
Queueing Delays in Rate Controlled ATM Networks

Anindo Banerjea

CS Division, University of California, Berkeley, CA 94704

and International Computer Science Institute, Berkeley

Srinivasan Keshav

AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

Abstract
This paper addresses the problem of finding the worst case
end-to-end delay and buffer occupancy bounds in ATM net-
works with rate-controlled, non-work conserving servers.
A theoretical framework is constructed to analyze such
servers in isolation and in tandem. The analysis is based
on a simple fluid model, but care is taken so that the com-
puted delay and buffer occupancy values are upper bounds
on actual values. A simple algorithm is presented to per-
form these calculations in linear time. Simulation results
compare the computed worst case delays with the actual
delays obtained on some simple network topologies. The
algorithm is found to predict node delays well for bursty
input traffic, but poorly for smooth input traffic. Buffer
requirements are predicted well in both cases.

1. Introduction

Recent work has shown that framed, non-work-
conserving servers can provide end-to-end delay bounds to
users who need strict guarantees on network performance
[15]. By framed we mean that the servers work on the
basis of a fixed size interval called the frametime, during
which they allocate a number of transmission slots to each
channel being served. We assume that during each slot a
fixed size packet or ATM cell is transmitted on the output
trunk. By non-work-conserving we mean that given enough

A. Banerjea was supported by the National Science Foundation and
the Defense Advanced Research Projects Agency (DARPA) under
Cooperative Agreement NCR-8919038 with the Corporation for Na-
tional Research Initiatives, by AT&T Bell Laboratories, Hitachi,
Ltd., Hitachi America, Ltd., the University of California under a MI-
CRO grant, and the International Computer Science Institute. The
views and conclusions contained in this document are those of the
authors, and should not be interpreted as representing official poli-
cies, either expressed or implied, of the U.S. Government or any of
the sponsoring organizations.

cells in the queue, the server will send out exactly the allo-
cated number of ATM cells (the chunksize) in each frame,
even if this will leave the output trunk idle. The server is
free to serve these cells during any portion of the frame. If
there are fewer than chunksize cells in the queue for the
channel, the server will send out the available cells, then
use the free slots for non-real time traffic. Examples of
such servers are those that obey the Hierarchical Round
Robin (HRR) and the Stop-and-Go service discipline [8, 7].
These servers simultaneously serve a number of frames of
different lengths so that a choice of frametimes is available
during channel establishment.

While earlier work considered the behavior of a single
server [KKK 90], and of ‘smooth’ traffic traversing a
sequence of identical servers [7, 15], the general case,
where a circuit carrying bursty traffic may be served at a
different framing interval at each server, was not analyzed.
This paper determines the upper bound on the end-to-end
queueing delays and buffer requirements at each queueing
point for a simplex channel established over any sequence
of framed non-work conserving servers. We present a for-
mal modeling of a tandem of such servers and use it to
compute the worst case end-to-end delay and buffer
requirements. These are then compared with simulation
results.

2. Previous Work

Traditionally, end-to-end delays have been computed
for Poisson arrivals, and for the average case, since this
makes queueing theoretic analysis easier. In contrast, we
will assume parametrically constrained inputs and compute
worst-case delays. This type of analysis was first proposed
by Cruz who used it to analyze some work-conserving
scheduling disciplines [2, 3]. In recent work, Cruz has also
computed delay bounds for non-work conserving disci-
plines, but this analysis does not explicitly consider the
effects of different frame sizes at different servers, resulting

in weaker delay bounds [4]. Kurose has computed tight
delay bounds not only for the maximum delay, but also for
the delay distribution [10]. However, this work assumes a
work-conserving service discipline, and a stronger charac-
terization of input traffic than ours.

Parekh and Gallager [12, 13] have computed worst
case delays assuming sources were leaky bucket compliant
and the servers used the Packetized Generalized Processor
Sharing (PGPS) scheduling discipline. This is a work-
conserving discipline and so different traffic streams can
interact with each other. Thus, their analysis is necessarily
more intricate than ours, since with non-work conserving
disciplines, competing traffic streams interact minimally.
On the other hand, we model the phenomenon of ‘slippage’
(to be described below) and this introduces complexities
that are not found in their analysis. We have used their
notion of ‘greedy’ sources extensively in our work.

Our formal modelling of a message stream and of a
server as a transformation on a message stream is based on
the recent work of Low and Varaiya [11]. While they use
their model mainly to analyze burstiness, we use it for exact
transient analysis of a tandem of rate-controlled servers.

Our server model is based on the HRR servers
described in [8]. The Stop-and-Go discipline proposed by
Golestani [7] is closely related to this discipline, and the
techniques we propose can be used to analyze Stop-and-Go
as well. As currently described in the literature, the delay
and delay jitter bounds for Stop-and-Go are valid only
when a connection is allocated the same frametime at all
servers along the path, and the source is assumed to be
smooth at the time scale of a frametime. Our analysis can
be trivially extended to provide delay and delay jitter
bounds for Stop-and-Go when a connection can be assigned
to different frametimes at different servers, or when it is not
smooth at the time scale of a frametime.

3. Network Model

In our model a channel is associated with a static path
through the network and has state and reserved resources at
each switch along this path. Since a rate-controlled server
isolates the traffic flowing along each channel from the
traffic on other channels, we focus our attention on the per-
formance of a single channel in the network. We first char-
acterize the input traffic, then present a series of definitions,
lemmas and theorems that allow us to present an algorithm
to compute the worst case delay and buffer bounds.

3.1. Input Traffic Model

We characterize the traffic entering the channel with
three parameters as suggested in [5, 6]:

xmin The minimum cell inter-arrival time.

xave The minimum average cell inter-arrival time, over any
time interval of length I.

I The averaging interval for calculating xave .

Recent work has shown that this model accurately
describes many types of rate-controlled traffic expected in
high-speed networks [14]. We assume that the user of the
channel is required to obey these restrictions on the input
traffic, and the delay and buffer values calculated need only
hold if these restrictions are not violated.

3.2. Definitions

Our notation draws from, and extends, that used in
Reference [11]. We define a message as a temporal flow of
data represented by a bounded non-negative function
m(t) , 0≤t≤T where m(t) is the instantaneous rate at time t
in cells/sec and T < ∞. The interval [0 ,T] is called the time
space and is denoted by TS. The cumulative message curve

M(t) =
0
∫
t

m(t) and is the amount of the message seen till

time t. The inverse of M = M− 1 is defined as the earliest
time at which M(t) amount of message has been seen. The
interval [0 ,M(T)] is the message space and will be denoted
by MS.

A server is a device that takes an arriving message
m in (t) and transforms it into a departing message. The
arriving message at a server is defined by its arrival curve

A(t) =
0
∫
t

m in (t) and the departing message is defined by

the service curve S A (t) = =
0
∫
t

m out (t). Every server is

associated with a queue. A message is stored in the queue
from the time that it arrives till the time it is served. The
instantaneous amount of data in the server (queue size) is
denoted by Q A (t) = A(t) − S A (t). The maximum queue
size Q * is defined as

t ∈ ∈ TS
Max Q A(t) . The queueing delay

D A (m 0) = SA
− 1 (m 0) − A− 1 (m 0) is the time between the

arrival and departure of the m 0 prefix of the message. The
maximum queueing delay D * is

m ∈ ∈ MS
Max D A (m).

A cumulative message curve M(t) will be called
piecewise linear constrained (PLC) if it is made of piece-
wise linear segments. A greedy source is one that sends
data at the maximum rate possible and at the earliest
moment possible. A parametrically constrained source
(PCS) is a source that obeys the following constraints:

(a) the rate of message transmission m(t) ≤ 1/ x min

(b) over all intervals of time of length I and all time t,

t
∫

t + I

m(t) dt ≤ I / x ave ,

where xmin, xave and I are the three parameters constraining
the source. A parametrically constrained greedy source
(PCGS) will send at rate 1/ x min until I / x ave packets are
sent, then will remain idle until time I. After this, the
behavior will repeat, until the entire message has been sent.
Clearly, a PCGS is PLC. The cumulative message curve
M(t) for a PCGS source is shown by the dashed line in

Figure 1.

For a given set of parametric constraints
xmin , xave , and I a specific interval [t 0 ,t 0 + I] ⊆ ⊆ TS is
denoted by IS and is completely specified by choosing t 0,
the origin for the interval. A PCS obeys the average rate
rule over any interval IS.

A server is called a fixed rate server with service rate
ρ if its output message

m out (t) = Φ(m in) (t)

= m in (t) if m in (t) ≤ ρ and Q A (t) = 0

= ρ if m in (t) > ρ or Q A (t) > 0.

3.3. Exact Analysis of a Tandem of Servers

We now state some theorems about the behavior of
fixed rate servers with PCS inputs. We first look at a single
server, then consider servers operating in tandem, and
finally introduce, define and analyze servers with slippage.
For reasons of space, we defer proofs to Reference [1].

3.3.1. Single Server

Lemma 1.1: If traffic generated by a PCS M in (t) is input to
a fixed rate server with rate ρ ≥ 1/ x ave , then any interval of
time during which Q Min

(t) > 0 continuously has to be of
length < I.

Lemma 1.2: If the input to a fixed rate server is PCS then so
is the output.

Theorem 1.1: For a fixed rate server of rate ≥ 1/ x ave , the
largest possible queueing delay D * and the largest possible
queueing size Q * over all possible PCS input messages are
achieved by a parametrically constrained greedy source
(PCGS).

Corollary: The maximum queue size achieved by any PCS

is less than that achieved by a PCGS at time
xave

I x min_ _____ from

the start of the interval.

This tells us that for a single fixed rate server, the
worst case queueing behaviour is observed on sending in a
PCGS input to the server, and occurs within the first I time
units. Thus, we can compute D * and Q * simply by study-
ing the behavior of a PCGS traffic input over a single time
interval of duration I.

3.3.2. Tandem of Servers

A tandem of servers is defined to be a set of servers
numbered 1 . . . N such that the output of server i is the
input to server i + 1. There may be a fixed propagation
delay in between servers. In this analysis, the delay is irrel-
evant and is assumed to be 0. For a tandem of fixed rate
servers, the service curve of server i is the arrival curve for
server i + 1.

Lemma 2.1: If the input to a fixed rate server is from a

PCGS, then the output is PCS. If ρ > 1/ x min then output is
identical to the input, otherwise it looks like a PCGS with
x′min = 1/ρ and x′ ave = xave .

Theorem 2.1: All of the fixed rate servers in a tandem
achieve the largest possible delay and the largest possible
queue size when the input to server 1 is PCGS as compared
to any other PCS source with the same parameters. More-
over, this occurs within the first I time units of the PCGS
stream.

Theorem 2.1 extends the result from the case of a single
server to that of a tandem of servers. Thus, even for a tan-
dem, we can calculate bounds by studying a single traffic
input for a limited period of time.

3.3.3. Slippage

Consider a source that has been allocated a service rate
of, say, 1 cell per frame at some server. A source may try to
fool the server in the following way: it sends one cell at the
start of the frame time, and when it knows that the that cell
has been served, send another cell within the same frame
time. If the server schedules the VCI for service immedi-
ately upon the arrival of the second cell, then the source
will be able to have two cells served per frame time
whereas it would have paid for only one. To prevent this,
some servers maintain two sets of VCI service lists [8]. If a
cell arrives on a VCI that has an idle queue, the VCI is
placed in the ‘idle’ service list. At the end of the frame
time, the ‘idle’ and ‘active’ service lists are swapped. This
prevents sources from overusing the server, but at the cost
of added delay for the first cell that arrives to idle VCI. We
call this additional delay slippage. Slippage may also occur
if a switch stores state information for inactive VCIs in sec-
ondary storage, so that when a cell arrives to an idle VCI,
there may be some time lost in fetching VCI state.

After the slippage time, the flow is continuous until
the queue becomes empty. The channel is then again made
inactive. In a HRR server, the channel remains inactive up
to one frametime, which is the slippage for the server. A
bounded slippage fixed rate server with slippage bound s
and rate ρ has the following properties.

(a) If Q Min
(t) = 0 then m out (t) = 0

(b) If Q Min
(t 1) = 0 and Q Min

(t 1 + †) > 0 then

t 2 ∈ ∈ TS
]--- { t 2 t 2 ≤ t 1 + s } and

t 3 ∈ ∈ TS
]--- { t 3 t 3 > t 2 }

such that m out (t) = 0 in [t 1 ,t 2), m out (t) = ρ in
[t 2 ,t 3) and Q Min

(t 3) = 0.

In other words the slippage (the length of the interval dur-
ing which the server remains inactive after Q Min

(t)
becomes non-zero) varies from 0 to s.

A fixed slippage fixed rate server with fixed slippage s

† f (t 1 +) is the limit from the right of f(t) at t 1. That is, the queue
becomes non zero after t 1.

and rate ρ is a server of the above type such that in (b)
above t 2 = t 1 + s. This server is deterministic and the slip-
page is always s.

The following theorems and lemmas are useful when
s << I. We expect this to be the common case.

Lemma 3.1: If the message curve M in (t) generated by a
PCS is input to a bounded slippage fixed rate server (ρ ,s)

having ρ >
xave (I − s)

I_ ________ then any interval of time during

which Q Min
(t) > 0 continuously has to be of length < I

Lemma 3.2: If the message curve M in (t) generated by a
PCS is input to a bounded slippage fixed rate server (ρ ,s)

having ρ >
xave (I − s)

I_ ________ then the output is PCS.

Theorem 3.1: The queueing delay and queuesize of a
bounded slippage fixed rate server (ρ ,s) having rate

ρ >
xave (I − s)

I_ ________ over all possible PCS inputs are bounded

by the D * and Q * achieved by a PCGS input to a fixed rate
server with fixed slippage s.

By Lemma 3.1 and the periodic nature of a PCGS D *
and Q * occur within one interval of length I. Thus, we only
need analyze the system for the first I time units, with a
PCGS source, to find the delay and queue size bounds.

Note: From this point on we assume ρ >
xave (I − s)

I_ ________.

3.3.4. Tandem of Fixed Rate Servers with Slippage

We now introduce a relative definition of greediness.
A message curve M(t) is said to be greedy with respect to
some constraint set CS where CS is a set of message curves

if
N(t) ∈ ∈ CS

V−
m ∈ ∈ MS
V− M− 1 (m) ≤ N− 1 (m).

A server maps a message curve M(t) into a output
message curve S M (t). Thus it can also be thought to map
sets of messages corresponding to all legal inputs (∈ ∈ CS)
to sets of messages corresponding to all the outputs to the
messages in the input set CS. Loosely, we can also use the
symbol Φ to denote this transformation.

Lemma 4.1: If the input to a fixed slippage fixed rate server
is greedy with respect to the set PCS of message curves
which are PCS, the output is greedy with respect to the set
of message curves Φ(PCS) which are the outputs for the
message curves in the input set.

Theorem 4.1: The queueing delay and queuesize of a tan-
dem of bounded slippage fixed rate servers (ρ i ,s i) having

rate ρ i >
xave (I − s)

I_ ________ over all possible PCS input mes-

sages are bounded by the D *s and Q *s achieved by a
PCGS input to a tandem of fixed slippage fixed rate servers
(ρ i ,s i).

From the theorems above, we can compute upper
bounds on the queueing delay and queue size for a tandem

of bounded slippage fixed rate servers for any parametri-
cally constrained input by assuming PCGS input to server 1
and assuming fixed slippage at each of the servers. This is
a simplified and deterministic system with fixed and com-
putable curves M i (t) at the output of each server i. More-
over, by Lemma 3.1, we only need to look at any one inter-
val IS.

The system can be analyzed graphically in a manner
similar to [13] as follows: We start with M 0 (t) as the
greedy input curve. Apply the series of transformations Φ i

as defined by the definition for fixed slippage fixed rate
servers and the parameters (ρ ,s), to this curve for
i = 1...N, the number of servers in the tandem, to get the
series of intermediate message curves M i (t).

One way to do this would be to construct M 0 (t) as a
set of points in the MS×IS plane, using enough points to
ensure accuracy, then apply Φ 1 to each of them to get the
output from the first server, and so on for each Φ i . This is
computationally expensive, and also requires too much
communication in case the computation needs to be done in
a distributed fashion (all the points in M i (t) need to be car-
ried across from server i to i+1). We need some short hand
to describe M i (t).

3.3.5. Envelope of the Curve

We define the envelope of M i (t), ε i (t), by construc-

tion as follows. ε 0 is the PCGS message curve input to

server 1, as shown by the dashed line in Figure 1. ε i the
envelope of the output from server i (with rate ρ i and slip-

page s i) is constructed from ε i − 1 the envelope of the out-
put from server i − 1 as follows :
Let:

t 0 = Min { t ∈ ∈ TS ε i − 1 (t) = 0 andε i − 1 (t +) > 0}

t 1 = Min { t ∈ ∈ TS ε i − 1 (t) = ρ i (t − t 0)

Then: ε i (t)
= 0 for t < t 0 + s i

= ρ i (t − t 0) for t 0 ≤ t < t 1

= ε i − 1 (t) for t ≥ t 1

ε i (t) can be thought of as an upper bound on M i (t). t 0 is
the point where server i becomes active and t 1 is where Q
goes to zero. In Figure 2 for server 1, t 0 is the x-coordinate
of point E and t 1 is the x-coordinate of point A.)

Figure 1 to shows how ε 1 (drawn in bold lines) is

defined from ε 0 (in the dashed lines). Figure 2 shows ε 2 in

bold and ε 1 in the dashed lines.

For the rest of this section M i (t) refers to the message
curve output from server i if the input to server 1 is PCGS.

Lemma 5.1: The maximum queueing delay D * and the
maximum queuesize Q * for server i with input M i − 1 (t)
occur in the interval (t 0 ,t 1). (t 0 and t 1 are from the defini-

tion of ε i (t).

Cells

Time

slope = B 1
I / x ave

I x min / x ave

A

F 1

.

.

.

.

.

.

.

.

.

.

.

.

.D

E

Initial build-up

B...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.C

Maximum queue

Figure 1. Calculating ε 1 from ε 0.

Cells

Time
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

y = I / x ave

slope = B 2

A

B
C.

.

.

.

.

F 2

Figure 2. Calculating ε 2 from ε 1.

Theorem 5.1: If ε i − 1 is the input to server i, the resulting
Qε i − 1

* and Dε i − 1

* are upper bounds on Q Mi − 1
(t) and D Mi − 1

(t)
observed if M i − 1 (t) is the input.

The maximum vertical distance between ε i and ε i − 1

corresponds to Q * and the maximum horizontal distance to
D *. In Figure 1 Q * for server 1 is given by the segment
BC and D * is given by the segment BA. Calculation of the
envelopes is computationally feasible; we will present an
algorithm in Section 5. Theorem 5.1 tells us that the values
for Q * and D * we get from the envelope calculations are
upper bounds on the actual queue size and queuing delay
observed for any input.

Cells

Time
..
.

.
.

.
. . . .

Figure 3. Actual Departure of Traffic vs. Fluid Model.

4. Correcting for the fluid approximation

The above analysis treats the message as a continuous
function in time, so that a server sends out the message
smoothly at a rate ρ. In reality, a framed, non-work-
conserving server sends out cells as a step function where
one chunksize set of cells are transmitted once every frame-
time. A fluid model is a straight line approximation to it.
Since the cells in each frame can be sent out at any time
within the frame, we must assume the worst case and cor-
rect for it. We do this in much the same way as in Refer-
ence [13, Chapter 4], where the fluid analysis is extended to
the packetized case. To get the maximum number of cells
which could have been sent out from node j by time t, we
take the value given by the straight line approximation and
apply the following function to it.

buffer_correction(y) ≡







 a j

y_ __




+ 1





a j ,

where a j is the chunksize at server j.

This gives us the value of the step immediately over
the point on the straight line that we are looking at. In terms
of Figure 3, it raises the points on the straight line to the
dotted line above it. By taking the floor and adding 1 we
ensure that for the points of discontinuity in the step func-
tion, we take the higher value.

Similarly to calculate the queueing delay for a cell
which is q deep in the queue of a server, we use

delay_correction(q) ≡


 a j

q_ __




F j ,

where F j is the frametime at the server.

5. Computational Algorithm

The analysis above motivates a simple algorithm to
calculate the envelope of the message curve. By Theorems
4.1 and 5.1 the envelope provides upper bounds on the
delay and queue sizes experienced at each server by any
PCS input to server 1. By Lemma 3.1 we only need to look
at one interval IS. By correcting for the fluid approxima-
tion we can get upper bounds for delays suffered by fixed
size ATM cells being transmitted chunksize cells in each
frame.

The envelope ε i is represented as a doubly linked list
of the endpoints of the linear segments of the envelope
(< x ,y > coordinate pairs), sorted by x coordinates. The ini-

tial envelope ε i describing the worst case input traffic con-

tains three points: <0,0>, <
xave

I x min_ _____ ,
xave

I_ ___>, and <∞ ,
xave

I_ ___>.

The C psuedocode in Figure 4 describes the computation

for one server in the tandem. It shows how to compute ε i ,

Q * and D * for server i from ε i − 1.

struct point {
float x, y;
struct point * next, * previous;

};

#define buffer_correction (y) (


 ai − 1

y_ ____




+ 1) ai − 1

#define delay_correction(q)


 ai

q_ __




Fi

/* Inputs to the algorithm */
float ai − 1, ai; /* chunksizes */
float Fi , s i; /* frametime, chunksize */
float ρ i; /* service rate*/
/* Input from server i − 1*/

struct point *env; /* ε i − 1 */
/* Local variables */
struct point * p, * q;
float Q, D, x;
float Q * = D * = 0.0; /* The results */

for (p = env ; p → x < ∞ ; p = p → next)
/* Normalize the point, s i is the slippage */
p → x = p → x - s i;

for (p = env → next ; p → x < ∞ ; p = p → next){
q = p → previous;
if (p → x < 0){
/* Q and D for points before start of service */

Q = buffer_correction (p → y);
D = delay_correction (Q) − p → x;
/* − p → x adds the remaining slippage */
D * = max(D * , D); Q * = max(Q * , Q);

}
if (p → x > 0 and q → x ≤ 0) {
/* find Q and D for x = 0 */

Q = buffer_correction (

p → x − q → x
p → x * q → y − q → x * p → y_ ___________________________);

D = delay_correction (Q);
D * = max(D * , D); Q * = max(Q * , Q);

}
if (p → x > 0){
/* for all other points */

Q = buffer_correction (p → y) − ρ i * p → x;
if (Q < 0) break;
/* we need not look at remaining points */
D = delay_correction (Q);
D * = max(D * , D); Q * = max(Q * , Q);

}
}

/* Construct ε i for the next server */
env = p; /* Discard points below the line y = ρ i x */
q = p → previous;

x =
q → y − p → y + ρ i * (p → x − q → x)

p → x * q → y − q → x * p → y_ _________________________________;

add_to_envelope(env , new_point(x,ρ i * x));
add_to_envelope(env , new_point(0.0,0.0));

Figure 4. Calculations for node i.

To simplify calculations we normalize the envelope
(by subtracting s i from the x-coordinate of each point) on
starting the computation for each node so that the x-
intercept of the output envelope is always at the origin. This
sets t 0 as defined in Lemma 5.1 to be 0. Then for each

point in the interval (t 0 ,t 1) as defined in Lemma 5.1 we
find Q and D and take the maxima. By Lemma 5.1 we only

need to look at these points. By the definition of ε the

remaining points together with <t 1 ,ε i − 1 (t 1)> and <0,0>
constitute ε i . Thus, using the analysis of section 3, Q * and
D * as calculated by the algorithm are provably the upper
bounds on the queuing delay and queue size at server i in
the tandem.

The computation can be carried out during channel
establishment in a distributed fashion by each intermediate
switch along the path. The inputs to the computation are
a i , F i , s i , ρ i , (which are properties of the server i and should

be locally known) a i − 1 andε i − 1 (which need to be commu-
nicated as a part of the channel establishment control mes-

sage). The outputs are Q * ,D *andε i .

6. Discussion of Pessimistic Assumptions

The assumptions we have made for our analysis are
worst case assumptions and they account for a case that
will almost never happen in practice.

To begin with, we get an upper bound on the end-to-
end delay by adding the worst case delays for each node.
While this analysis is tight in the sense that pathological
cases can be constructed such that the bound is achieved, it
is very unlikely that the same cell will suffer the worst case
delay at each node. Thus, the sum of the per node worst
case delays will likely be a loose upper bound on actual end
to end delays.

Second, we assume that the source is greedy. If a
source is not always greedy, then it will get an end-to-end
delay that could be much less than if it were greedy.

Finally, we have assumed in our analysis that the cells
that arrive during the slippage period suffer the maximum
slippage (of F i) and also get transmitted at the end of their
transmission frames, leading to a net delay of 2F i . To suf-
fer a slippage of F i the first cell must come right at the start
of the frame of the node, and to suffer an additional F i

delay it must get transmitted at the very end of the next
frame. This is a very unlikely combination of events.

To summarize, our analysis is tight, but pessimistic;
therefore our worst case delay bounds are likely to be larger
than those observed in practice. To get a feel for the kind
of maximum delays that might be observed in practice we
turned to simulation.

7. Simulation

The first part of this paper presented a worst case anal-
ysis of the end-to-end queueing delays suffered by the cells
transmitted across a virtual circuit established through a
series of non-work conserving rate-controlled switches.
Our formal modelling assures us that the analysis is correct,
but an interesting question is to determine how accurately
the analysis reflects the observed worst case delay and

buffering. In Section 6 we pointed out some reasons why
we expect our analysis to be pessimistic. In this section, we
compare analytical and simulation results when the
switches implement HRR scheduling. Specifically, we use
two metrics to compare the worst case delay computed ana-
lytically to the average and worst case delay in a set of sim-
ulation scenarios:

a) the ratio of the average delay to the analytical
delay bound.

b) the ratio of the maximum observed delay to the
analytical delay bound.

The first metric indicates how pessimistic the analysis is in
practice, and the second metric measures its tightness.

At this point, it is useful to consider the question of
computing average and maximum delays using simulations.
Maximum delay is a point metric, and as such can be
observed only in an infinitely long simulation run. Thus,
the observed maximum delay is only indicative of the true
maximum. The average case, similarly, can only be com-
puted by considering all possible input workloads and all
possible server phase relationships that correspond to a sin-
gle simulation topology. Since this is impossible to simu-
late, again, our ‘average’ results are only indicative of the
true average. Nevertheless, we would like to introduce
enough variability in the simulation so as to approximate
this average. To do so, we need to consider the sources of
delay variability.

Several factors contribute to the end-to-end delay of a
cell. These are the propagation and switching delay, the
queueing delay, and, since reservations are made at the
average rate, the smoothing delay at the first switch in the
path. In these experiments, we ignore the propagation and
switching delays, since they are typically of fixed size and
independent of the scheduling discipline. The smoothing
delay depends purely on the burstiness of the source, and
for a greedy source, this is deterministic. Thus, the analysis
computes this exactly. The queueing delay arises from
variations in service time within a single frametime due to
internal burstiness, slippage and the fact that cells queued
for service during a frame time are served in random order.
Thus, it depends on the ratio of the frame times at adjacent
switches, drift between frames at adjacent switches and the
intensity of cross traffic. It is the source of variability in
the delay.

Since the smoothing, propagation and switching
delays are deterministic, in order to compute the average
delay using simulations, we need to ensure that the proba-
bility that a cell arrives from each source be uniformly dis-
tributed during each frametime of each switch. We do so
by introducing cross traffic sources that generated paramet-
rically constrained random traffic. Since this traffic takes
up a random number of slots in the frame, cells from the
source under study achieve the desired random queueing
delays. By running simulations for long enough periods, we

achieve convergence of the average delay, as described in
Section 7.1.

7.1. Simulation Details

All simulations were performed using the REAL sim-
ulator [9]. The simulation topology is simple - a series of
switches from a source (labeled 1) to a destination (Figure
5). This source sends parametrically constrained greedy
traffic, that is, traffic that can be characterized by the
parameters xmin, xave and I and such that every part of the
message is sent at the earliest time possible.

1 2 3 4 5

6

7

8

9

25 50 25
Source Destination

Cross traffic sources

Figure 5. Simulation scenario.

Nodes 2, 3 and 4 are HRR switchesi and node 5 is the desti-
nation. Cross traffic sources 6 and 8 generate parametri-
cally constrained traffic, but within these constraints, they
send data at random intervals of time (i.e., non-greedily) to
corresponding destinations 7 and 9.

For the purposes of this study, we have chosen all cells
to be 100 bytes long and all lines with a capacity of
400,000 bits/sec (500 cells/sec). With suitable scaling,
these results are equally applicable to higher speed net-
works For example, if we scale by a factor of 1000, then 1
second of simulated time (and end-to-end delay) would cor-
respond to 1ms, and 1 kbps of bandwidth to 1 Mbps. Since
our results do not have any time related constants, they are
scale independent,

Switches are assumed to have infinite buffering and
the actual number of buffers used is traced to be able to
compare against the predicted buffer requirements. The
delay values at an individual switch are accurate to 1µs.
However, since end-to-end delays are computed using a
histogram with a bucket size of 15ms, the values presented
are accurate only to plus or minus 15ms.

7.2. Simulation Convergence

One tricky problem with running a simulation is to
know when to stop. We determine the length of the simula-
tion by looking at the graph of the average end-to-end delay
versus simulation time. For all the scenarios we found that
the average delay reached its asymptote well before 50 sec-
onds of simulated time, so all the results are shown for sim-
ulations that were run for 50 seconds.

We noted above that the end-to-end delay of a cell

depends on several factors. It is impractical to study the
effect of all the parameters at the same time, so we study a
base case, then vary one parameter at a time and note its
effect.

7.3. The base case

In the base case, the source sends data at a constant
rate of one 100 byte cell every 40ms (25 cells per second)
so that xmin = xave = 40ms. The frame time at switches 2
and 4 is 50ms, corresponding to 25 slots, and the frame
time at switch 3 is 100ms, corresponding to 50 slots. The
results for the base case, with cross traffic intensity of 0.5
of the line bandwidth are shown in Table 1.

_ ___
Scenario Observed Bound Mean/ Max/

Mean Max Bound Bound
(s) (s) (s) (ratio) (ratio)_ ___

Base 0.12 0.19 0.46 0.24 0.40_ ___ 











Table 1. Base case end-to-end delay results.

We note that the observed maximum delay is much smaller
than the computed maximum delay. This is because of two
reasons.

• The input is perfectly smooth, at a rate less than or
equal to the allocation at each switch. Thus the slip-
page delay is the dominant factor in the calculated
value, and the worst case slippage is very unlikely (see
the discussion in § 6).

• In the worst case the same cell gets the worst possible
delay at each switch. In practice, this situation is very
unlikely. This is clear when we compare the worst
case observed delay at each switch with the worst case
computed delay at each switch.
_ ___
Switch # Max. observed Max. computed Ratio_ ___

2 0.055 0.100 0.55
3 0.098 0.210 0.46
4 0.094 0.150 0.63_ ___ 












Table 2. Maximum Delay at Each Switch.

From the table we see that the computed values better
approximate the worst case delay than is apparent from
comparing the sum. Our pessimistic assumption that the
same cell could suffer the worst delay at each switch leads
to the problem. This effect is seen in all the simulations.
Since, in practice, we are more interested in the accuracy of
the end-to-end delay computation, we will not show per-
node accuracy for the other cases.

7.4. Effect of cross traffic

We now study the effect of cross traffic on queueing
delays. Table 3 shows the observed and computed values
of delays as the cross traffic intensity increases.
We see that as the cross traffic increases, the mean delay

_ __
Cross Observed Bound Mean/ Max/
Traffic Mean Max Bound Bound_ __

0.1 0.11 0.15 0.46 0.25 0.32
0.3 0.11 0.18 0.46 0.23 0.39
0.5 0.12 0.18 0.46 0.26 0.39
0.7 0.13 0.18 0.46 0.28 0.39
0.9 0.14 0.18 0.46 0.29 0.39_ __ 




















Table 3. Effect of cross traffic.

increases. The reason is that at switch 3, as the intensity of
cross traffic increases, the probability that a cell from
source 1 is served after cells from competing sources
increases. Clearly, this leads to increased queueing delay at
that switch.

Since the effect of cross traffic is small and pre-
dictable, we did the remaining experiments only for a cross
traffic intensity of 0.5 of the link bandwidth. The results
for higher intensities are similar.

7.5. Effect of bursty sources

In the base case, the source sends a continuous stream
of data, a cell every 40ms. Since HRR switches make
bandwidth reservations for the average rate of a conversa-
tion, if a source is bursty, the queueing delay (due to
smoothing at the first few switches) increases. This section
examines the increase in delay due to bursty sources.

Sources can be bursty due to one of two reasons: the
peak to average ratio can be large, or the interval over
which the averaging is done can be large. In terms of xmin,

xave and I, this corresponds to a larger
xmin

xave_ ____ ratio or a

larger I. We examine both cases below. First consider the

situation where
xmin

xave_ ____ is fixed at 20, and I increases from 1

through 4 seconds.
_ ___
Ave. Observed Bound Mean/ Max/
Interval Mean Max Bound Bound_ ___

1 0.59 0.95 1.2 0.49 0.83
2 0.99 1.70 1.95 0.51 0.87
4 1.79 3.40 3.5 0.51 0.97_ ___ 














Table 4. Effect of increasing averaging interval.

We see that as the interval increases, the observed and the
computed maximum delays increase. This is due to the
smoothing that happens at the first few switches - other
switches have roughly the same maximum delay. To see
this, compare the maximum observed delays at each switch
as I increases in the table below.
Note that by the time the third switch in the path is reached,
there are no more smoothing delays. In general, smoothing
delays will be seen only at the set of switches from the
source onwards that have strictly non-increasing bandwidth
allocations.

_ ________________________________
I Switch 2 Switch 3 Switch 4_ ________________________________
1 0.59 .30 0.09
2 1.14 .50 0.09
4 2.29 .95 0.09_ ________________________________ 











Table 5. Maximum observed delays at each switch as I increases.

In Table 4 we note that the prediction accuracy is high
for bursty sources and the accuracy increases as the input
becomes more bursty. The reason is that the smoothing
delay is deterministic and exactly computed. As the inter-
val size increases, the smoothing delay dominates all the
other delays, and so the algorithm becomes more and more
accurate.

The effect of increasing the peak to average rate ratio
is observed by keeping I as 1 sec, and increasing the ratio
from 2 to 20 (Table 6).

_ ___
Ratio Observed Bound Mean/ Max/

Mean Max Bound Bound_ ___
2 0.35 0.50 0.75 0.47 0.67
5 0.53 0.80 1.05 0.50 0.76

10 0.57 0.90 1.15 0.50 0.78
20 0.59 1.00 1.20 0.49 0.83_ ___ 


















Table 6. Effect of increasing peak to average ratio.

We see that as the ratio increases, the observed end-to-end
delay increases. However, the increase is not as pro-
nounced as with increasing the averaging interval. This
suggests the burstiness caused by changing the peak to
average ratio is not too important for HRR networks. The
reason is simple: because of per-channel queueing, each
conversation sees the server as a dedicated server with
vacations. As long as arrivals happen during the vacation,
the effective end-to-end delay is constant. Thus, even as
the ratio increases, there is no appreciable change in the
delay. Further, as in the earlier case, as the source becomes
more bursty, the prediction accuracy improves.

7.6. Effect of increasing frame ratios

In this set of experiments the ratio of frame sizes at
switches 2 and 4 to the frame size at switch 3 is varied from
1:1 to 1:10. As the frame size of switch 3 increases, we
expect the smoothing delays at switch 4 to increase, leading
to an increased end-to-end delay. One way to view this is
to see that a when a large frame is followed by a smaller
frame, it introduces burstiness within the network. The
greater the ratio, the more the burstiness, and the greater the
smoothing delay. The results of the experiments are sum-
marized in Table 7.
From Table 7, we see that expected increase does happen.
The increase is small for a ratio of 2, but the delay doubles
at a ratio of 5. Thus, we recommend that conversations be
placed at similar frame times at consecutive switches. The
prediction accuracy does not improve much for increasing

_ ___
Ratio Observed Bound Mean/ Max/

Mean Max Bound Bound_ ___
1 0.13 0.17 0.30 0.44 0.55
2 0.12 0.18 0.46 0.39 0.53
5 0.26 0.36 0.85 0.42 0.56

10 0.53 0.75 1.50 0.35 0.50_ ___ 

















Table 7. Effect of increasing frame size ratio.

frame sizes. This is because the source is sending perfectly
smooth traffic and slippage delays dominate the end-to-end
delay.

7.7. Effect of increasing number of hops

In this experiment, we increase the number of hops in
the network. This is done by adding two switches to the
path of source 1, with frame times of 100ms and 50ms
respectively. At each new switch, there is a cross traffic
source with intensity 0.5. The results are presented in Table
8.

_ __
hops Observed Bound Mean/ Max/

Mean Max Bound Bound_ __
4 0.12 0.18 0.46 0.39 0.53
6 0.32 0.36 0.90 0.36 0.40_ __ 












Table 8. Effect of increasing number of hops.

From Table 8, we see that as the number of hops increases,
the observed delay increases. The increase in mean delay is
because of the additional smoothing delay at the second of
the added switches. The conclusion is clear: as the length
of a path in a HRR network increases, the delay is bound to
increase. Thus, routing algorithms have an added incentive
to find shortest paths, or better, paths along which frame
times are non-decreasing, so that smoothing delays are
avoided. Again, in this experiment the source is sending
perfectly smooth data, leading to low prediction accuracy.
Further, note that the accuracy of the algorithm decreases
with the length of the path, reinforcing our belief that it best
models bursty sources.

7.8. Buffer size prediction

We compare the buffer sizes predicted by the algo-
rithm to the simulated buffer occupancies for two of the
above experimental set ups (Table 9).

_ __
Switch # Computed buffers Observed buffers_ __

2 2 2
3 4 3
4 3 3_ __ 












Table 9. Base Case: Buffer Occupancy.

For the base case the observed buffer occupancies are rather
small so the scope for the analysis to be wrong is also lim-
ited. Therefore also evaluated peak buffer occupancy

predictions for bursty input traffic where queueing delays
should cause high buffer occupancies. Table 1o present the

buffer occupancy when averaging interval I = 4, and
xmin

xave_ ____

is fixed at 20 (as in section 7.3). The buffer requirement
predictions are quite accurate, reflecting our exact analysis
of queueing transients.

_ __
Switch # Computed buffers Observed buffers_ __

2 94 92
3 28 28
4 3 3_ __ 












Table 10. Buffer Occupancy for Averaging Interval I = 4.

7.9. Summary of Simulation Results

Our simulation scenarios explored a number of causes
of end-to-end delay in order to see how close the worst case
analysis is to observed maximum and average delays. Due
to practical limitations, the observed delays are only indica-
tive of the true values.

We found that when the input is smooth, the predic-
tion accuracy is low since the slippage delays dominate the
analysis, and the worst possible slippage is very improba-
ble. However, as the sources become more bursty, the
accuracy of the analysis substantially improves. The effect
of cross traffic is small - it increases the mean queueing
delay, but the increase is bounded by one frametime. The
largest change in end-to-end delay is from input burstiness
caused by a larger averaging interval. For a fixed averaging
interval, changing the peak to average sending rate affects
the delay distribution negligibly.

The buffer size predictions are accurate for both
smooth and bursty inputs. When the sources are smooth,
the buffer sizes achieved are small, and so the scope for
inaccuracy is limited. When sources are bursty, the buffer
occupancy increases, but so does prediction accuracy.

8. Conclusions

We have presented a formal framework for transient
queueing analysis in networks of rate-controlled servers.
We use this framework to prove that the worst possible
queueing delay occurs when the input is greedy and each
server has the maximum slippage. Further, the computation
of this worst delay needs to consider only one averaging
interval of time. From this result, we develop an algorithm
to compute worst case queueing delays and buffer require-
ments. This requires at most O(n) computation at each
node.

The analysis is tight, in the sense that pathological
cases can be constructed such that at least one cell suffers
the predicted delay at each node. However, since the same
cell will not suffer the worst case delay, in general the ratio
of end to end observed worst case delay to computed delay

is not too high, especially for sources transmitting smooth
traffic.

We compare the algorithm developed from analysis
with observed mean and maximum delays in simulation
experiments. The prediction accuracy improves as the
source becomes more bursty. If sources are sending data
smoothly within their traffic constraints, the worst case
delay they receive can be as little as 40% of the predicted
worst case. It rises to 70 to 90% for bursty sources. How-
ever, prediction of buffer requirements is accurate, for both
smooth and bursty sources.

9. Acknowledgments

We would like to thank C.R. Kalmanek, H. Kanakia
and D. Ferrari for their advice and helpful comments.

References
[1]A. Banerjea and S. Keshav, ‘‘A Formal Analysis of Queueing Delays in

Rate-Controlled Networks, ’’ Manuscript in preparation, 1992.

[2]R.L. Cruz, ‘‘A Calculus for Network Delay, Part I: Network Elements
in Isolation, ’’ IEEE Trans. on Information Theory, 37 (1991).

[3]R.L. Cruz, ‘‘A Calculus for Network Delay, Part II: Network Analysis,
’’ IEEE Trans. on Information Theory, 37 (1991).

[4]R.L. Cruz, ‘‘Service Burstiness and Dynamic Burstiness Measures: A
Framework, ’’ Preprint, Submitted to J. on High Speed Networks, April
1992.

[5]D. Ferrari, ‘‘Client Requirements for Real Time Communication Ser-
vices,’’ IEEE Communications Magazine, 28(11), November 1990, also
RFC 1193.

[6]D. Ferrari and D. Verma, ‘‘A Scheme for Real-Time Channel Establish-
ment in Wide-Area Networks,’’ IEEE Journal on Selected Areas in
Communications, 8(3):368-379, April 1990.

[7]S.J. Golestani, ‘‘A Stop-and-Go Queueing Framework for Congestion
Management, ’’ Proc. ACM SigComm 1990,pp 8-18, Philadelphia,
Pennsylvania, September 1990.

[8]C. R. Kalmanek, H. Kanakia and S. Keshav, ‘‘Rate Controlled Servers
for Very High Speed Networks,’’ Conference Record, GlobeCom9
1990, December 1990, pp. 300.3.1-300.3.9.

[9]S. Keshav, ‘‘REAL: A Network Simulator,’’ CS Tech. Report 88/472,
University of California, Berkeley, December 1988.

[10]J. Kurose, ‘‘On Computing Per-session Performance Bounds in High-
Speed Multi-Hop Computer Networks’’ Proc. ACM
SigMetrics/Performance 1992.

[11]S. Low and P.P Varaiya, ‘‘A Simple Theory of Traffic and Resource
Allocation in ATM, ’’ Conference Record, GlobeCom 1991, December
1991.

[12]A.K. Parekh and R.G. Gallager, ‘‘A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks,’’ Labora-
tory for Information and Decision Systems, MIT Technical Report 2076,
1991.

[13]A.K. Parekh, ‘‘A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks,’’ PhD Thesis, MIT, February
1992.

[14]D. Verma, ‘‘Guaranteed Performance Communication in High-Speed
Networks,’’ PhD Thesis, University of California at Berkeley, Novem-
ber 1991.

[15]H. Zhang and S. Keshav, ‘‘Comparison of Rate-Based Service Disci-
plines,’’ Proc. ACM SigComm 1991, September 1991.

