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Chapter 4: The Packet Pair Flow Control Protocol

4.1. Introduction
Most current packet switched data networks have routers and switches that obey a first-

come-first-served (FCFS) queueing discipline, and existing transport layer flow control protocols
have been optimized for such networks. If the service discipline is changed to Fair Queueing,
then flow control protocols can improve their performance. This chapter presents the design
and analysis of a flow control scheme, called the Packet-Pair flow control protocol, enabled by
the Fair Queueing discipline. We first present a deterministic model for networks of Fair Queueing
servers to motivate the design of Packet-pair. We then give implementation details. Subsequent
sections deterministically analyze the transient behavior of Packet-pair.

4.2. Fair Queueing servers
Consider the queue service discipline in the output queues of packet routers. If packets

are scheduled in strict Time-Division-Multiplexing (TDM) order, then whenever a conversation’s
time slot comes around and it has no data to send, the output trunk is kept idle and some
bandwidth is wasted. Suppose packets are stamped with a priority index that corresponds to
the packet’s service time were the server actually TDM. It can be shown that service in order of
increasing priority index approximately emulates TDM without its attendant inefficiencies [50].
This idea lies behind the Fair Queueing (FQ) service discipline.

With a FQ server, there are two reasons why the rate of service perceived by a specific
conversation may change. First, the total number of conversations served can change. Since
the service rate of the selected conversation is inversely proportional to the number of active
conversations, the service rate of that conversation also changes.

Second, if some conversation has a low arrival rate, or has a bursty arrival pattern, then
there are intervals where it does not have packets to send, and the FQ server treats that conver-
sation as idle. Thus, the effective number of active conversations decreases, and the rate allo-
cated to all the other conversations increases. When the traffic resumes, the service rate again
decreases.

Note that even with these variations in the service rate, a FQ server provides a conversation
with a more consistent service rate than a FCFS server. In a FCFS server the service rate of a
conversation is linked in detail to the arrival pattern of every other conversation in the server,
and so the perceived service rate varies rapidly.

For example, consider the situation where the number of conversations sending data to a
server is fixed, and each conversation always has data to send when it is scheduled for service.
In a FCFS server, if any one conversation sends a large burst of data, then the service rate of all
the other conversations effectively drops until the burst has been served. In a FQ server, the
other conversations will be unaffected. Thus, the server allocates a rate of service to each
conversation that is, to a first approximation, independent of the conversations’ arrival patterns.
This motivates the use of a rate-based flow control scheme that determines the allocated ser-
vice rate, and then sends data at this rate.

Choice of network model
We would like to design the flow control mechanism for a source in a network of FQ servers

on a sound theoretical basis. This requires an analytic model for network transients. The stan-
dard network analysis technique is stochastic queueing analysis, where, for tractability, the usual
assumptions are that the network consists of M/M/1 servers, the sources inject Poisson traffic, and
the sources generate traffic independently. There are three problems with this approach. First,
the strong assumptions regarding servers and sources are not always justifiable in practice.
Second, the kind of results that can be obtained are those that hold in the average case, for
example, expected queueing delays, and expected packet loss rates. Though the Chapman-
Kolmogorov differential equations describe the exact dynamics (and thus the transient
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behavior) of a single M/M/1 queue, the solution of these equations is as hard as evaluating an
infinite sum of Bessel functions [135]; besides, extending this analysis to a network of M/M/1
servers is difficult. Third, even if an exact analysis of transients in the network is obtained by an
extension of the Chapman-Kolmogorov equations, if the servers are not M/M/1, no such differen-
tial equations are known.

Thus, using stochastic queueing analysis, transient analysis of a network of FQ servers (which
are not M/M/1) is cumbersome, and perhaps impossible. However, flow control depends pre-
cisely on such transients. Thus, we prefer an approach that models network transients explicitly,
but without these complications.

We model a single conversation in a network of FQ servers using deterministic queueing
analysis. This model, formally defined in the next section, makes a major assumption that the ser-
vice time per packet, defined as the time between consecutive packet services from a conver-
sation, is assumed to be constant at each server. This is true if all the packets in a given conver-
sation are of the same size and if the number of active conversations (conversations that have
data to send when their turn in round-robin order comes by) at each FQ server is constant. The
packet size assumption is borne out by studies of data traffic in current networks [13, 51], and will
certainly hold in ATM networks of the near future. The other assumption is harder to justify. A FQ
server isolates a conversation from other conversations if they are not too bursty, but this is not
sufficient justification. We treat this assumption as a necessary crutch to aid deterministic
analysis. We do not expect this assumption to hold in practice, and later in this chapter, the
assumption is relaxed to allow infrequent, single sharp changes in the number of active conver-
sations. However, note that in the important case of a network of FCFS servers, the deterministic
service time assumption is wrong. Hence, for FCFS networks, our analysis is incorrect, and the
Packet-pair flow control protocol is infeasible.

With these caveats in mind, it is nevertheless interesting that a deterministic modeling of a
FQ server network, though naive, allows network transients to be calculated exactly [129].
Waclawsky and Agrawala have developed and analyzed a similar deterministic model for
studying the effect of window flow control protocols on virtual circuit dynamics [144, 145].

Model
We model a conversation in a FQ network as a regular flow of packets over a series of

servers (routers or switches) connected by links. The servers in the path of the conversation are
numbered 1,2,3...n, and the source is numbered 0 (notations is summarized in the Appendix to
this chapter). The source sends packets to a destination, and the destination is assumed to ack-
nowledge each packet. (Strictly speaking, this assumption is not required, but we make it for
ease of exposition.) We assume that sources always have data to send (an infinite-source
assumption). This simplification allows us to ignore start-up transients in our analysis. The start-up
costs can, in fact, be significant, and these are analyzed in [129]. However, for simplicity of expo-
sition, we assume infinite sources from now on.

The service time at each server is deterministic. If the ith server is idle when a packet arrives,
the time taken for service is si, and the (instantaneous) service rate is defined to be ρi = 1/si. Note
that the time to serve one packet includes the time taken to serve packets from all other
conversations in round-robin order. Thus, the service rate is the inverse of the time between con-
secutive packet services for the same conversation. The time taken to traverse a link is assumed
to be zero (if it is not, it can always be added to the service time at the previous server).

If the server is not idle when a packet arrives, then the service time may be more than si.
This is ignored in the model, but we consider its implications in a later section. If there are other
packets from that conversation at the server, the packet waits for its turn to get service (we
assume a FCFS queueing discipline for packets of the same conversation). We assume a work-
conserving discipline, which implies that a server will never be idle whenever a packet is ready.

The source sending rate is denoted by ρ0 and the source is assumed to send packets
spaced exactly s 0 = 1/ρ0 time units apart. We define
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sb =
i

max(si | 0 ≤ i ≤ n)

to be the bottleneck service time in the conversation, and b is the index of the bottleneck server.

µ is defined to be
sb

1hhh , and is the bottleneck service rate.

We now introduce the notion of a rate-throttle, by means of a recursive definition. To start
with, the first server in the path of a conversation is a rate-throttle. Consider the servers along the
path from the source to the destination. A server on the path is a rate-throttle if it is slower than
some previous rate-throttle. Let SL, the ordered set of rate-throttles, be the set of strictly slower
servers from the source to the bottleneck.

We now prove several lemmas about the properties of such conversations. Similar results
and a more detailed analysis can be found in [143, 145].

Lemma 1 : (Basic lemma)
Consider data arriving at an initially idle server j at a rate r.

(a) If r ≤ ρ j, there is no queueing at j, and the departure rate from server j is r.

(b) If r > ρ j, there is queueing at j, and the departure rate from server j is ρ j.

Proof :
(a) Initially, since the server is idle, its queue is empty. If the first packet arrives at time t0, it
will depart at time t0 + sj. Packets in the arriving stream are spaced 1/r time units apart.
Thus, the next packet arrives at time t0 + 1/r. Since ρ j≥r, 1/r ≥ 1/ρ j and t0 + 1/r ≥ t0 + sj, so the
next packet arrives only after the first one has left. Thus, there is no queueing at the server.
Simple induction on the sequence number of the arriving packet gives us the result on
queueing.

The departure rate of the packets is constrained only by the arrival rate, and hence the
output stream from the server has a rate r.

(b) Since the departure of the first packet happens after the arrival of the next packet, the
second packet will be queued in the server. If there is a queue already, and a packet
arrives before the departure of the previous packet, it will only add to the queue. Induction
on the packet sequence number gives us the queueing result.

Since the departure stream from the server has an inter-packet spacing of sj, the output
stream is at rate ρ j.

Lemma 2 : (Composition)
Consider two adjacent servers j and j+1. If data enters server j at a rate r such that
ρ j ≥ r > ρ j+1 queueing occurs only at server j +1.

Proof :
Since r ≤ ρ j, there is no queueing at server j (Lemma 1). Hence, the departure rate of pack-
ets from server j, as well as the arrival rate at server j +1 is r. Since r > ρ j+1, there is queueing at
server j +1 (Lemma 1).

Lemma 3 : (Single bottleneck)
If data enters a segment of the VC numbered k, k+1, .. L, at a rate r such that ρL < r < ρ, ρ ∈∈ {
ρk, ρk +1, . . . , ρL−1}, then queueing occurs only at L.

Proof :
Since r < ρk, there is no queueing at server k and the departure rate from server k is r (Lemma
1). We can thus delete server k from the chain, and repeat the argument for the servers
k+1, k+2, ... L. For the servers L-1, L, we use Lemma 2 to get the desired result.
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Lemma 4 : (Chain of rate-throttles)
Queueing can happen only in elements of SL, the set of strictly slower servers.

Proof:
Break up the server chain 1,2, ... , b into sub-chains 1,2, ... sl1; sl1, sl1+1, . . . , sl2; ... , such that
only sli ∈∈ SL. Consider the first such chain. If ρ0 < ρsl 1

, there is no queueing at sl1. Hence, to
get the worst possible scenario, we assume that ρ0 > ρsl 1

. In that case, from Lemma 3, the
only queueing at the first chain will be at sl1 (if ρ0 is very large, sl1 could just be 1). By
definition of SL, the departure rate from sl1, ρsl 1

, satisfies the requirements for Lemma 3, so
there will be queueing at sl2, and at no other node in that subchain. From induction on the
sequence number of the subchain, we get the desired result.

Lemma 5 : (Probing)
If a source sends packets spaced s 0 time units apart, and ρ0 ≥ ρb, the acks will be received
at the source at intervals of sb time units.

Proof :
By definition of the bottleneck, and Lemmas 1 and 4, the departure rate of packets at the
bottleneck is µ. Since acks are created for each packet instantaneously, the acks will be
spaced apart by sb.

Define ∆ j to be ρslj−1
− ρslj .

Lemma 6 : (Burst dynamics)
If a source sends a burst of K packets at a rate s 0 >> ρi, for all i, then the queue at slj builds up

at the rate ∆ j, reaches its peak at time tj =
i=0
Σ
j−1

si +
ρslj−1

Khhhhh , and decays at the rate ρslj .

Proof :
Consider the situation at slj. This server receives packets at a rate ρslj−1

, and serves them at
the rate of ρslj . Thus, the queue builds up at the rate ∆ j. The queue reaches the maximum
size when the last packet from the previous rate-throttle arrives. Since this is at a rate ρslj−1

,

the time to receive K packets is K /ρslj−1
. To this we add

i=0
Σ
j−1

si, which is the time that the first

packet arrived, to get the desired result. Finally, the queue will decay at the service rate of
the rate-throttle, i.e., ρslj .

Note that in our model, it is not possible to have more than one bottleneck. While queueing may
occur at more than one node, the service rate of the circuit is determined by the lowest indexed
server with a service rate of µ, and this will be the bottleneck.

4.3. Rate probing schemes
How should we design a flow control scheme for a FQ network? Since the network allo-

cates each conversation a service rate at its bottleneck server, a simple flow control scheme
would be to probe the server to determine its current service rate for that conversation, and
then send data at that rate (note that each conversation has its own bottleneck server). Send-
ing it any slower would result in loss of throughput, and any faster would result in queueing at the
bottleneck. Thus, it is clear that we should use a rate-based flow control scheme [17]. Note that
rate-based flow control is explicitly enabled by FQ networks.

Rate based flow control
Our first attempt at designing a rate-based flow control scheme modified an idea

described by Clark et al. for NETBLT [17], but as shown below, it was not successful. If a source
sends data at a rate ρ0, and receives acknowledgments at a rate ρb, then a reasonable control
scheme is: if ρ0 > ρb, decrease ρ0, else increase it. The idea is that the rate at which acknowledg-
ments are received is approximately the rate which the FQ server has allocated to the
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conversation. This should match the sending rate.

The increase and decrease policies are multiplicative, that is the algorithm is
if ( ρ0 > ρb ) then ρ0 = αρ0 else ρ0 = βρ0

where α < 1 and β > 1. As the service rate changes, this adaptive scheme should converge on
the new rate, and the system should stabilize at the correct rate.

However, there are four problems. First, a source cannot determine an increase in avail-
able capacity except by sending at a slightly increased rate and looking at the stream of ack-
nowledgments (acks). Thus, a sudden large increase in the service rate can be adjusted for only
after several round trip times. This is undesirable, particularly in high speed networks, where the
bandwidth delay product can be large. Second, it takes a few round trip times to adjust to a
sharp decrease in service rate. In the meantime, the bottleneck queue builds up. Third, after a
decrease, the source sends at very nearly the service rate, so the built up queues never shrink,
and the network becomes more prone to packet loss. Finally, the rate probe tends to push the
network towards congestion, since the source always tries an increased sending rate, until the
rate can no longer be supported. These problems point to a need for a better rate control algo-
rithm, such as Packet-pair.

4.4. The Packet-pair scheme
Packet-pair is described in three stages. First, we motivate the algorithm. This is followed by

a complete description and implementation details.

Motivation
Packet-pair is based on three observations:

(1) The probing lemma allows a source to determine the bottleneck service rate by sending
two packets at a rate faster than the bottleneck service rate, and measuring the inter-ack
spacing.

Consider a packet pair as it travels through the system, as shown in Figure 4.1. The figure
presents a time diagram. Time increases down the vertical axis, and each axis represents a
node along the path of a conversation. Lines from the source to the server show the transmission
of a packet. The parallelograms represent two kinds of delays: the vertical sides are as long as
the transmission delay (the packet size divided by the line capacity). The slope of the longer
sides is proportional to the propagation delay. After a packet arrives, it may be queued for a
while before it receives service. This is represented by the space between the horizontal dotted
lines, such as de.

In the packet-pair scheme, the source emits two back-to-back packets (at time s). These
are serviced by the bottleneck; by definition, the inter-packet service time is sb, the service time
at the bottleneck. Since the acks preserve this spacing, the source can measure the inter-ack
spacing to estimate sb.

We now consider possible sources of error in the estimate. Server 1 also spaces out the
back-to-back packets, so can it affect the measurement of sb? A moment’s reflection reveals
that, as long as the second packet in the pair arrives at the bottleneck before the bottleneck
ends service for the first packet, there is no problem. If the packet does arrive after this time,
then, by definition, server 1 itself is the bottleneck. Hence, the spacing out of packets at servers
before the bottleneck server is of no consequence, and does not introduce errors into the
scheme. Another detail that does not introduce error is that the first packet may arrive when the
bottleneck server is serving other packets and may be delayed by a time interval such as de.
Since this delay is shared by both packets in the pair, this does not affect the observation.

However, errors can be introduced by the fact that the acks may be spread out more (or
less) than sb due to differing queueing delays along the return path. In the figure note that the
first ack has a net queueing delay of ij + lm, and the second has a zero queueing delay. This has
the effect of reducing the estimate of sb.
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Figure 4.1: The packet-pair probing scheme

This source of error will persist even if the inter-ack spacing is noted at the sink and sent to
the source using a state exchange protocol [120]. Measuring sb at the sink will reduce the effect
of noise, but cannot eliminate it, since any server that is after the bottleneck could also cause a
perturbation in the measurement.

The conclusion is that the estimate of the service rate made by the sender can be cor-
rupted by noise. In the deterministic model described earlier, even if the server is busy when a
packet arrives, queueing delays are assumed to be zero, and thus Lemma 5 proves that the
source observes the service rate exactly. In reality, these small queueing delays can cause
observation noise. In a later section, we show how the flow control mechanism accounts for this.

(2) If a source has a rate allocation 1/sb and a round trip propagation delay R, it operates
optimally when it has R /sb packets outstanding.

The packets sent from a source and not yet acknowledged constitute a pipeline, in the sense
that they are being ‘processed’ in parallel by the network. Then V, the pipeline depth, is given
by V = R /sb. A source should keep exactly V packets outstanding to fully utilize the bottleneck
bandwidth, and simultaneously have zero queueing delay [64, 97]. V depends on R and sb. In
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the model presented earlier, the values of these quantities are fixed, but, in reality, they could
change with time, and so it is necessary periodically to measure them. The source can measure
sb using the packet-pair method described above. R, the propagation delay, is the time
between sending out a packet and receiving an ack when all the queues along the path are
empty. This can be approximated by measuring rt, the round trip time, though rt will have a
component due to the queueing delay.

(3) If the pipeline depth V can increase or decrease by at most ∆V in any interval of time rt,
then keeping ∆V packets in the bottleneck queue’s buffers will ensure that the bottleneck
will not be idle.

If an increase in R or sb increases the pipeline depth by ∆V, some bottleneck bandwidth will
be unutilized until the source reacts to the change. Since a source takes at least rt time units to
react, the source should have enough packets in the buffer to take up any transients. If the
bottleneck queues ∆V packets, when V increases, the buffer will be drained, and no loss of
throughput will occur. Thus, Packet-pair tries to ensure that, at any given time, at least ∆V pack-
ets are present in the bottleneck queue. We assume a buffer capacity of at least 2∆V per
conversation at every switching node.

Note that this scheme avoids wasted bandwidth but adds a queueing delay (on average
∆Vsb) to every packet served. A user can adjust the targetted bottleneck queue size to obtain a
range of delay versus bandwidth loss tradeoffs. To get a lower average queueing delay, the
bottleneck queue size should be kept small, but this introduces the possibility of a bandwidth loss
when the pipeline depth increases. If this loss is to be avoided, then ∆V packets should be kept
in the queue, but this will also increase the average queueing delay. We denote the target
bottleneck queue size by nb, and in the rest of the chapter, nb is assumed to be ∆V. In practice,
users who desire low queueing delays should choose nb to be close to zero, while those who
desire bulk throughput should choose a larger value. This is discussed in Chapter 5.

Algorithm
There are three phases in the operation of Packet-pair: start-up, queue priming and normal

transmission.

At start-up, the source does not know the value of sb. Since it should not overload the
bottleneck with packets, some sort of ‘slow-start’ is desirable. This can be combined this with an
initial measurement of the conversation parameters by sending a packet-pair, two packets sent
as fast as possible (back-to-back). The round-trip time of the first packet gives us Re, an estimator
for R and the inter-arrival time of the two packets gives us se, an estimator for sb.

Once the source computes Ve = Re /se, an estimator of V, it can decide what nb should be.
nb should be chosen depending on the value of ∆V for the network. This value can be deter-
mined empirically or the administrator can choose this to tune protocol performance. Deciding
nb a priori is possible, but not desirable, since an administrator might want nb to be some fraction
of Ve. Thus, the decision about the value of nb is deferred till the end of the first round-trip-time.
During queue priming, the source sends out a burst of nb back-to-back packets so that the nb

packets accumulate in the bottleneck queue.

During normal transmission the source transmits packet-pairs every 2se time units and
updates se based on the inter-arrival time between paired acks. Re, the estimate for R, is updated
to rt − nbse, which accounts for the queueing delay. To react immediately to changes in V, the
source recomputes Ve on the arrival of every pair.

Let Vnew, Vold be the new and old values of Ve using the new and old estimates, respec-
tively. If Vnew < Vold, the source calculates

nskip = max( R(Vold−Vnew)/2 H, 0),
where Rz H is the smallest integer greater than or equal to z. The source then skips nskip transmission
slots with a duration of the new value of se, and then continues to send pairs of packets at regu-
lar intervals of 2se. If Vnew > Vold, the source immediately transmits a burst of Vnew − Vold back-to-
back packets (these are specially marked as non-paired packets).
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Implementation
Figure 4.2 is the state diagram for a Packet-pair implementation.

ACK TICK

CRQ(nb)vnew < vold

start_up

CRQ(vnew-vold)

get nskip

linefree=1

CRQ(2)

linefree

enqueue pkt

RECEIVE

FREE

TIMEOUT

N

Y

Y

N

Y
N

nskip > 0
Y

N

burst_size > 0

Y N

DEQUEUE/SEND

Figure 4.2: State diagram for implementing Packet-Pair
(CRQ(x) = accept x packets from user and enqueue)

A Packet-pair source usually is in the ‘receive’ state, waiting for an interrupt, one of
a) A signal indicating receipt of an acknowledgment packet. (ACK)
b) A ‘tick’ indicating that at the current sending rate, the next packet

is due to be sent. (TICK)
c) A signal indicating that the output line is now free. (FREE)
d) A signal indicating that the last packet has timed out. (TIMEOUT)

There are two important state variables. linefree indicates that the output line from the
source is free. num_in_burst is the number of packets enqueued in the output queue that
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belong to a burst. As long as num_in_burst is positive, a packet is dequeued and sent on the
arrival of every FREE signal.

When an ACK signal arrives, if the ack is the first of a pair, Re, the estimate for R, is updated.
If it is the second of a pair, se is updated, and the source computes Ve and nskip . If Vnew > Vold, a
burst of Vnew − Vold packets are queued on the output queue.

When an acknowledgment is received, some of the packets it acknowledges may have
been timed out, and may be enqueued waiting to be sent out. So, at this point, all queued
retransmissions that have become invalid are discarded. This implicitly assumes that retransmit-
ted packets are queued at the transport layer. If a retransmitted packet has already been
passed to a lower protocol layer, it will have to be retrieved from that layer, possibly violating
layering. If this is a concern, this step can be ignored, since discarding retransmitted packets is
not essential for the correct operation of the protocol.

If a TICK is received and nskip is non-zero, it is decremented, the TICK timer is reloaded with
2se, and we return to the receive state. Else, two packets (from the client) are enqueued on the
output queue. If the line is free, one of the packets is dequeued and sent, else the source waits
for an FREE to arrive. When an FREE arrives, if there are burst packets to be sent, one of them is
dequeued and transmitted, else the source marks the line as free and returns to the receive
state.

In current versions of TCP, there is a single retransmission timer, that is set on each packet
transmission to r̂t + 2MDM (ignoring some minor details). Here r̂t is a moving average of the meas-
ured round trip time, and MDM is a moving average of the absolute difference between the
measured round trip time and r̂t. When the timer goes off, the last unacknowledged packet is
retransmitted. While we find this algorithm suitable, note that Packet-pair detects impending
congestion using packet-pair probes, so, unlike TCP [63, 153], it is rather insensitive to the exact
choice of the retransmission timer value. Thus, as a simplification, assuming one retransmission
timer per packet, the retransmission timer value is simply Xrt, where X is some small integer, and
can be used as a tuning parameter (we used X = 3). On a TIMEOUT the timed out packet is
placed in the output queue, waiting to be retransmitted. The new timeout value for the packet
is twice the old value.

4.5. Analysis
We will analyze the the behavior of Packet-pair in the steady state (that is, when R and sb

do not change), and its response to transient changes in the virtual circuit. We will make four
simplifying assumptions:

g Flow control is being done on behalf of an infinite source, that always has some data ready
to send.

g Changes in V are bounded from above by ∆V, and the source knows or can estimate this
value.

g Each server reserves B ≥ 2∆V buffers for each source.

g Transients are assumed to be due to a sharp, rather than a gradual, change in the system
state. We assume that the value of a parameter, such as R, is constant until time t0, at
which point it changes discontinuously to its new value. We denote the value of R(t) before
the change as R(t0−ε), and after as R(t0+ε). We define sb(t0−ε) and sb(t0+ε) similarly.

Optimal flow control
We introduce the notion of optimal flow control and show that, in the steady state, Packet-

pair is optimal. An optimal transmission flow control scheme should always operate at the knee
of the load-throughput curve, so that maximum throughput is achieved with minimum delay
[64]. As the conditions at the server change, the source flow control must adapt itself to the
change. However, if we consider the speed-of-light propagation delay in this control loop for
wide-area networks, it is clear that no realizable flow control scheme can always operate at the
knee. Hence, we propose a weaker definition of optimality that is suitable for high throughput
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applications.

Let the bottleneck have B buffer spaces available for each source. Then, a flow control
scheme is optimal in the interval [T 0, T 1] if in every time interval [t1, t2 ] ∈∈ [ T 0, T 1], there are no
buffer overflows, and there is no loss of bandwidth at the bottleneck node. To be precise, at the
bottleneck node, if the buffer occupancy at time t1 is k,

0 ≤
t1

∫
t2

(ρ0(t−d1)−ρb(t)) dt ≤ B−k

where ρ0(t) is the source sending rate at time t, ρb(t) is the bottleneck service rate at time t and d1

is the propagation delay from the source to the bottleneck.

Steady state behavior of Packet-pair
In the steady state, Packet-pair will keep nb packets in the bottleneck queue, and send

packets at exactly the service rate, µ. Proposition 1 proves the optimality of Packet-pair in the
steady state.

Proposition 1:
Let the transmission at the source start at time T 0 and end at time T 1. If V is constant in
(T 0, T 1], then Packet-pair is an optimal flow control scheme in [T 0 + 2R(0), T 1 ].

Proof: At time T 0 + R(0), the source knows µ. Since ∆V = 0, we can set nb = 0, and priming the
queue is not necessary. Thus, the source will immediately start to send a packet-pair
every 2sb time units. The first pair reaches the bottleneck at the latest by T 0 + 2R(0).
Since service is at rate µ, there is no build up of the queue. Clearly, no bandwidth is
lost, and optimality conditions are trivially satisfied in [T 0 + 2R(0), T 1 ].

Remark
Note that many schemes described in the literature do not satisfy this weak notion of

optimality even in the steady state. For example, the Jacobson-Karels version of TCP [63] drops
packets if the maximum possible window size is larger than the buffer capacity at the bottleneck
queue. The DECbit scheme keeps the queues at an average queue length of 1, and so will lose
bandwidth when V increases [64]. As we mentioned earlier, NETBLT causes queues to build up
whenever V decreases, and they are never adjusted for. Hence, a sequence of decreases in V
will cause NETBLT to drop packets. Jain’s delay based scheme [65] will respond poorly if V
decreases due to a decrease in R, since it interprets the decrease in delay as a signal to
increase the window size, which will cause further queueing, and possible packet loss. A more
detailed analysis of these schemes can be found in [129].

Response to transients
In our model, the only network parameters visible to a source are µ and rt. Thus, a flow con-

trol scheme can react to a change only in either of these variables, and we will study the
response of Packet-pair to these changes. For each change, we study the packet or bandwidth
loss, and the time taken to return to steady state.

Note that rt itself depends on R and on the queueing delay in the bottleneck node. In
steady state, queueing delay is constant, and rt changes only if R or µ change. Thus, we need
only consider changes in R and µ. In either case, the effect is to change V = R.µ. We will denote
the time at which the change occurred by t0, and the change in V by δV ≤ ∆V.

4.5.1. Increase in propagation delay

4.5.1.1. Loss of bandwidth
R could increase if the VC is rerouted, and some new servers are added to the VC’s path.

There are two cases: either the path increase occurs before the bottleneck node, or after. If the
increase happens after the bottleneck, then some server downstream of the bottleneck will
have an increased idle time, and there is no loss in bottleneck bandwidth.
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If the increase happens before the bottleneck, then for some period of time, the bottleneck
could be idle, since packets that should have arrived at the bottleneck will now be sent to the
new servers instead. Since we bound the increase in V by ∆V, if the bottleneck queue has ∆V
packets, the buffered packets will be transmitted in the interim, and there will be no loss of
bandwidth.

Another subtle possibility for bandwidth loss is if the first packet of a packet-pair reaches the
bottleneck after time delay D 1 while the second one reaches there after a delay D 1new. The
inter-arrival time of the pair at the bottleneck is then ξ = D 1new−D 1. If this is larger than sb, the proto-
col will react by skipping some pairs of packets. However, Packet-pair will recover as soon as the
next pair of acks arrive.

Proposition 2
The loss of bandwidth will be 2n + ξ/sb packets, where

n = max(R
2
1hh

sb

(Roldhhhhh−
ξ

Rnewhhhhh) H,0)

Proof:
The second term, ξ/sb, is just the bubble size in the pipeline. Since Packet-pair mistakenly
estimates that the pipeline depth is Rnew /ξ, instead of Rnew /sb, it skips n slots, and in each slot
it loses 2 packets, leading to a net loss of 2n packets.

4.5.1.2. Recovery time
Suppose R increased at time t0. This information reaches the source at the latest by time

t0 + R(t0 + ε). The source will immediately send a burst of δV packets. Since the source is sending
at rate µ, all but the bottleneck server will be idle when this burst is initiated. By the Burst dynam-
ics lemma, we see that the last packet of the burst will arrive at the bottleneck at time

t0 +
i=0
Σ
b−1

si +
ρslb−1

δVhhhhh . This replenishes the bottleneck queue and so the steady state is regained. Subse-

quent increases in R are handled as before.

4.5.2. Increase in service rate

4.5.2.1. Loss of bandwidth
µ could increase if the number of conversations at the bottleneck decreases. The increase

in µ could lead to some other node in the VC’s path to become the bottleneck. We need to
consider two cases, depending on whether the bottleneck migrates or not (that is, whether or
not some other node becomes the bottleneck).

Assume that the bottleneck does not migrate. Due to the increase in µ, the bottleneck will
serve packets faster than they arrive, and, until the first packet transmitted at the new rate
arrives, there could be a loss of bandwidth. Now, the increase in µ becomes known to the

source by time t0 +
i=b
Σ
n

si, and the first packet from the burst reaches the server by t0 + R(t0). So, if

there are (sb(t0+ε)−sb(t0−ε))R(t0) ≤ ∆V packets in the bottleneck buffer, there will be no loss of
bandwidth.

If the bottleneck migrates downstream from the old bottleneck, then packets queued at
the old bottleneck will arrive at the new bottleneck and will form a queue there. It is easy to
show that the only loss of throughput happens for the brief interval where the first packet from
the old bottleneck is in transit to the new bottleneck.

If the bottleneck migrates upstream, then the δV packets queued at the old bottleneck
cannot compensate for the bubble in the pipeline. The new bottleneck will be idle till the first
packet from the compensatory burst arrive, and the loss could be as large as δV packets. Note
that no flow control algorithm can prevent this loss, since the source must take at least R(t0) time
to react to the change in sb. Thus we have shown that no feasible flow control algorithm can
satisfy even our weak notion of optimality in non-steady state operation.
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4.5.2.2. Recovery time
The recovery time is just the time for δV packets to accumulate at the bottleneck, and this is

the same as in the case of the increase in R, that is
i=0
Σ
b−1

si +
ρLb−1

δVhhhhh .

4.5.3. Decrease in propagation delay

4.5.3.1. Loss of packets
R could decrease if packets are sent through a shorter route, but through the same

bottleneck. We will assume that the packets in transit are not lost, but are received at the
bottleneck. The effect of this change is to put an additional δV packets in the buffers of the
bottleneck queue. Since in the steady state there are ∆V packets in the bottleneck, and we
assume that we can buffer 2∆V packets, there is no packet loss.

4.5.3.2. Recovery time
The source knows the reduced value of R at the latest by time t0+R (t0 + ε). At this point, it will

skip (Vold−Vnew)/2 transmission slots, taking a time equal to 1/2(R(t0−ε)/sb − R(t0+ε)/sb)2sb,
= R(t0−ε) − R(t0+ε). The first packet after resumption of normal transmission reaches the bottleneck
latest by time t0+R(t0−ε) − R(t0+ε) + R(t0−ε) = t0 + R(t 0−ε). Since the excess packets accumulated at
the bottleneck are exactly (R(t0−ε)/sb − R(t0+ε)/sb), they will all be cleared in this time, and the sys-
tem will reach the steady state at time t0 + R (t0)

4.5.4. Decrease in service rate

4.5.4.1. Loss of packets
The source knows of the decrease in µ at the latest by t0 + R(t0), and will skip δV /2 transmis-

sion slots. The bottleneck could accumulate an additional δV packets in this time. Since there are
2∆V buffers, there is no packet loss.

4.5.4.2. Recovery time

The source detects the decrease in µ by time t0 +
i=b
Σ
n

si, and will skip some transmissions. The

first packet sent at the new rate is received at the bottleneck after a time
i=1
Σ
b−1

si, so that the first

packet arrives at the bottleneck at time t0 + R (t0) + skiptime. During the first R(t0) time units, the
bottleneck queue will accumulate packets in excess of ∆V, but exactly these many packets will
be serviced during skiptime. Hence, at t0 + R (t0) + skiptime the steady state is attained.

The source skips transmission for the time during which the bottleneck services the excess
packets accumulated in its queue. Hence,

skiptime = max(R
2
1hh

sb(t0−ε)

R (t0)hhhhhhhhmi
sb(t0+ε)

R(t0)hhhhhhhh H, 0)sb(t0+ε)

4.6. Conclusions
This chapter models networks of FQ servers as a sequence of D/D/1 queues. In recent work

[156], we have shown that the FQ discipline is similar to the Virtual Clock [154] and Delay-EDD
[37] service disciplines. Thus, this modeling approach may be applied to networks of Virtual
Clock and Delay-EDD servers as well. The network model initially assumes that the bottleneck
service rate is constant. Later, this assumption is relaxed, and infrequent, single sharp changes in
the bottleneck service rate are allowed. Some lemmas about the model are proved, which
motivates the design of the Packet-pair flow control scheme. The detailed design of Packet-
pair, as well as the state diagram of an implementation are presented. The Packet-pair protocol
has several advantages over other flow control protocols: it responds quickly to changes in the
network state, it takes advantage of FQ routers to probe network state, and it does not require

50



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Change Bandwidth loss Packet loss Recovery timeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

≤ t0 + R(t0 +ε) +Increase in propagation

delay
None None

i=0
Σ
b−1

si +
ρslb−1

δVhhhhh
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Increase in bottleneck 0, if no bottleneck migration As above
service time ≤ δV if bottleneck migrates

None

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Decrease in propagation
delay

None None ≤ t0 + R (t0)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Decrease in bottleneck ≤ t0 + R (t0) + sb(t0+ε)

service time
None None

max( R
2sb(t0−ε)

R (t0)hhhhhhhhh−
sb(t0+ε)

R(t0)hhhhhhhh H, 0)
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4.1: Summary of analytic results

any assistance from routers, such as bit-setting. A similar approach to passively probing the net-
work, though not using packet pairs, is described in reference [53], where each probe packet is
time stamped, and the time series of delays suffered the probes is used to obtain a congestion
indicator. Then, the packet sending rate is adjust to be proportional to the inverse of the level of
congestion in the network. However, the Packet-pair protocol is not without its limitations. First, it
requires that all the packet routers in the network implement Fair Queueing or a similar round-
robin-like discipline. This is not necessary for flow control schemes such as the one in TCP [63, 109]
or Jain’s delay-based approach [65]. Since most current networks do not implement FQ, our
approach is of limited practical significance, but it is hoped that this situation will change in the
future. Second, Packet-pair assumes that changes in the bottleneck service rate happen slower
than one round trip time. This is true if the conversations are long lived, and not too bursty. This is
plausible if most of the traffic consists of fairly smooth (perhaps, uncompressed video) streams.
However, if the number of active conversations can change drastically over the time scale of
one round trip time, then Packet-pair is inadequate. We address this in Chapter 5, where we use
a formal control-theoretic approach to flow control, and propose a hybrid flow control scheme
that integrates window and rate-based flow control. Buffer reservations at each packet switch
ensures that even if the flow control scheme incorrectly estimates the bottleneck service rate,
there is no packet loss. With these changes, the packet-pair scheme performs well in FQ net-
works even if the bottleneck service rate changes rapidly and drastically.
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4.7. Appendix 4.A : Notation
The following notation is used throughout the paper. Since a single conversation is studied,

it is implicitly assumed that the variables are subscripted with the conversation identifier. The
time dependencies are usually ignored in the text.

si(t): service time at the ith server in the path.
ρi(t): service rate at the i server, ρi(t) = 1/si(t).
sb(t): service time at the bottleneck server.
µ(t): bottleneck service rate = 1/sb(t).
se(t): estimator for sb(t).
sli: ith rate throttle in the path.
∆ j: ρslj−1

−ρslj

R(t): round trip propagation delay (excluding queueing delays).
rt(t): R(t) + queueing delay
Re(t): estimator for R.
V(t): pipeline depth = R /sb.
Ve(t): estimator for V = Re /se.
δV: actual change in V.
ρ0(t): source sending rate
R(t0−ε): R (t) before a change at time t0.
R(t0+ε): R (t) after a change at time t0.
sb(t0−ε): sb(t) before a change at time t0

sb(t0+ε): sb(t) after a change at time t0

nb: desired number of packets in the bottleneck buffer
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