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Abstract
The flow control component of a transport layer protocol regu-
lates the natural data transmission rate of an application to match
the service rate offered by the network. In this paper, we study
the problems that arise when a flow control protocol has to deal
with long delays in receiving information about network state,
and has large amounts of data transmitted but unacknowledged.

We describe three representative flow control protocols,
and study their behavior on a suite of three benchmark scenarios.
Our simulations indicate that in networks with large delays, pro-
tocols that are insensitive to the state of the network, or that
require multiple round trip times to attain the optimal transmis-
sion rate, will perform poorly. The packet-pair protocol, which
avoids these problems, is shown to perform well under rather
adverse conditions.

1. Introduction

We expect future high-speed networks to span entire con-
tinents, even parts of the globe. In such networks, the propaga-
tion delay introduced due to the limited speed of light
significantly affects the performance of reactive flow control
schemes implemented at the transport layer of the data sources.
The fundamental problem is that any reactive flow control
scheme receives information about network state that is old, and
probably incorrect. As the delay increases, deciding on an
appropriate flow rate on the basis of this incomplete information
becomes harder, and wrong decisions can lead to congestion.
Thus, it is important to study the behavior of flow control
schemes in such situations.

The aim of this paper is to discuss the problems that arise
with flow control in networks with a connectionless network
layer in the presence of large delays. We present simulation
results that compare the behavior of some representative flow
control protocols in these networks. Since we assume that the
network does not reserve bandwidth or buffers for each conver-
sation, the onus of avoiding congestion is on the users, which
places stress on the flow control protocol. We first describe the
general problem. Then we compare three flow control protocols:
(a) Generic, (b) BSD4.3-Tahoe operating system’s TCP flow
control scheme, and (c) PP, the packet-pair flow control scheme.
They are evaluated in conjunction with two different packet
scheduling disciplines: First Come First Served (FCFS) and Fair
Queueing FQ [3]. We briefly describe each scheme, and then
compare their behavior on some benchmark networks.

2. The flow control problem

The data stream from a user has application-specific
dynamics. For example, file transfer like applications tend to
send data at peak speeds that are far higher than a network can
support. Other applications can send data in bursts that are
Parts of this work appeared originally in Reference [13].

larger than the available buffering at the endpoint or at inter-
mediate queueing points. If a network allowed sources to send
data at their natural rate, then the network (and destinations)
could be subjected to wild fluctuations in sending rate, leading to
excessive queueing delays, packet loss and congestion. In con-
nectionless networks, the role of flow control is to modify the
natural sending rate of an application to match the realities of
network capacity, and to make the data stream better behaved.
This is done by insisting that some assertions about the data
stream are always valid, for example, that no more than 12
kbtyes of data will be outstanding (sent but unacknowledged) at
any given time. The test of a flow control protocol is its effec-
tiveness in making network operation smoother as a result of this
modification.

The fundamental scaling dimension in the flow control
problem is the bandwidth delay product [17, 18]. This is the
amount of data that a source should keep outstanding in order to
utilize network resources efficiently. When the bandwidth delay
product (also referred to as the pipeline depth, or optimal win-
dow size; we use the symbol V) is small, then the flow control
problem is not hard to solve. As long as queueing points have
reasonable buffering capacity, and sources obey some kind of
limit on the number of outstanding packets (window size),
packet losses can be made rare, and the network operation is
smooth. However, as V increases, the amount of buffers required
at each switch becomes unreasonably large, and simple schemes,
such as the one above, no longer work. Consider a simple exam-
ple. Suppose source A is sending data on an otherwise idle net-
work, where the end-to-end delay is 60ms, and the available
end-to-end bandwidth is 6Mbps. Then, A will need to keep
45Kbytes outstanding to use the network efficiently. Now, sup-
pose source B starts transmission, and takes up half of this
bandwidth, i.e. 3Mbps. Since A knows about this change, and
can react to it, only 60ms after the change, for 60ms, data from
A is arrives at 6Mbps, and is served at 3Mbps, so that
22.5Kbytes of data build up in the queue. This leads to two
problems: a) if A does not have 22.5 Kbytes worth of buffers at
the switch, it will suffer packet loss. This is a rather large sized
buffer to have, so packet loss is likely. b) If A does not realize
that it has accumulated packets in its buffer, and immediately
reduce its transmission rate, queue overflows will persist, leading
to possible congestion. In short, A’s flow control protocol must
be sensitive to network state, and adjust its sending rate accord-
ingly. Inflexibility on the part of the flow control algorithm can
lead to severe performance problems.

In this discussion we have assumed that no bandwidth or
buffers are reserved at a switch. If buffer reservations can be
made, then the problem changes its character, and solutions such
as those described in Reference [5] become applicable. Other
intermediate buffer management schemes that combine sharing
and reservation are described in [8]. However, since we restrict
ourselves to connectionless networks, such schemes are beyond
the scope of this paper.



In high speed networks, a second source of problems is the
presence of other users, who might be able to inject data at high
speeds into some access link. The part of network that decides
how traffic streams interact with each other is the scheduling dis-
cipline at the output queue of a switch. A discipline such as
first-come-first-served (FCFS) is simple to implement, but it
links the behavior of all the incoming traffic streams - if one
source sends a lot of data, the single queue is filled, and all the
sources have a higher probability of packet loss. Disciplines that
implement per-conversation queueing either implicitly of expli-
citly (such as Round Robin or Fair Queueing) can get around
this problem. As we shall see later, this delinking of sources
helps in making flow control more effective.

To summarize, in a high speed network with large delays,
problems can arise from two sources a) delay in knowing about
network state can cause buffer buildups, and eventual congestion
b) high speed sources can inject data rapidly into the network,
causing problems for other sources. The second factor has been
extensively studied in recent work [3, 16], and so we shall not
consider it in any detail. Instead, we explore the first issue
through simulations of some flow control protocols (in conjunc-
tion with scheduling disciplines). Similar studies have also been
presented recently by [9, 17].

3. Description of protocols

A large number of flow control schemes have been pro-
posed in the literature, but due to their number, it is not practical
to study them all. Instead, it is illustrative to focus our attention
on three flow control protocols that embody a range of tech-
niques for flow control. The first protocol, that we call ‘generic’
represents the first attempt in designing flow control algorithms,
and is relatively inflexible in its response to changes in the net-
work state [19, 23]. The second protocol, the Jacobson-Karels
modifications to TCP (JK) [6]. is an attempt to modify the basic
framework of the ‘generic’ protocol to make it sensitive to net-
work state.

The first two protocols do not depend on the choice of
scheduling discipline at the intermediate queueing points in the
network. In contrast, the third protocol, Packet-pair or PP, is
designed for networks of round-robin like servers. It uses an
analytic model for such networks to derive a control-theoretic
basis for the flow control algorithm [12]. The idea is to design
the protocol strictly from a formal model, so that its behavior is
analytically tractable.

An ideal flow control protocol will match the current
number of packets outstanding at a source to the current value of
the delay pipeline depth (the product of the propagation delay
and the rate of service at the bottleneck server). Call the current
pipeline depth N. We describe the operation of these protocols
and give an approximate analysis of their efficiency, in terms of
the time taken to open the window to N starting from a window
of size 1.

A generic version of source flow control [23] or in TCP
(before 4.3 Tahoe BSD) [19], has two parts: sliding window flow
control and the timeout mechanism. Sliding window flow con-
trol with a fixed size window is used to limit the number of
packets outstanding from each source, so that the net buildup of
packets at bottleneck queues is not excessive. This algorithm
avoids queue build ups if the window sizes are small enough,
and can fill the delay pipeline if the windows are larger than N,

but, due to its inflexibility, cannot respond dynamically to
changes in the network state. If this inflexibility leads to packet
losses, then the timeout mechanism initiates recovery by
retransmitting all unacknowledged packets. Timeout periods are
set to βrtt where typically β ∼ 2, and rtt is the exponentially aver-
aged estimate of the round trip time.

With this algorithm, a source reaches a window size of N
immediately, if this happens to be the value of the sliding win-
dow size. If not, the source will never reach N - the window will
be either too large or too small.

The second flow control algorithm (JK) has the
modification that the window size is allowed to change dynami-
cally in response to changes in network state. The window size
starts at 1, and is increased, first exponentially, and then linearly,
till a timeout occurs, signalling a packet loss. At this point, the
window is shutdown to either 1 (in BSD-4.3-Tahoe) or half the
previous size (in BSD-4.3-Reno). Since the only information the
source has about the network is a timeout, indicating overload,
the window size oscillates around the correct operating point,
which is bracketed by 1 and the window size at the point of
timeout.

The algorithm takes approximately log 2 (N) + N /2 round
trip times to open a window to size N. The algorithm works well
when the time to open the window to the optimal size is small.
But, when the delay increases, the time taken to reach the
optimal window size can be large, and a source can lose
throughput because of insufficiently sized windows.

The Jacobson/Karels flow control algorithm simulated
here is defined by the 4.3BSD-Tahoe TCP implementation. This
code deals with many issues unrelated to congestion control.
Rather than using that code directly in our simulations, we
choose to model the JK algorithm by adding many of the
congestion control ideas found in that code, such as adjustable
windows, better timeout calculations, and fast retransmit, to our
generic flow control algorithm [6, 10].

Similar rate-based flow control protocols such as
NETBLT [2] and the delay-based congestion avoidance scheme
[7] allows users to increase and decrease their sending rates in
response to changes monitored in the acknowledgment stream
(instead of packet losses). The idea is that a slowed down ack-
nowledgement rate implicitly signals congestion, and triggers a
reduction in the source’s sending rate. The delay-based conges-
tion avoidance scheme reduces a source’s window size whenever
there is an increase in a congestion indicator which is computed
using the round-trip-time delay. To a first approximation, an
increase in the round-trip-time delay causes a reduction in the
window size. We do not study these schemes in our simulations,
since they are not widely implemented in current networks.

The control-theoretic Packet-Pair Protocol, PP, monitors
the service rate at the slowest (bottleneck) server in the path
from the source to the destination, and uses a simple control-
theoretic algorithm to adapt to changes in the service rate
[12, 14]. The idea is that the source sends out all data as pairs of
back-to-back packets, and measures the spacing between the
acknowledgments. It can be shown analytically that in networks
of Fair Queueing (or Round-Robin like) servers, this spacing
corresponds to the service rate at the bottleneck server [22]. An
exponential average of the time series of such spacings is used to
predict the current service rate, where the averaging constant is
varied using a fuzzy controller [15]. Then, the current service



_ __________________________________________
Label Flow Control Queueing Algorithm_ ___________________________________________ __________________________________________

G/FCFS Generic FCFS_ __________________________________________
G/FQ Generic FQ_ __________________________________________

JK/FCFS JK FCFS_ __________________________________________
JK/FQ JK FQ_ __________________________________________
PP/FQ PP FQ_ __________________________________________ 
































Table 1: Algorithm Combinations

rate is chosen so that at the end of approximately one round trip
time, given the predicted service rate, the queue size at the
bottleneck will reach a setpoint [12]. The initial sending rate is
decided by sending a pair of back to back packets and waiting
one round trip time for their acknowledgments. Though rate
control is used to choose the current sending rate, there is win-
dow limit as well, which prevents the flow control protocol from
overflowing buffers even when are errors in rate monitoring.
The time taken to reach a window size of N is approximately 2
round trip times, independent of the N.

The two scheduling disciplines that provide the environ-
ment for the study of these protocols are FCFS, and Fair Queue-
ing (FQ). The FCFS discipline is standard in most current net-
works, and has been extensively analyzed. FQ is a simple exten-
sion to round-robin with per-conversation data queues that
allows for variable sized packets [3].

4. Simulation results

This section presents a simulation results for a suite of
three benchmark scenarios. The simulations were performed
using the REAL simulator [11], using the methodology detailed
in [13], and summarized below. In each scenario, we study a
number of protocol pairs, where each pair is a choice of a flow
control protocol and a switch scheduling algorithm from those
described above. Though Packet-pair was designed for an
environment where a source can reserve buffers and prevent
packet losses, in this study, for the sake of comparison, such
reservations are not assumed. The labels of the various test
cases are given in Table 1.

The values chosen for the line speeds, delays and buffer
sizes in the scenarios are not meant to be representative of a real-
istic network. Instead, they are chosen to accentuate the differ-
ences between the congestion control schemes. We choose to
model all sources and switches as being infinitely fast. Thus,
bottlenecks always occur at the output queues of switches.

In the scenarios, there are slow lines that act as
bottlenecks, and fast lines that feed data to switches and
bottleneck lines. Slow lines have a bandwidth of 80,000 bps, or
10 packets/sec. Fast lines have a bandwidth of 800,000 bps, or
100 packets/sec. All lines have zero propagation delay, unless
otherwise marked. Sources are assumed to always have data to
send, and are meant to model large file transfers (FTP protocol).
The packet size is 1000 bytes. This roughly corresponds to the
measured mean value 570 bytes in the DARPA Internet [1]. All
the sources are assumed to start sending data at the same time -
this makes throughput comparisions easy to make, and does not
qualitatively alter our results.

Sinks acknowledge each packet received, and set the
sequence number of the acknowledgment packet to that of the
highest in-sequence data packet received so far. Acknowledge-
ment packets traverse the data path in the reverse direction, and

are treated as a separate conversation for the purpose of
bandwidth allocation. The acknowledgement (ack) packets are
40 bytes long. The switches have finite buffers whose sizes, for
convenience, are measured in packets rather than bytes.

Similar studies of the JK flow control scheme can be
found in [9, 21, 24], and our results are qualitatively identical.

4.1. Scenario 1
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Figure 1: Scenario 1

Scenario 1 explores the effect of propagation delay in a simple
topology. Two identical FTP sources send data through a
bottleneck line that has a propagation delay of 2 seconds (though
a delay of 2s seems rather large for a single link, since the link
speed is slower than in a high speed network, the higher delay
has the same overall effect on dynamics as a lower delay on a
faster link). Cross traffic is modeled by a simple background
source that sends data evenly spaced at a constant rate of half the
bottleneck rate for 300 seconds, is idle for 300 seconds, and then
resumes for 300 seconds. We expect the propagation delay to
affect flow control protocols since changes in network state are
detected only after some delay.

Simulation results are presented in Table 2 and Figures 1-
3. The table shows the throughput rate excluding retransmis-
sions, loss rate and retransmission rate (all in packets/sec) for
each source when the background source is off, and when it is
on. Since the simulation is almost completely deterministic, the
values shown are for a single on or off period: the other periods
are nearly identical. The figures show the dynamics of the flow
control protocols in response to a change in the network state.
To allow for easy comparison of the results with other studies,
the time axis is marked in round trip times, and the window size
axis in units of delay pipeline depth. So, a value of 0.5 on the
window size axis corresponds to having a window size of half of
the bottleneck rate multiplied by the round trip propagation
delay, in this case, 0.5*10 packet/sec *4 sec = 20 packets.

The switch has 40 buffers. The bottleneck rate of 10
pkts/s, with a round trip propagation delay of 4 seconds gives an
equivalent to 40 packets of storage on the link. Each source has
a maximum window size of 40. Thus, when the background
source is inactive, even if both sources open their window to the
maximum, there is no packet loss (due to queue overflows)
though spurious retransmissions, because of an overly small
retransmission timer, are possible. When the background source
is active, the number of buffers is no longer enough for all three
sources. Since the background source is non-compliant (or ill-
behaved), it can force the other sources to drop packets or cut
down their sending rate. An ideal congestion control scheme



_ ___________________________________________________
Background off_ ___________________________________________________

Throughput Loss rate Retransmission rate_ ___________________________________________________
1 2 1 2 1 2_ ____________________________________________________ ___________________________________________________

G/FCFS 5.00 5.00 0 0 0 0_ ___________________________________________________
G/FQ 4.77 4.69 0 0 0 0.04_ ___________________________________________________

JK/FCFS 5.03 4.91 0 0 0 0_ ___________________________________________________
JK/FQ 4.94 4.92 0 0 0 0_ ___________________________________________________
PP/FQ 4.94 4.94 0 0 0 0_ ___________________________________________________ 












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






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_ __________________________________________________________________
Background on_ __________________________________________________________________

Throughput Loss rate Retransmission rate_ __________________________________________________________________
1 2 Bkg 1 2 Bkg 1 2 Bkg_ ___________________________________________________________________ __________________________________________________________________

G/FCFS 4.94 4.94 0.12 0 0 4.87 0 0 0_ __________________________________________________________________
G/FQ 1.85 0.39 4.49 .13 .19 .44 .13 .14 0_ __________________________________________________________________

JK/FCFS 2.21 2.35 4.89 .09 .09 .83 .02 .02 0_ __________________________________________________________________
JK/FQ 3.04 3.08 3.39 .10 0.14 1.52 0.03 0.03 0_ __________________________________________________________________
PP/FQ 3.34 3.34 3.32 0 0 1.59 0 0 0_ __________________________________________________________________ 



















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
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


Table 2: Scenario 1 simulation results
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Figure 2: Scenario 1: JK/FCFS window dynamics for source 1

will allocate a throughput of 5.0 packets/s for each source when
the background source is inactive, and a throughput of 3.33
packets/s otherwise.

With generic flow control and FCFS queueing, when the
background source is inactive, there are no packet losses (this
reflects on the careful choice of the window size - with some
other window size, losses could occur). Since both the sources
have the same window size, they share the bottleneck throughput
exactly in half. Since the sources do not adjust their window
size in response to changes in network state, the transition of the
background source from off to on does not affect the window
size, and full throughput is achieved (unlike other protocol pairs
that take some time to increase their window in response to the
state change, and hence lose throughput).

When the background source becomes active, it is after its
inactive phase, and so it always finds the bottleneck buffer full.
Hence, it drops almost all its packets, and the FTP sources split
the bandwidth between themselves even when the background
source is active.

When the scheduling discipline is FQ, matters are dif-
ferent. We discuss the situation when the background is active
first. Here, the Generic FTP sources do not react to the presence
of the background source, and hence keep their window at 40
packets. This causes packet losses and retransmissions. Thus,
the background source is able to take up most of the bandwidth.
This shows that, even with a fair bandwidth sharing scheduling
algorithm, if the sources are insensitive to network state, the
overall bandwidth allocation can be badly skewed. FQ cannot
protect sources that adapt poorly to changes in network state.

Even when the background source is inactive, the FTPs
still suffer from the effects from that source’s previous active
period. Hence, in this period, the FTPs share the throughput,
though slightly unevenly. There are a few retransmissions that
result from losses in the earlier period.

With JK flow control and FCFS scheduling, the situation
is somewhat better. The window size vs. time diagram for
source 1 (Figure 2) explains the behavior of the FTP sources. JK
FTP sources open their flow control window, first exponentially,
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Figure 3: Scenario 1: PP/FQ Number of outstanding packets

and then linearly, until a packet loss causes the window size to
drop to one. This cycle then repeats. We discuss the figure
using the notation that 1 unit of window size refers to one
bandwidth delay product (40 packets), and one unit of time
refers to one round trip time (4 seconds).

When the background source is inactive, the window can
open to its maximum of 1.0 without packet loss, and so between
times 75 and 150 the window is stable at 1.0. In this region, the
two FTP sources share bandwidth approximately equally. How-
ever, they may take a while to open their windows up in reaction
to a change in the state, and so they could lose some throughput
(for example, source 2 gets 4.91 packets per second instead of
5.0).

When the background source is active, it occupies some
fraction of the buffers. This causes packet losses, and the FTP
sources periodically shut down their window. Since the back-
ground source does not respond to packet loss, it gets much more
throughput than the FTP sources (4.81 vs. ∼2.2). Thus, non-
conforming sources can adversely affect JK flow control if the
scheduling algorithm does not provide protection.

When the scheduling algorithm is FQ, the dynamics are
nearly identical, except that the FTP sources are protected from
the background source. Thus, the background source is forced to
drop packets due to its non-compliance, and the three sources
share the bandwidth nearly equally. FTP sources have a few
losses, but these are due to the intrinsic behavior of JK flow con-
trol. It is interesting to note, that contrary to intuition, even
though the window size oscillates dramatically, the loss of
throughput is not very significant. This is because a) the conver-
sations are long lasting, so the loss of throughput at start up does
not show up and b) the window is opened to a size that is much
larger than optimal, and so the bottleneck server’s buffer always
contains some data, and even when the window is shut down, the

bottleneck server almost always has data to send. However,
short conversations that might send all their data by the time the
window opens up fully would still be adversely affected by the
multiple round trips it takes to fully open a window to the
optimal size.

When PP flow control is used with FQ scheduling, matters
are even better. The throughput when the background source is
off is the same as with JK, and when it is on, is ∼10% more.
When the background source is inactive, the two FTP sources
get almost half the bottleneck bandwidth each: the bandwidth
loss is because it takes 2 round trip times for the sources to deter-
mine the correct window size. When the background source is
active, the three sources share the bandwidth almost equally.
The number of outstanding packets from source 1, which
corresponds roughly to the window size, is plotted in Figure 3.

The figure reveals that when the background source is
present, the ‘window’ is around 0.45 of the pipeline depth. This
corresponds to about 18 packets outstanding. This makes sense,
since the pipeline depth at this time is 40/3 = 13.3 packets, and
the setpoint is 4 packets. Note that the window size oscillates
rapidly with an small amplitude. This is the signature of the
packet pair algorithm, since each time a pair is sent, this
increases the number of packets outstanding by 2 packets. The
other feature is a spike in the ‘window’ size at time 75, when the
FTP source discovers the absence of the background source.
The source immediately increases its sending rate to fill up the
longer pipe. This spike, though large, occurs for such a small
duration that it does not affect the overall sending pattern of the
source, and so it is not a matter of much concern. A detailed
examination of why the spike occurs, and how it affects flow
control, is presented in the analysis accompanying Scenario 2.

4.2. Scenario 2
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Figure 4: Scenario 2

Scenario 1 explored the behavior of the FQ algorithm and PP
flow control in a network where there is little stochastic variance.
Thus, the steady state is easily determined, and the flow control
mechanism, once it determines a correct operating point, does
not need to adjust to state changes. We would like to test the
behavior of flow control mechanisms in the presence of rapid
changes in network state. The performance of these mechanisms
is explored in Scenarios 2 and 3.

Scenario 2 (Figure 4) explores problems that arise when
there are large propagation delays, as well as three potential
bottlenecks created by cross traffic from Poisson sources. We
use multiple Poisson sources since with FQ, each source is
mapped onto a separate service queue and this creates a larger
variation in the service rate at the bottleneck. For FCFS, they
could, in principle, be replaced by a single aggregate Poisson
source. Due to the delays, sources receive outdated state infor-
mation, and this can affect adversely the performance of a flow
control algorithm. The three potential bottlenecks can lead to
bottleneck migration, and large discrepancies in monitoring the
bottleneck service rate.

It is generally accepted that a switch should have at least a
bandwidth-delay product worth of buffers to be shared amongst
the conversations sending data through that switch [4, 5]. Here,
the minimum round trip propagation delay is 12 seconds, and the
bottleneck bandwidth is 10 packets/s. Thus, 120 switch buffers
are provided, as 120 is the bandwidth-delay product. Recall that
in our simulations buffers are not reserved.

Each Poisson source has an average interpacket spacing of
0.5 seconds, so that, on average, it generates 2 packets/s, which
is 20% of the bottleneck bandwidth. Since there are 4 Poisson
sources, they can consume, on average, 80% of the bottleneck
bandwidth. However, since there are 6 sources at each
bottleneck, we expect FQ to restrict each Poisson source to
roughly 16% of the bottleneck bandwidth, so they will have
some packet losses.

The two PP sources are constrained by a maximum win-
dow size of 60 buffers. This is large enough to take up as much
as half of the bandwidth, while we expect them to receive only
one sixth, on the average. Since the sources are identically
placed in the network, they should receive identical treatment. If
this does not happen, then the congestion control scheme is
unfair.

_ _______________________________________________________
Scenario 2: Throughputs and delays_ _______________________________________________________

Throughput Delay_ _______________________________________________________
1 2 1 2_ ________________________________________________________ _______________________________________________________

G/FCFS 0.02 0.52 1.00 0.59 17.00 22.94 35.43 7.51_ _______________________________________________________
G/FQ 1.10 0.48 0.21 0.13 41.73 11.05 92.22 56.65_ _______________________________________________________

JK/FCFS 0.79 0.06 0.82 0.12 16.37 1.06 16.59 1.04_ _______________________________________________________
JK/FQ 1.62 0.16 1.72 0.10 13.53 0.82 16.41 4.11_ _______________________________________________________
PP/FQ 1.70 0.02 1.72 0.01 16.64 4.97 19.58 4.37_ _______________________________________________________ 







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_ ___________________________________________________
Scenario 2: Loss rate and retransmission rate_ ___________________________________________________

Loss rate Retransmission rate_ ___________________________________________________
1 2 1 2_ ____________________________________________________ ___________________________________________________

G/FCFS 0.05 0.10 0 0.01 0.31 0.47 0.12 0.22_ ___________________________________________________
G/FQ 0.02 0.02 0.05 0.04 0.03 0.02 0.06 0.01_ ___________________________________________________

JK/FCFS 0 0 0 0_ ___________________________________________________
JK/FQ 0 0.01 0.03 0 0_ ___________________________________________________
PP/FQ 0 0 0 0_ ___________________________________________________ 








































Table 3: Scenario 2: simulation results

The simulation results are summarized in Table 3.
Numerals in italics are standard deviations, that are computed by
measuring the mean values over several large subintervals of the
same simulation run.

The Poisson sources in this scenario are ‘ill-behaved’; so,
as expected, the Generic source pair does not do well in this
scenario. Since the reasons for this have been examined earlier,
we will only concentrate on the other three protocol pairs.

The JK/FCFS protocol pair does much better than
G/FCFS, and this is because of its sensitivity to congestion. As
the buffers in the bottlenecks build up, packet losses force win-
dow shutdown, preventing further retransmissions and losses.
However, since the FTP sources are not protected from the Pois-
son sources, they lose packets because of misbehavior of the
Poisson sources, causing window shutdown, and consequent loss
of throughput. This is clear from the window vs. time diagram
for source 1, Figure 5.
Note that the highest window size achieved is around 0.18, and,
though the number of window shutdown events is small, the
large propagation delay means that the time to open the window
up again is large, and so each shutdown causes a possible loss of
throughput (actual throughput loss will occur if the source does
not recover by the time that the bottleneck queue dissipates).
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Figure 5: Scenario 2: JK/FCFS window vs. time
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Figure 6: Scenario 2: JK/FQ window vs. time

When the scheduling discipline is changed to FQ, the
situation improves considerably (Figure 6). The maximum win-
dow achieved is around 0.30, which indicates that the FTP
sources have long periods of uninterrupted transmission. Both
sources achieve almost their fair share of the throughput, which
is 1.66 packets per second. There is some amount of unfairness,
but this is due to the JK protocol, which is adversely affected by
each shutdown.

The PP protocol can respond rapidly to changes in net-
work state. Thus, if any of the Poisson sources is idle, the PP
source can detect this, and make use of the idle time. Hence, the
two PP sources obtain more than their fair share of the
throughput (1.70 and 1.72 vs. 1.66) (Table 3). Moreover, the
presence of multiple (and possibly migrating) bottlenecks, as
well as the observation noise, does not affect the performance of
the scheme. There are almost zero packet losses and retransmis-
sions. We had earlier mentioned that PP does both rate-based
and window-based flow control. The need for window limits is

demonstrated by observing a trace of the number of packets out-
standing vs. time fpr a small portion of the simulation period
(Figure 7).

The figure shows that the number of outstanding packets
shoots up rapidly, stops at 0.5, which is the window limit, and
then decays slowly. This shape is explained below.

A rise in the number of outstanding packets is triggered
when some Poisson sources are silent and the bottleneck has an
idle period, so that a series of probes report a lower inter-ack
value. When source 1 learns of this, it immediately increases its
sending rate, and the number of outstanding packets rises stee-
ply. The number of outstanding packets stabilizes at 0.5, which
is the window limit. When a Poisson source becomes active
again, the inter-ack spacing goes up, and further probes indicate
that the bottleneck can no longer support the new sending rate.
At this point the source cuts down its sending rate. But, for one
RTT, while it is unaware of the lower service rate, it sends data
much faster than the bottleneck can handle it, leading to a build
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Figure 7: Scenario 2: Number of outstanding packets vs. time
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Figure 8: Scenario 3

up of a queue at the bottleneck. Note that the queues are built up
quickly, since the source mistakenly sends data at a higher
speed. However, the new bottleneck service rate is slower than
this, so the queues drain slowly. In fact, even if the source sends
no more packets, the number of outstanding packets will stay
high. Thus, the slow decay of the curve.

This figure shows the usefulness of a window limit. In its
absence, the source would send far too many packets in the RTT
when it was misinformed, and would have had extensive packet
losses. Here, even though we do not have buffer reservations,
because of the window limit, there are no packet losses.

4.3. Scenario 3

Scenario 3 is similar to Scenario 2, except that source 1 has a
round-trip-time delay of 12 seconds, and source 2, of 24 seconds
(Figure 8). Thus, source 2 gets congestion information much
later than source 1, and this can affect the fairness of the conges-
tion control scheme. We examine the performances of the 7 pro-
tocol pairs in Table 4.

As in Scenario 2 the Generic protocol leads to poor perfor-
mance, with many retransmissions (in fact, nearly 90% of the

________________________________________________
Scenario 3: Throughputs and delays________________________________________________

Throughput Delay________________________________________________
1 2 1 2________________________________________________________________________________________________

G/FCFS 0.82 0.67 0.05 0.75 32.01 9.78 114.26 108.91________________________________________________
G/FQ 1.43 0.49 0.37 0.48 35.51 7.05 82.04 91.36________________________________________________

JK/FCFS 1.03 0.20 0.31 0.10 14.75 0.46 39.09 0.64________________________________________________
JK/FQ 1.39 0.05 0.86 0.38 13.52 0.41 36.88 0.29________________________________________________
PP/FQ 1.73 0.02 1.64 22.11 3.48 36.50________________________________________________ 
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



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
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

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_ ________________________________________
Scenario 3: Loss rate and retransmission rate_ ________________________________________

Loss rate Retransmission rate_ ________________________________________
1 2 1 2_ _________________________________________ ________________________________________

G/FCFS 0 0 0.01 0.03 0.02 0.43 0.72_ ________________________________________
G/FQ 0 0.01 0 0.04 0.07 0.36 0.40_ ________________________________________

JK/FCFS 0 0 0 0_ ________________________________________
JK/FQ 0 0 0 0_ ________________________________________
PP/FQ 0 0 0 0_ ________________________________________ 


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Table 4: Scenario 3 simulation results

data transmission of source 2 is in the form of retransmissions!).
The JK/FCFS and JK/FQ pairs both exhibit unfairness to the



source with the longer RTT. This is because, on each packet
loss, source 2 takes much longer to open its window than source
1. Thus, it loses throughput.

In contrast, the PP/FQ pair performs well, with no packet
losses or retransmissions. The throughput allocation is almost
fair, which is remarkable, considering that source 2 receives
information that is rather stale. This scenario hence shows that
PP behaves well even under fairly adverse conditions.

5. Conclusions

We have examined the performance of three representative
flow control protocols in three benchmark networks with large
bandwidth delay products. Our results show that protocols that
ignore the state of the network, or have large start-up times, do
not perform well in such networks. The PP flow control protocol
consistently matches or outperforms the competing schemes,
because of its short start up times, and ability to monitor network
state.

Scenario 1 examined the dynamic behavior of flow control
algorithms in response to an abrupt change in the network state.
We saw that the JK protocol takes a while to respond to the
change, while PP responds immediately. This is the reason why
it does better. However, we note, that JK does better than one
might expect, since the bottleneck’s buffers are never allowed to
completely empty.

Scenarios 2 and 3 test the robustness of the schemes under
adverse conditions. In both scenarios, ’generic’ performs poorly,
while JK does well in Scenario 2, but not Scenario 3. PP does
well in both scenarios, though the scenarios violate many of its
design assumptions. In designing PP, it was assumed that the
fluctuations in the probe value would be fairly small, whereas the
changes in the probe value in Scenario 2 are as large as 10% and
30%. Second, there are three bottlenecks in tandem, so that
bottleneck migration is possible, and can lead to errors in moni-
toring the bottleneck service rate. Third, there are no buffer
reservations, as is recommended when using PP. Finally, there
is a long propagation delay, so that the sources receive stale data.
In spite of these difficulties, PP behaves rather well.

The adverse conditions of Scenario 2 are worsened in
Scenario 3, where one source has double the propagation delay
of the other. Whereas in Scenarios 1 and 2, JK/FQ did nearly as
well as as PP/FQ, here, JK does not do well, since the conversa-
tion with longer delays takes a very long time to recover from
each packet loss. We see that only PP is able to deliver reason-
ably fair throughput to the two sources in this scenario.

To summarize, we have shown that

• inflexible protocols such as ‘generic’ are unsuitable for
high-speed networks with propagation delays.

• Schemes that involve a slow start phase, such as JK (and
DECbit [20]) will discriminate against conversations with
a long propagation delay, which will suffer loss of
throughput.

• PP works well in the simulated scenarios, since it can
rapidly adapt to changes in the network state.

These conclusions have been tested to the extent that our bench-
marks are comprehensive. While we have tested for ‘ill-
behaved’ users, Poisson cross traffic and multiple bottlenecks,
we have ignored some other (perhaps equally important) factors

such as: two-way traffic, bursty cross traffic, numerous short-
duration conversations and the effect of conversations that start
at random times. Thus, these limitations must be borne in mind
while reviewing our conclusions. We recognize that no suite of
benchmarks, at least at the current state of the art, can claim to
be comprehensive. We have tried our best to create scenarios
that test specific problems in congestion control schemes. It is
possible that some of the factors we have ignored are critical in
determining protocol performance, but this is still a matter for
speculation. Developing a more comprehensive suite of bench-
marks is a matter for future study.

To conclude, while our simulations are only for a small
suite of scenarios, and each scenario only has a small number of
nodes, we feel that results show several insights into designing
flow control protocols suitable for high speed networks with
large propagation delays.
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