeup�

����� Resource Release on Connection Teardown

The transport layer creates a Protocol Status Block �PSB� for each connection at the time of connection setup� This

PSB has to be freed when a connection is torn down� However� connection teardown is an asynchronous event with

respect to other operations of the transport layer� This problem here is similar to a readerswriters problem� with

the resource release function acting as a writer and all other parts of the transport layer acting as readers� We could

solve this problem with a readerswriters lock as before� However acquiring locks before every access to a PSB can

be expensive� Hence we use a more e�cient� albeit less elegant� solution�

In our solution� when a PSB is in use� a �ag is set in a perPSB table� The resource release function� which is

called only on connection termination� does a busy wait on this �ag� Since this function is called only at the time

of connection teardown� the ine�ciency associated with a busywait is still acceptable� As before� the PSB �ag is

released when an application is put to sleep during the read or write system call and is reacquired at the time of

wakeup�
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Figure 	� Data �ow from source to destination� Asynchronous events are handled by interface procedures that spawn tasks

which are handled by a task scheduler� A detailed explanation is in Section ���

�� On receiving a packet on the receive side� the card DMA�s it into a queue in host memory and interrupts the

host CPU� The card checks the AAL� trailer and drops incomplete or incorrect frames�

�� On receiving an interrupt� the interrupt service routine �ISR� picks up the packet from the card receive queue

and puts it into a per VCI queue for the AAL layer� The ISR schedules the transport layer�s t schedule recv

routine and returns�

�� The routine t schedule recv calls a recv which retrieves the packet from the perVCI AAL queue� After

getting the packet� the transport layer checks the packet for validity and enqueues the packet at the right

place in the received message queue �Figure ��� It also sends an acknowledgment if the TPDU is for a reliable

connection� If the VC supports message semantics and the TPDU received is the last TPDU of a message� the

transport layer marks the message as complete so that it can be picked up by the application as a complete

message�

�� When the application wants to read a message� it calls ulib�s atm read which selects the right kernel data

descriptor and makes a read system call� This routine copies the data from the enqueued TPDUs of the next

complete message into the user space �thus doing reassembly�� If the next message is not yet complete or if

there is nothing to receive� the read call blocks� and the application is put to sleep� The application is woken

up by the t schedule recv function when the next message is complete�
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This scheme cleanly separates �ow control and error control� Windows are used for error control and to size

bu�ers at the transmitter and receiver� Flow control is used to match the source transmission rate with the current

bottleneck capacity� When windows are used both for �ow control and error control� packet losses will trigger a

slowdown in the sending rate �
�� �
�� which may not be warranted by the current congestion level� This becomes

important in highspeed networks where the bottleneck service rate is a rapidly changing quantity�

If the network does not support roundrobin scheduling� the transport layer uses a dynamicwindow �ow con

trol scheme similar to TCP �ow control ��
�� However� while losses do shut down the �ow control window� the

retransmission uses the strategy described above� instead of Gobackn�

����� Open�loop Flow Control

Our transport layer provides openloop �ow control based on leaky bucket semantics� We believe that the tra�c

shaping function should be as close to the application as possible to allow it to quickly get feedback about its allowed

�ow rate� An application sending data faster than its leaky bucket rate would �ll its input bu�er� and when this

happens� the application is put to sleep by the transport layer� This control is much easier to implement at the

transport layer than at the host adaptor or a remote Network Interface Unit� as is usually the case�

The implementation of leaky bucket is simple  for each virtual circuit� the transport layer keeps track of the

time that the last TPDU was sent� On arrival of a message from an application� the transport layer compares the

current time with that time to determine how many tokens must have arrived in the interim� This is su�cient to

know how many TPDUs can be sent right away� and the earliest time that the next TPDU can be sent� The layer

also sets a timer for the earliest time the next TPDU can be sent� based on the leaky bucket arrival rate�

��� Data Flow

Having seen how the transport layer works� let us see the overall picture of how data �ows from source to the

destination �Figure ��� which involves the following steps�

�� The user application calls the ulib function atm write� which acts as session layer for the application� The

atm write routine selects the appropriate datadescriptor in the kernel and makes a write system call on

that datadescriptor� The data given by the application is thus passed into the kernel crossing the userkernel

boundary�

The write system call in the kernel hands over the data to t send� which fragments the user message into

smaller TPDUs while copying the data from user space to kernel space� and bu�ers the TPDUs to be sent

later� It then schedules the task t schedule send and returns�


� The network task scheduler eventually calls t schedule send giving it the VCI to act on� This routine attaches

the transport header to each TPDU and calls the AAL layer�s a send routine� a send hands the packet to the

ATM device driver�s enqueue tx routine that enqueues the packet in the device transmission queue along with

the DMA address of the TPDU to be sent� The TPDU is now with the card and the responsibility of the host

is over�

�� The card picks up the TPDU from the transmission queue and transmits it on the line after adding an AAL�

trailer and segmenting the AAL� frame into ATM cells� When transmission completes� the card marks the

TPDU as sent so that the host can free the memory area being blocked by this TPDU�
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����� Error Control

While the AAL � checksum detects corruption and loss within an AAL frame� this� by itself� is not su�cient for

error control� For a reliable connection� lost or corrupted data must be retransmitted� This is done at the transport

layer using a novel retransmission scheme described below� Note that the transport layer does not do checksumming�

since this is already taken care of by the AAL layer�

To allow a receiver to detect duplicate data from retransmissions �which may be arbitrarily delayed� perhaps

extending beyond virtual circuit tear down�� sequence numbers are necessary� The transport layer uses a standard

three way handshake at startup to choose the initial sequence number correctly �
��� We do not use a twoway

handshake for termination� since termination is handled by the signaling entity�

The transport layer uses perTPDU cumulative acknowledgments for redundancy� Cumulative acknowledgments

have the added bene�t that if an acknowledgement sequence number is repeated� the source can guess with high

probability that the packet with a sequence number one larger than this sequence number was lost� In our scheme�

the acknowledgment also carries the sequence number of the TPDU that generated the acknowledgment� allowing

sources to additionally determine which sequence numbers have been correctly received �����

A retransmission is triggered either by a repeated cumulative acknowledgment �fast retransmission� or by a

retransmission timeout� In either case� the entire current transmission window is scanned for possible retransmissions

�as in Gobackn�� During a fast retransmit� only the packets which are not already retransmitted and not correctly

received �for which ack has not arrived yet� are retransmitted� During a timeout� only packets not correctly received

are retransmitted  thus packets retransmitted by a fast retransmit but subsequently lost are retransmitted a second

time by the timeout� To make the retransmission even more independent of timeouts� we check every two round

trip times if the cumulative ack has made any progress� If the cumulative ack remains the same for two successive

RTT�s� a retransmission is again triggered� but this time only the packet at the head of the window is retransmitted�

This scheme combines the e�ciency of selective retransmission with the robustness of Gobackn retransmission�

They allow a sender to quickly �ll a gap in the errorcontrol window without stalling while waiting for a timeout�

or paying the overhead and complexity of a selective acknowledgment scheme�

To allow retransmissions� a source must keep a copy of the outstanding data� and the size of this bu�er is limited

by an errorcontrol window� Since a receiver will also need to keep a copy of delivered data to assure insequence

delivery of data� the errorcontrol window size must be negotiated by the peer transport layers during call setup�

This is done during the three way handshake�

����� Feedback Flow Control

Flow control allows an endpoint to regulate the data transmission rate to match the maximum sustainable �ow by

that VC in the network� The transport layer provides both openloop and feedback �ow control�

If the scheduling discipline at the switches is roundrobin like� feedback �ow control is based on the Packetpair

�ow control scheme ����� In this scheme� all TPDUs are sent out in back to back pairs� and the interacknowledgment

spacing is measured to estimate the current bottleneck capacity �the bottleneck may be in the network or the receiving

endsystem�� This time series of estimates is used to make a prediction of future capacity� and a simple predictive

control scheme is used to determine the source sending rate� It has been shown that for a wide variety of scenarios�

Packetpair �ow control performs nearly as well as the optimal �ow control scheme� that is� a scheme that operates

with in�nite bu�ers at all bottlenecks ����
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Figure �� Data structures used for storing messages� Each protocol status block �PSB� has pointers to send and receive message

lists� A message consists of a number of transport protocol data units �TPDUs�� and each TPDU corresponds to a single AAL �

frame�

procedure� and the t schedule recv task is scheduled by the device driver� as described in Section ���� Since the

t schedule recv and t schedule send tasks are scheduled asynchronously� we need to lock queueing and dequeuing

of tasks in the task queue� This is done by having a global task lock which is implemented as a spin lock�

The transport layer provides simplex virtual circuits� error control� and �ow control� In addition� it segments

application layer bu�ers into transport protocol data units �TPDUs� and reassembles them on the receive side� Here�

we present the mechanisms required to provide these semantics�

����� Segmentation and Reassembly

There are two reasons why the transport layer may want to fragment an application message into TPDUs� First�

in our implementation� each TPDU corresponds to a single AAL� frame� which is at most �� Kbytes long� If the

message is larger than this size� it must be fragmented� A more compelling reason has to do with error control� The

unit of error detection and retransmission is a TPDU� If this is large� then each loss causes a large retransmission

overhead� By keeping TPDUs small� the retransmission e�ciency is maximized� Thus� the TPDU size can be chosen

to trade o� perfragment overheads� the connection�s error characteristics and the available timer resolution� Indeed�

this is the choice of �Multiplexing Block� in reference ����

We have tried to minimize the overhead for segmentation and reassembly� On the transmit side� the transport

layer�s t send procedure segments a message while copying an application bu�er into a chain of TPDUs� In order to

preserve message semantics� the TPDU header has a message number� fragment number� and an endofmessage �ag�

On the receive side� the t schedule recv task picks up TPDUs from the network layer and queues them in perVC

message queues �Figure ��� If the VC is reliable and supports message boundaries� fragments are reassembled by

the receiving transport layer and the t recv procedure returns only complete messages to an application� Message

reassembly is done directly from the perVC queue into the application bu�er during a read system call�
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is a Clanguage function that is nonpreemptively executed by a procedure call from the task scheduler� Each task

�nishes in a known time and can schedule other tasks to complete their work�

Our design has several advantages� First� this division of labor allows us to provide quick response to asynchronous

events while CPUintensive work is prioritized by the task scheduler� This allows high priority packets make their

way through the transport layer faster than low priority tasks� Second� since the task scheduler and all the tasks

run in the same address space� and each task is just a procedure call� calling a task is a very cheap operation� This

allows us to cheaply provide �negrained multitasking� Of course� no task may block� A task that might block

reschedules itself at a future time when it can check on the status of a blocking event� The scheduler provides an

e�cient set of timer routines for this purpose�

In the Brazil kernel� the task scheduler is a kernel thread which is started by the ATM device driver at boot

time� The scheduler is just an in�nite loop that periodically �in our case� every �� ms� handles any expired timers�

and then executes any scheduled tasks� Each schedulable task is called by the scheduler with two arguments� the

VCI to act on and the maximum amount of work� in number of units� it can do in the call� The function does

some processing and returns the amount of work it actually did in that call� In our implementation� processing one

transport protocol data unit �AAL � frame� accounts for one unit of work� The scheduler can schedule tasks on the

basis of their importance and the amount of work that is pending for each task� The scheduler can implement any

scheduling discipline in order to allocate the processing resources to di�erent tasks� Currently we have a multilevel

weightedroundrobin scheduler� that assigns di�erent priorities to di�erent tasks� and schedules tasks roundrobin

within the same priority� Hence we can allocate di�erent QoS to di�erent connections� and also allocate di�erent

priorities to di�erent beste�ort connections�

��� Resource Manager

The resource manager is responsible for admission control at the time of call setup� When an application sets up a

call using ulib� a call is made to the resource manager to see if su�cient local resources exist to support the new

call� This admission test requires the manager to know the amount of CPU resource available to the transport

layer� and the fraction of the resource that is already consumed� While our performance measurements allow us to

determine exactly how much CPU processing time each TPDU needs� since our kernel is not realtime� we do not

as yet have a way to reserve CPU time for the transport layer from the kernel� Thus� the current implementation of

the resource manager does not do admission control� Instead� whenever the manager is asked to reserve a resource�

it stores the request and responds with a �yes�� On a request to release resources� it removes the reservation from

storage� Further work needs to be done to implement admission control in conjunction with improvements in the

task scheduler and the CPU scheduler� so that the task scheduler can schedule tasks on the basis of the resources

allocated to a VC� and� in turn� can reserve time from the CPU scheduler�

��� Transport Layer

Having looked at the environment in which the transport layer is placed� we now turn our attention to the transport

layer itself� The transport layer provides four interface procedures visible to the outside world� The functions

t send and t recv provide an interface on the send and receive side respectively� for giving or taking user messages

to or from the transport layer� All other transport layer processing is done by the t schedule send task on the

send side�and the t schedule recv task on the receive side� The t schedule send task is scheduled by the t send
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Figure �� Components of the ATM stack� This paper deals mostly with the transport entity�

�� The Transport entity
 This is the part of the stack which actually hands the data to the hostadapter�

It consists of the transport layer� a task scheduler� and the device driver �Figure ��� Since the transport

entity must provide high performance� we decided to put it in the OS kernel� However� in order to make

it portable� our design makes minimal assumptions about the OS kernel� For example� we provide our own

memory management code to handle operating systems which don�t support BSDstyle mbufs ����� We also

provide our own timers and task management� The only support needed from the OS is a way to handle

packetarrival interrupts� a way to read time� a memory allocation utility� and a way to occasionally call the

task scheduler� These functions are available in all current operating systems�

The rest of the paper focuses on the transport entity�

� The Transport Entity

The transport entity is responsible for transferring the data through the kernel down to the device �hostinterface��

from where it is picked up by the device and transmitted onto the network� This entity also performs functions like

call admission and resource allocation to di�erent VCIs for guaranteeing QoS �bandwidth and delay�� In the sequel�

we will assume that the hostadaptor provides AAL � frame transport� as is the case with all modern hostadaptors�

including the Fore Systems HPA
�� adaptor that we used�

The three components of the transport entity are the transport layer� the device driver� and an OS support

module �Figure 
�� The OS support module in turn consists of a� a task scheduler and b� a resource manager for

managing local resources� We will now look at the functionality of the transport entity in detail� starting with the

OS support module�

��� The Task Scheduler

The transport layer is implemented as a set of interface procedures and tasks� An interface procedure handles

asynchronous events such as packet arrival� user read or write request� or completion of packet transmission� An

interface procedure is designed to complete quickly� scheduling a task for handling any CPUintensive work� A task
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Figure �� Top level view of the ATM stack� The stack consists of three entities� the application entity� the signaling entity� and

the transport entity�

An endsystem implementing our stack is shown in Figure �� The ATM stack consists of three main entities� the

application entity� the signaling entity �both in user space�� and the transport entity �inside the kernel�� To make

the stack easily portable� each of these entities is divided into systemdependent and systemindependent parts� We

now sketch the functions provided by each entity�

�� The Application entity
 The application is the user program that accesses the ATM network for commu

nicating with its peer� The application is linked to a user library �ulib� which provides network access� By

customizing the library for each environment� application code is completely independent of the underlying

OS and hardware platform� The services provided by ulib are similar to the Berkeley socket interface �
�� ����

except that applications can specify QoS parameters during connection setup� This allows us to easily port

applications written for Berkeley sockets  typical ports take only a few minutes to complete�


� The Signaling entity
 The signaling entity is the part of the stack that is responsible for connection man

agement� It establishes ATM connections on behalf of user applications� and tears down connections either

when requested by an application or in the event of a mishap like the crashing of an application� Since the

signaling entity must survive application crashes� it cannot be part of the user library� Each endsystem needs

only one signaling entity� which is shared by all applications� The signaling entity is implemented so that the

actual signaling protocol can be changed without a�ecting the rest of the signaling code� For example� the

Fore Systems SPANS protocol that we implement now could be replaced with Q�	�� without a�ecting the part

of the signaling entity that keeps track of application state� The signaling entity is in user space so that it is

easy to modify and to port to other platforms�
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guarantees are not supported� With beste�ort service� there is no �ow control� error control or provision of QoS

guarantees� We will develop other services derived from the three basic services above� as the need arises� �We do

not currently support multicast��

In addition to the three services described above� we also provide� �� arbitrary application message sizes� ��

a choice of blocking and non�blocking application interface� and �� a choice of byte stream and message transfer

semantics�

� Design Principles

This section describes the principles we used in designing our transport layer� Our �rst principle was to eliminate

multiplexing of virtual circuits ���� Many transport layers multiplex multiple transport connections onto a single

network layer connection �or� in the case of IP� a single network layer address�� This simpli�es routing� since there

is only one network layer address per machine� However� during multiplexing� application QoS parameters are lost�

Since ATM networks provide multiple virtual circuits perendpoint� we do not need to multiplex transport

connections� This allows us to maintain perVC QoS all the way from the ATM layer to the application� All

protocol information is kept in a perVC data structure called the protocol status block �PSB�� Once the PSB has

been located by the AAL layer from the incoming frame� no further search for protocol information is needed� This

reduces code complexity�

Second� we wanted a clean separation of the transport layer services� so that they could be mixed and matched�

Thus� an application can choose between di�erent error control and �ow control options as it desires� In contrast�

with TCP� both error and �ow control are implemented using windowing� As a consequence� losses in the network

automatically a�ect the �ow� While this may be desirable in many cases� it is not necessarily the right thing to do�

Our transport layer reduces the dependency by exploiting the Packetpair �ow control protocol �����

Third� our implementation provides minimal functionality in the critical path� with optimization for the common

case� As Clark et al have shown ���� this has the potential to considerably enhance protocol performance�

Fourth� we do not replicate any functionality provided by AAL� or ATM signaling� For example� connection

management� traditionally a transport layer function� is relegated to signaling� Data checksumming is done by the

ATM adaptation layer�

Finally� our implementation is designed to be highly portable� After working on protocol stacks for three di�erent

ATM testbeds� we realized that we need a transport layer that can easily be tailored to the needs of these various

testbeds� The result was the modular design of an ATM stack with general� clean and wellde�ned interfaces among

di�erent parts of the stack� This makes it easily portable� The stack can be tested on the simulator and then ported

to di�erent systems� rewriting only those parts of the stack that are system dependent� For clarity� this paper

discusses the implementation only in the Brazil OS kernel ��

� Implementation Overview

This section gives a brief overview of the protocol stack� The rest of the paper will discuss only the transport layer

of the stack�

�Brazil is a research version of the Plan � operating system from Bell Labs ����
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� Introduction

Most current ATM networks use TCP as the transport layer� with IPoverATM providing the network layer ���� This

approach� though useful in the shortterm� is soon likely to prove inadequate for several reasons� First� ATM networks

will provide endtoend Quality of Service �QoS� guarantees to individual virtual circuits ����� These guarantees

are lost by IP� since it multiplexes multiple transport connections with disparate QoS requirements onto a single

VC� Moreover� current TCP implementations cannot directly use the QoS guarantees provided by the network since

TCP does not obey a leakybucket behavior envelope� nor respond to ABR resource management cells�

Second� TCP checksums a packet to detect corruption� Since checksumming requires every byte of a packet

to be touched� it is a signi�cant overhead ���� However� ATM Adaptation Layer � �AAL�� already does data

checksumming� Thus� this TCP functionality is redundant and costly�

Third� TCP has inherited the patches and �xes of two decades of tinkering ���� The protocol is still poorly

understood� and there are many constants that are �magic�� This slow increase in complexity with time has led to

suboptimal TCP performance in practice� since most users are too scared to touch something� lest they break it�

Thus� we believe there is a need for a transport layer that is aware of an underlying AAL� layer� and that has

been designed afresh to provide clean semantics� We describe the design and implementation of a transport layer�

targeted speci�cally for Asynchronous Transfer Mode �ATM� networks i�e� a native�modeATM transport layer� The

layer incorporates much of our past work in �ow and congestion control �����

	 Service Description

We believe that the set of services provided by the transport layer should match the anticipated application workload�

We expect ATM networks to support continuous media applications� which need QoS guarantees from the network

�expressed in terms of guarantees of minimum bandwidth� priority� maximum endtoend delay and loss rate�� while

conforming to some tra�c envelope ���� We would also like to support data applications� which e�ectively need a

zero loss rate� Still other applications may require a raw bitstream abstraction upon which they can build custom

�ow and error control mechanisms�

Instead of providing a service corresponding to each anticipated application workload� we provide a set of or

thogonal services which can be combined in order to match application requirements� The three major services are�

�� simplex data transfer� 
� error control� and �� open�loop and feedback �ow control� The �rst service is simply

to move data� With error control� the data stream seen by an application will have zero loss rate �possibly after

retransmissions� and a corruption rate below some vanishingly small threshold� If the corruption rate is unaccept

able� or if retransmissions are too slow� applications have the option of implementing Forward Error Control� With

openloop �ow control� application tra�c is shaped to conform to some prespeci�ed envelope �negotiated during

call setup�� With feedback �ow control� the transport layer attempts to match the application�s �ow rate to the

current bottleneck service rate in the network or receiver� By putting together a combination of these services� an

application can customize the service interface it receives from the transport layer�

Currently� we support three combinations of the above services� These are guaranteed�performance service�

reliable service and best�e�ort service� Guaranteedperformance service provides openloop �ow control without

retransmissions� An application�s QoS speci�cations are made available to the network� allowing it to reserve

resources for each VC� Reliable service provides timeouts and retransmissions and feedback �ow control� QoS
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Abstract

We describe the design� implementation� and performance tuning of a transport layer targeted speci�cally for

Asynchronous Transfer Mode �ATM� networks� The layer has been built from scratch to minimize overhead in

the critical path and take advantage of ATM Adaptation Layer � functionality� It provides reliable or unreliable

data delivery with feedback or leakybucket �ow control� These services can be combined to create a customized

transport service� Our work is novel in that it is the �rst endtoend ATM transport service that provides reliable�

�ow controlled data transfer�

We describe the mechanisms and the operating system support needed to provide these services� A detailed perfor

mance measurement allows us to determine the bottlenecks in our system and to tune our implementation� With

this tuning� we are able to achieve a usertouser throughput of �� Mbps between two �� MHz Intel ����� Personal

Computers with Fore Systems� HPA
�� EISAbus host adaptors� The usertouser latency is around �
� �s� These

�gures compare favorably with the performance from far more expensive workstations and validate the correctness

of our design choices�
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