An Empirical Evaluation of Virtual Circuit Holding Times in
IP-over-ATM Networks

H. Saran and S. Keshav!

Department of Computer Science and Engineering
Indian Institute of Technology
Hauz Khas, New Delhi 110016, India

Abstract

When carrying Internet Protocol (IP) traffic over
an Asynchronous Transfer Mode (ATM) network, the
ATM adaptation layer must determine how long to
hold & virtual circuit opened to carry an IP dala-
gram. We present a formal statement of the problem
and an empirical study of holding time policies taking
network pricing into account. We find that IP traf-
fic shows temporal locality of reference and so Least
Recently Used (LRU)-based policies perform well. A
systemwide timeout, which is a special case of an LRU
policy, is quite effective when the timeout value is cho-
sen correctly. The policies we propose are easy o im-
plement and solve the problem satisfactorily.

1 Introduction

The TCP/IP based Internet is the world’s largest
computer network with more than a million inter-
connected computers. This network is based on the
connectionless Internet Protocol (IP). However, fu-
ture networks will, at least at the lowermost layers,
be connection-oriented, with data-link layer connec-
tivity being provided by Asynchronous Transfer Mode
(ATM) style networks. Thus, to protect existing in-
vestments, it is necessary to devise mechanisms to
carry IP traffic on ATM networks.

We assume that IP traffic will be sent over ATM
circuits by means of dual-ported routers (such as for
a LAN-interconnect application). In this scenario, the
router opens and closes virtual circuits (VCs) on be-
half of arriving IP datagrams. The arrival of an IP

10n leave from AT&T Bell Laboratories, Murray Hill, NJ
07974.

datagram should cause a circuit to be established, but
it is not clear how long an open circuit should be held
(a problem that was faced while carrying IP over X.25
as well [1]). While one could open and close a circuit
for each packet, it is likely that the connection setup
time will be large, and so it would be desirable to
amortize the connection setup time over many pack-
ets. Thus, the ATM adaptation layer would need to
determine that it is no longer useful to hold a circuit
and close it. This decision must be made heuristi-
cally, since IP datagrams do not carry any informa-
tion about how long a higher layer conversation, if
any, lasts.

In this paper, we formulate the holding time prob-
lem and use an empirical approach to model IP traf-
fic. We show that an LRU-based approach allows effi-
cient holding time decisions. The next section presents
background and previous work. Section 3 is devoted to
workload modeling. Sections 4 and 5 study the perfor-
mance of different holding time policies assuming one
of two pricing schemes. Finally, Section 6 presents our
conclusions.

2 Background and Previous Work

In this section, we describe the issues in designing
a VC holding policy, our assumptions, and previous
work.

2.1 Background

Four factors determine how long a VC should be
held:

1. the pricing structure in the network

2. the user’s loss of utility from a unit increase in
delay

3. the traffic arrival pattern in the network

4. the maximum number of open VCs allowed per
end-system

The pricing structure strongly influences the hold-
ing time policy. Users are typically charged for open-
ing a connection, a per-packet usage charge, and some-
times an additional holding time charge. The cost of
opening a circuit itself has two components: a mone-
tary cost charged by carriers to pay for call setup, and
a ‘delay’ cost. The delay cost measures the loss of util-
ity to a user because of the delay in opening a circuit.
A system manager can vary this cost to choose the
tradeoff between setup delays and holding time costs
for a particular topology and traffic workload.

The traffic arrival stream also influences the holding
policy. For example, if the traffic arrives in a bursty
fashion, with long inter-burst intervals, then the router
should close the connection at the end of each burst.
Unfortunately, the traffic arrival pattern depends on
user behavior and is an unknown quantity.

Some connection-oriented networks have an upper
limit on the number of VCs that any single system
may open. For example, in an X.25 network, this is
typically in the range 32 to 128 [1]. This affects the
holding time policy, since the router must close an
open circuit if a datagram arrives when there are no
circuits available.

In this paper, we assume that

1. The cost of delay can be quantified by the sys-
tem manager. However, we find that even if this
quantification is inexact, LRU-based policies (to
be discussed later) perform well.

2. The data we collected is representative of traffic
in typical IP networks.

3. The measured LAN traffic will actually be carried
over a WAN. This assumption may seem surpris-
ing at first, since current LAN and WAN traf-
fic characteristics differ widely. However, we an-
ticipate that as high speed ATM WANs become
available, higher throughputs and lower delays
will make WAN and LAN traffic look similar. For
example, given high speed wide area networks, it
is feasible to mount remote file systems, and open
client server applications (such as X) over a WAN,
whereas these options are unviable today.

4. The VC opened by a router has sufficient capacity
to carry arriving IP traffic.

2.2 Holding time policies

The optimal holding policy is one that is non-causal,
that is, it knows about future packet arrivals. While
the optimal policy is unachievable, it provides a bench-
mark against which to compare all other policies.

A natural class of causal (achievable) policies are
those that emulate the optimal policy by predicting
packet arrivals. Let the history H;(t) of conversation
i be the sequence of packet arrival times for conversa-
tion ¢ till time t. A predicior ¢(H (t),%) is a function
that takes as input the history of a conversation and
the current time ¢, and outputs an estimated next ar-
rival time for a packet on that conversation. A predic-
tor based policy uses a predictor to estimate the future
arrivals from each conversation and make its decision
in the same way as the corresponding optimal policy.
Thus, the essence of the problem is to design good
predictors.

One subclass of predictor based policies is Timer-
based, where each open VC is associated with a timer.
The timer is set using some algorithm, and when the
timeout happens, the VC is marked eligible to be
closed. Depending on the pricing policy, the VC is
either closed immediately or closed when there is a
demand for another VC. We introduce another sub-
class of holding time policies, LRU-based policies, in
Section 3.2.

The ATM adaptation layer may offer host-to-host
connectivity either by using one connection to send all
the IP traffic between a pair of IP addresses or by us-
ing different connections for different port numbers on
the same IP host. We investigated both situations and
find that our results, in terms of the relative perfor-
mance of the different policies studied, apply to both
situations. For reasons of space, we only present re-
sults for VCs between IP pairs.

We only consider policies that do not assume any
correlation between different conversations. Since
many IP conversations are duplex, some policies may
exploit the correlation between the two simplex halves
of a duplex conversation. However, the ATM adap-
tation layer at a router would probably not have the
enough information to pair the respective connections.

2.3 Previous Work

The holding time problem arises naturally in car-
rying connectionless protocols such as IP over Virtual
Circuit oriented networks such as X.25 and Datakit.
While existing implementations embody several hold-
ing time policies, we are not aware of a formal state-

ment of the holding time problem or a cuinparative
study of these policies in the literature.

The use of LRU policies is widespread in computer -

systems, particularly for paging memory (a similar
problem). While LRU-based holding times have been
used in the past [1], they have not been studied in
detail, particularly with reference to specific pricing
policies.

3 Workload modeling

We collected several traces of packet arrivals on a
loaded Ethernet by using the Unix ‘etherfind’ com-
mand. This command places the Ethernet interface in
promiscuous mode and collects all the Ethernet head-
ers received at the board, along with a time-stamp.
This command was run on Ethernets at the Indian
Institute of Technology, Delhi, University of South-
ern California, Los Angeles, AT&T Bell Laboratories,
Murray Hill, and University of California, Berkeley.
We collected several traces of 2000 - 5000 consecutive
packets at each network.

The four environments had quite distinct charac-
teristics: the data from UCB and USC was taken
from LANs with a large number of workstations which
were all active, and there were many simultaneously
active conversations. The dataset at IIT Delhi was
taken from a LAN that had a few workstations and
a number of PC’s using TCP/IP. The number of ac-
tive connections here was significantly lower and the
data consisted of a fewer number of connections being
sampled for a larger period of time. The AT&T Bell
labs dataset was taken on a network with a small num-
ber of active workstations and had somewhat similar
characteristics to the IIT Delhi dataset. All data was
filtered to remove broadcast packets.

3.1 Data Analysis

Even before we collected traces, based on the ap-
plication level characterization work by Caceres et al
[2], our intuition was that packet arrivals on each
conversation would alternate between two time-scales
that we dubbed ‘user time-scale’ and ‘network time-
scale’. The idea is that some usage of the network
must be mediated by a human user, and thus shows
relatively long inter-packet gaps, while other usage is
mediated directly by a computer, and so will have
relatively shorter interpacket gaps. As an example,
during an FTP session, a human user may type ‘get
< filename >’, where each keystroke is at the user
time-scale. However, in an uncongested network, the

10

8

Tivr 6

(seconds) 4 |2
2

4 6 8 10
z; (seconds)

Figure 1: Scatter plot

response would be a stream of back-to-back packets
at the network time-scale. A user would typically not
generate packets at that speed. The presence of two
time-scales would result in temporal locality of ref-
erence, since packet arrivals at the the network time
scale would all refer to the same conversation.

We tested this hypothesis in two ways: by looking
at scatter plots, and by examining the frequency of
reference to each level of an LRU stack.

Let the sequence of inter-packet intervals be [z;].
A scatter plot graphs (z;, zi+1) for each value of i. A
typical scatter plot is shown in Figure 1. Note that
while most points are close to the origin, there is some
clustering along the axes. This indicates that the most
common behavior is that of successive short inter-
packet gaps (drawn from the network time scale), with
longer gaps once in a while (drawn from the user time
scale). Two long gaps occur together rarely. Since
the density along the axes is nearly uniform, the user
level interpacket arrival time distribution can be ap-
proximately modeled by uniform random distribution.

More insight was gained by building a simulator
that read a trace, and pulled each reference to a con-
versation to the top of a stack. It also kept track of
the number of references to each level of the stack. A
little thought shows that if our hypothesis is true, then
the frequency of references to the upper levels of the
stack would be higher than the frequency of references
to the lower levels of the stack. Indeed, all our data

- show a steep decline in the frequency of reference to

a stack level as the depth increases (Figure 2 shows
two examples). This confirms the hypothesis and also
indicates strong temporal locality of reference.

100 T T —— T
Sg B }ru.l —]
- ru.2 — -
Percent 40 |
20 -
0 1 1]] 1
0 10 20 30 40 50 60

Depth in Reference Stack

Figure 2: Cumulative references vs LRU stack depth

3.2 LRU-based policies

The presence of temporal locality in the data sug-
gests that if a conversation has been pushed to a lower
level in the LRU stack, then it is less likely to be refer-
enced soon. Thus, if we drop conversations that have
been pushed beyond some threshold level of the stack,
it is likely that we will be dropping the right ones.
This is the key idea in an LRU-based holding time
policy.

Note that LRU can be viewed as a predictor based
scheme where the prediction of future arrival on a
VC is a monotonically increasing function f of the
elapsed time since last packet arrival on that VC. We
may choose any monotone function to work with, the
simplest being the identity function. Note that this
predictor uses only the last packet arrival time infor-
mation, and ignores the rest of the history.

In the rest of the paper, we will present two rea-
sonable pricing schemes, and show how a LRU based
approach helps us in selecting the right conversation
to drop in the context of each pricing scheme. The
point to remember is that the presence of temporal
locality in the data is what makes LRU attractive.

4 Pricing scheme 1: Paging model

In this pricing model, a fixed amount is charged
for the total number of connections provided to a site.
There may be an additional per-packet charge or a call
setup charge. We will assume that there is no holding
time charge, so that an open VC should be held until
the limit on the number of open connections has been
reached 2. This type of pricing scheme is common in
X.25 networks.

2We discuss the case where there is a holding time charge in
the next section.

4.1 Holding policies

In this model, the holding time problem reduces to
a paging problem, where a fault occurs when a packet
arrives at a VC that is currently not open [1]. On a
fault, an existing VC must be closed and a new VC
opened. Thus, the holding time policy is simply an al-
gorithm to choose the VC which is to be closed. A pre-
dictor based policy would use a predictor to estimate
the future arrival times for each VC and then discard
the conversation with the largest predicted idle period.
We now discuss four classes of holding policies, then
evaluate them on our data sets.

The first policy, the optimal policy, is to sim-
ply drop the conversation which will be inactive for
the longest period of time. Since the optimal pol-
icy requires knowledge of the future, it is not imple-
mentable. To put this in perspective, we studied a
second policy that uses no knowledge about the con-
versations, and discards an existing conversation at
random when a new one needs to be opened.

The third class of policies was timer based. The
strategy was to estimate the distribution of inter-
packet gaps for a particular VC based on past history.
The estimation algorithm was derived from Jacobson’s
work on good estimators for round trip times [3]. Let
I be the kth inter-reference gap for a VC. The mean
inter-reference gap I and the standard error & were
estimated as:

pp=ali+(1-a)ik,0<a<1
or = Ifk - I
Gre1 = aog + (1 —)0k

After each packet arrival on a VC, a timer is set to
timeoutg4 = fk+1 + 2641

If no reference has occurred to a VC before its time-
out, the VC is marked eligible to be dropped. On a
fault, we drop the eligible VC with the most elapsed
time since last packet arrival. In the case there are no
eligible VCs, we drop the VC with the largest remain-
ing timer value.

We studied a number of variations of this basic
scheme. For example, note that the timeout for a VC
is set at time t; when the last packet arrives at that
VC. However, the decision point t; where we must
choose to drop or hold the VC, comes later. At this
time, the quantity we actually need is X;;, the ex-
pected time of next reference to this VC given that
no packets arrived in the interval [tx,¢;]. This de-
pends upon the distribution for I; and the elapsed

Dataset from AT&T
I 1) | 1
Opt —
Timeout -—]
LRU — 7]
Random —-=— 4

Opens

1 [

0 02 04 06 08 1
7 (ratio to demand)

Figure 3: Total cost vs y: Paging model

Dataset from AT&T
n T 7 L T]
- Cimeout —o— -
Ratio - VTR ——]
3& l - hdom ~o—

0 02 04 06 08 1
7 (ratio to demand)

Figure 4: Normalized cost vs v: Paging model

time £; — tz. Using several reasonable models for the
nature of this distribution we derived formulas which
approximated X;;. However, we found that none of
the variations, despite the increase in complexity, had
any significant effect on the performance of timeout
based schemes. Hence, for reasons of space, we will
not describe these variations further. In recent work,
Lund, Phillips and Reingold have shown that main-
taining an explicit histogram for I; can improve pre-
diction accuracy [4]. However, this requires substan-
tial additional storage at each router.

The fourth policy was LRU-based and simply closed
the VC at the bottom of the LRU stack when a new
VC is needed.

4.2 Evaluation of Policies

All four holding time policies were simulated on
each of the traces. The input parameters to the simu-
lator are the trace file, the limit on the number of avail-
able VCs (denoted) and the holding policy to use.
Each trace contains the packet arrival time, source,
destination and port number for each packet. The
statistics required by individual holding time policies

were maintained and updated when each packet was

. processed. To implement the non-causal policy, we

pre-processed the data to obtain information about
the next arrival time.

Each trace has a certain total number of connec-
tions on it, denoted demand. Thus if the demand is
less than v, a connection is never dropped. In our
study we varied v from 10% of the demand to 90% of
the demand and measured the number of connection
establishments (opens). To be able to compare across
datasets, we measure 7 in terms of its ratio to the de-
mand. Figure 3 shows the results for a representative
trace. As expected, the number of opens decreases as
v is increased. The non-causal strategy is significantly
better than any of the others though the gap seems to
narrow as v increases. This agrees with expectations.

To get a better feel of the relative performance of
the strategies, we normalized the cost to the cost of
the optimal strategy. Figure 4 shows a representative
result. All the schemes performed well when running
at 90% demand, when the ratio to optimum was close
to one. We notice that LRU is consistently better
than the others though the difference narrows when
is larger than roughly 0.6.

Table 1 shows the normalized cost of a policy av-
eraged over all the traces from all sites. Surprisingly,
Timeout is only slightly better than Random (about
4%). LRU performs better than either of these poli-
cies. As 7 is increased from 10% to 90% of demand,
we see that the performance of LRU improves steadily
whereas that of Random and Timeout first degrades
and then improves.

The poor performance of Timeout was surprising.
We investigated to check whether our prediction strat-
egy was doing a reasonable job. We found that
62 — 69% of the inter-arrival gaps lie in the interval
[{ — 6,1+ 6] and 78 — 87% of the inter-arrival gaps
lie in the interval [I — 26,1 + 26]. So, the packet-
arrival pattern does fit the model assumed by Time-
out. The problem is that while the network time scale
interarrival time distribution is captured by Timeout,
the decision to page out a conversation depends on
detecting relatively large periods of inactivity which
is based on the tail of the inter-arrival time distribu-
tion corresponding to the user time scale. In terms of
our observations in Section 3, in a cluster of closely
arriving packets, Timeout predicts successive arrivals
well, but when the large gap occurs, Timeout does
poorly, since it has tuned its parameters to the pre-
ceding burst. Even a small gap after a burst causes
a timeout. On the other hand LRU does well, since
bursty VCs stay on top of the LRU stack and long

Table 1: Relative performance: Paging model

v Timeout | LRU | Random
0.09 | 1.98 1.59 | 1.96
0.18 | 2.10 1.55 | 2.19
0.30 | 2.30 1.51 | 2.37
0.45 { 1.93 1.38 | 2.25
0.61 | 1.33 1.25 | 1.57
0.76 | 1.14 1.13 | 1.15
0.91 | 1.05 1.05 | 1.06

gaps are compared on an absolute time scale.

Recall that the LRU scheme’s predictor uses only
the last packet arrival point in the history, and ig-
nores the rest. This should contrasted with the more
complex prediction methods used by the timer based
schemes, which, in a sense, use the entire past his-
tory to construct a predictor. One may think of many
intermediate solutions. For instance we investigated
policies that use a little more history than LRU- for
example, policies that use the last two arrival points
in the history. We were not able to get any consistent
improvements over LRU using these variations.

5 Pricing scheme 2: Holding cost

model

Future ATM networks should allow each end-
system to open a large number of virtual circuits, so
we do not expect the number of open VCs to be the
resource constraint. However, we expect there to be a
charge for each unit of time that a circuit is kept open,
whether or not it is used, so as to encourage users to
free reserved per-VC resources when not needed. This
holding time charge fundamentally changes the way in
which the holding time policy needs to work.

Assume that there is a call connect charge of C
monetary units, and a holding time charge of H mon-
etary units per time unit. In addition, let U denote the
loss of user utility (in monetary units) due to a setup
delay when setting up a VC. Then, C +U denotes the
monetary cost of a call setup.

As an example, assume that a service provider
charges 2 monetary units for call setup, and 1 mon-
etary unit for every time unit that the call is kept
open, irrespective of the traffic carried (there may be
an additional charge per unit traffic, but that does not
change our argument). Suppose that the call takes 1
time unit to setup due to propagation and call setup

delays. Then, & manager may decide, as discussed

- above, that this additional delay has a monetary cost

of 5 units. Thus, the true cost of opening a VC would
be 7 monetary units. We will denote C' + U as O, the
opening cost of a VC.

5.1 Holding policies

The critical parameter in deciding when to close a
circuit is the ratio O to H, denoted A (measured in
time units). Suppose that a packet has arrived at a
VC at time t. If the next packet arrival is expected
more than A in the future, then holding the VC till
the next packet arrival is more expensive than closing
it, and opening it again later. On the other hand, if
the next packet is expected before A time units, we
should hold the VC till the next arrival. Thus, any
holding policy must estimate the next packet arrival,
and close the VC if this exceeds A. We now describe
three families of holding policies for this cost model.

The non-causal optimal scheme is trivial - if the
next arrival is more than A time units in the future,
the VC is closed, else it is kept open.

Any timer-based strategy for choosing a holding
time must proceed as follows: keep the connection
open for some time T' > 0, and if no packet arrives,
drop the connection. The only issue is the choice of
T. We model the inter-arrival times as being sampled
from some unknown underlying distribution x, where
each inter-arrival gap is an independent sample. The
choice of T depends in a non-trivial way on x. For
instance, if we know that a packet will arrive within
¢ time with probability 1/2 and otherwise will arrive
at time ¢t >> A than the optimum strategy is to set
T = ¢. The answer is completely different if x is the
uniform distribution with the same mean and stan-
dard deviation.

Since we are working only with the estimated mean
and deviation, our knowledge of the distribution is
limited. We denote the exponentially averaged value
of the inter-arrival times as I (a was chosen to be
0.1). Let the estimated mean deviation from I be o.
We will try to model x using I and o.

It is likely that the bulk of the mass of x lies in
the interval [I — 20,1 + 20]. So, if I — 20 > A, then
the VC should be closed immediately. Similarly, If
I+20 < A, then the VC should be kept open, at least
till I + 20. If A lies in the interval [I — 20,1 + 20],
then we have to make some assumptions about how
the probability mass is distributed within the interval
[I — 20,1 + 20]. For simplicity, we assume that the
mass is concentrated around the mean and so we close
the circuit if I > A and keep it open otherwise. Thus,

at the time of a packet arrival, we close ihe ciicuit if
I > A, and keep it open if I < A. How long should
the VC be kept open? The timeout value T is set to
maz(I + 20, C) where C is is a cutoff parameter that
ensures that even during a burst we keep the circuit
open for a reasonable time. In our work, we chose
C = A/5. However, we have seen that the results are
insensitive to choice of C in the range A/3 to A/6.

In our work, we estimate only the mean and stan-
dard deviation of x. In recent work, Lund et al have
shown that improved performance can be gained by
maintaining a histogram of the distribution [4].

The third class of policies is LRU-based. We have
already observed in Section 3.2 that LRU may be mod-
eled as implicitly using a predictor which is a mono-
tone function of the elapsed time since the last packet
arrival. Thus, a simple predictor consistent with LRU
is one which predicts the next arrival time of a packet
to be ¢ times the elapsed time since the last packet
arrival, where ¢ > 0 is any constant. Applying this
method of predicting future arrivals we get a simple
scheme: drop a conversation if it has been idle for A/c
time units. This scheme, which we call the LRU-delay
based scheme, has a nice property:

Lemma 1 The cost incurred when using the LRU-
delay based scheme with parameter ¢ is no more than
maz(c,1/c) + 1 times the optimal cost.

To prove this, observe that the worst case in-
put is one where the packets arrive A/c time units
apart. The optimal cost of serving this sequence
is min(A,A/c)H per packet whereas our algorithm
spends (A/c+ A)H. Thus, we can guarantee that the
cost incurred is no more than maz(c,1/c) + 1 times
optimum.

Though the LRU-delay based scheme is straight-
forward, we would like to use more of the inter-arrival
time history. To do so, we introduce a new concept,
the inter-reference interval to a level of an LRU stack.
We expect that due to temporal locality, the inter-
reference interval to an LRU stack level will increase
with the stack depth. Thus, maintaining statistics per
stack level will show more stability than maintaining
statistics per VC. Put another way, our intuition is
that knowing that a VC has reached a particular stack
level is more indicative of when the next packet is go-
ing to arrive at the VC than the per-VC statistics
(which is what the timer-based approach uses).

Thus, in the LRU-statistics scheme, we maintain a
per-level exponentially averaged mean inter-reference
interval. When this mean is larger than A, any VC
entering the level is automatically closed. We do

Dataset from UCB

22000 — T T T 1
20000
18000
16000
14000
Total 12000
Cost 10000
8000
6000
4000

Opt —
Timeout -e—

LRU (delay) —
2008 ., LRU (statigtics),

0 1 2 3 4 5 6 7 8
Open Cost/Holding Cost (seconds)

1111 11

Figure 5: Total cost vs A: Holding cost model

Dataset from UCB

13 N S B D
.18 Timeout -e— _|
Ratio 377 1 (delay) — -
to 16k LRU (stalisties) _—— -

Opt 15 P\ .
ig) | |] 11 —

0 1 2 3 45 6 7 8
Open Cost/Holding Cost (seconds)

Figure 6: Normalized cost vs A: Holding cost model

maintain statistics for an infinitely large LRU stack,
though, so that if a level that initially has a mean
larger than A later attains a mean smaller than A, we
automatically hold VCs that enter that level.

5.2 Evaluation of policies

The various schemes mentioned above were simu-
lated on each of the traces. The simulation technique
was similar to that in Section 4.2 except that there
is no limit to the number of open connections. In-
stead, we make the decision to keep a connection open
independent of the other connections. For the LRU
based schemes, we examine the reference stack after
each packet is processed to check whether a connec-
tion needs to be dropped. For Timeout and non-causal
optimum, after a packet is processed, we make a deci-
sion as to whether the corresponding connection is to
be kept open or not. For Timeout we also maintain a
list of active timeouts and service them.

Table 2: Relative performance: Holding cost model

A Timeout | LRU (statistics) | LRU (delay)
0.25 | 1.76 1.78 1.68
0.50 | 1.82 1.71 1.54
1.00 | 1.87 1.59 1.48
2.00 | 1.756 1.53 1.47
4.00 | 1.63 1.52 1.46
8.00 | 1.52 1.39 1.42

We varied A from 0.25 to 8.0 and computed the
total cost incurred for each dataset using each of the
holding policies (here, for the LRU-delay based pohcy,
we use ¢ = 2). In Figure 5 we plot the variation in
cost as A is varied for a sample dataset (the other
datasets showed similar behavior). The cost increases
as A is increased. This is to be expected as a larger A
implies that each open costs much more. Even though
the number of opens decrease when A is increased, the
holding time costs go up while the costs associated
with opens do not decrease. The non-causal strategy
is significantly better than any of the others though
the gap narrows as A decreases.

To compare relative performance of the strategies
across different values of A and different datasets, we
normalize the cost by dividing by the cost of the non-
causal optimal strategy on the same data. A sample
of the resulting values are shown in Figure 6. Table 2
lists the average taken over the all traces of the nor-
malized cost of each policy. Timeout is consistently
the worst, though its relative performance is not as
bad as in the paging model. The LRU-delay based
policy is the best, and LRU-statistics performs rea-
sonably well. We see that the performance of LRU
based policies improves as A is increased whereas that
of Timeout first degrades and then improves.

The LRU-statistics scheme performs quite poorly
for values of A < 1 while in the range 1 < A < 4
the performance is within a few percent of the LRU-
delay based scheme. For A > 8 the LRU-statistics
scheme is slightly better than the LRU-delay based
scheme. The LRU-statistics scheme is always better
than the timeout scheme, except for small A where
the two schemes are comparable. A possible expla-
nation for this behavior is that although the mean
inter-reference gap at the current position of a VC on
the LRU stack is a better predictor than the per-VC
history, the prediction is effective only towards the tail
of the LRU stack and is ineffective in the intermedi-
ate levels (as A is increased, the cutoff point on the

1.9 — T T T T T 1T
1.8
Ratio 1.7
to 1.6
Opt 15
14
1'3 1 1 1 1 1

1 2 3 45 6 7 8
Open Cost/Holding Cost (seconds)

Figure 7: Sensitivity of LRU(delay) strategy to c:
Holding cost model ’

LRU stack moves towards the lower levels.) Thus, for
large A the LRU-statistics scheme may be preferred
over LRU-delay. However, this must be balanced by
the additional implementation complexity.

For the LRU-delay based policy, to arrive at an ap-
propriate choice for ¢ we studied the variation in per-
formance for different values of ¢ (Figure 7). We find
that ¢ = 2 (i.e. drop a conversation if it has been idle
for A/2 time units) works best. We notice that for
A > 2 the variation in performance is not large, the
best strategy giving a ratio of 1.4 and the worst giving
a ratio of 1.55 even though c is varied by a factor of 6.
Although, this may seem surprising at first, there is a
simple explanation. The LRU reference pattern indi-
cates that initially there is a sharp drop in references
as we move down the reference stack. After the first
10 levels the drop is much smoother. If we set the cut-
off parameters in such a way that connections on the
top 10 levels of the reference stack, which account for
90% of the references are undisturbed, and we drop
connections beyond that, we will do quite well. Thus,
we have considerable latitude in the intermediate por-
tion of the reference stack since increasing the cut-off
depth decreases open costs while increasing holding
costs. These two costs tend to balance out, provided
we do not go deep into the tail of the LRU reference
curve. This feature has a nice consequence, that even if
A is known imprecisely, the LRU-delay based strategy
will work well.

6 Conclusions

We have done a detailed empirical examination of
various holding time policies, assuming two different
network pricing schemes. We propose a novel formula-
tion of the holding time problem that incorporates the

1ssue of network pricing. We collected data to empit-
ically model the workload. The data shows temporal
locality of reference in all traces. LRU based hold-
ing time policies use this temporal locality effectively
and perform better than any other strategy examined.
To our surprise, timer based schemes perform poorly.
However, the LRU-delay scheme, which corresponds
to a fixed system-wide timeout, is effective and trivial
to implement. We have studied a number of variations
of holding time policies and have found that none of
the variations offer significant improvements in perfor-
mance over the basic strategies discussed here.

7 Acknowledgements

We wish to thank Bruce Mah at UC Berkeley and
Peter Danzig at the University of Southern Califor-
nia for helping collect the traces. Thanks also to Ra-
mon Caceres at Matsushita Labs, who suggested the
relevance of pricing in studying holding times, and
made several useful comments on an earlier draft of
this work.

References

[1] R. Caceres, “The Pyramid IP to X.25 Protocol
Interface: Merging DDN and PDN Approaches”,
Proc. Uniforum (1987), Washington, DC, 1987.

[2] R. Caceres, P.B. Danzig, S. Jamin and D.J . Mitzel,
“Characteristics of Wide-Area TCP/IP Conversa-
tions”, Proc. ACM SigComm, September 1991.

[3] V. Jacobson, “Congestion Avoidance and Con-
trol”, Proc. ACM SigComm, August 1988.

[4] C.Lund, S. Phillips, N. Reingold, “Adaptive Hold-
ing Policies for IP over ATM Networks”, Submitted
to ACM SigComm 1994, February 1994.

