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Chapter 1: Introduction

1.1. Historical perspective
Computer networks form an essential substrate for a variety of distributed applications, but

they are expensive to build and operate. This makes it important to optimize their performance
so that users can derive the most benefit at the least cost. Though most networks perform well
when lightly used, problems can appear when the network load increases. Loosely speaking,
congestion refers to a loss of network performance when a network is heavily loaded. Since
congestive phenomena can cause data loss, large delays in data transmission, and a large vari-
ance in these delays, controlling or avoiding congestion is a critical problem in network
management and design. This dissertation presents some approaches for congestion control in
wide-area computer networks.

Historically, the first wide-area networks (WANs) were circuit-switched telephone networks.
Since these networks carry traffic of a single type, and the traffic behavior is well known, it is pos-
sible to avoid congestion simply by reserving enough resources at the start of each call. By limit-
ing the total number of users, each admitted call can be guaranteed to have enough resources
to achieve its performance target, and so there is no congestion. However, resources can be
severely underutilized, since the resources blocked by a call, even if idle, are not available to
other calls.

Early research in computer data networking led to the development of reservationless
store-and-forward data networks [132]. These networks are prone to congestion since neither
the number of users nor their workload are regulated. Essentially, the efficiency gained by statist-
ical multiplexing of network resources is traded off with the possibility of congestion. This problem
was recognized quite early [22], and a number of congestion control schemes were proposed;
references [44, 110] provide a detailed review of these.

In the past three years, there has been a renewed interest in congestion control, as a
glance at the Bibliography will indicate. We feel that at least three factors have been responsi-
ble. First, the spread of networks such as ARPANET, NSFNET, CSNET and BITNET, and their intercon-
nection, has created a very large Internet whose size has made it unmanageable. The large
number of users and a complete decentralization of network management made it inevitable
that congestion would pose problems sooner or later. Matters came to a crisis around mid-1987,
and prompted two pioneering research efforts. Jain, Ramakrishnan and Chiu at Digital Equip-
ment Corporation developed the DECbit congestion control scheme [117]. Simultaneously,
Jacobson at Lawrence Berkeley Laboratories and Karels at UC Berkeley modified the well-known
Transmission Control Protocol (TCP) [21, 108] to intelligently react to congestion, and to recover
from it [63]. The success of these efforts brought congestion control into focus as a major
research area in the Internet community.

The second factor is the development of optical fiber technology. Optical fiber trunks offer
data bandwidths that are a factor of 10,000 larger than earlier circuits (a ratio of 600 Mbps to
56kbps). A number of researchers have recognized the critical role of congestion control in
high-speed WANs, since the bandwidth-delay product of a single circuit in such networks can be
as large as 30 Mbits (600 Mbps x 50 ms round-trip delay across the USA). With such large pro-
ducts, a single source could introduce a transient load large enough to swamp buffers at the
switches, leading to packet losses and excessive end-to-end delays for all the hosts on the net-
work.

The third factor is social, rather than technological. The networking community has long
been divided into two camps: the computer data networking community, and the telecom-
munications community. However, in recent years, the telecom community has realized the
benefits of packet switching, resulting in the Asynchronous Transmission Mode (ATM) proposal
from CCITT. Similarly, data networking researchers have realized that they need to provide real-
time bounds on data transfer for services such CD-quality audio and interactive video [35, 154].
This growing together of the two communities has led to a cross-fertilization of ideas about
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congestion management. Indeed, some of the most exciting proposals for future networks are
arising from this interaction.

The present time appears to be critical for the design of future high speed networks, and in
particular, their congestion control mechanisms. In this dissertation, we propose a number of
ideas that we believe are useful for high speed networks. We hope that our work will contribute
to the ongoing debate about congestion control.

This chapter is laid out as follows. Section 1.2 presents the environment of discourse. Sec-
tion 1.3 defines congestion, and section 1.4 defines and discusses congestion control. Section
1.5 describes the fundamental requirements of a congestion control scheme, and the next sec-
tion presents the fundamental assumptions made in this thesis. Section 1.7 reviews previous work,
and the scope of this thesis is presented in section 1.8.

1.2. Environment of discourse
We survey congestion control techniques in two types of wide-area networks (though the

dissertation is limited to techniques suitable for the first type). In both networks, data is sent from
sources of data to sinks through intermediate store-and-forward switching nodes. Sources of
data could be human users, transferring characters in a remote login session, or transferring files.
For our purposes, we will refer to processes at OSI layer five and above as data sources. Sinks are
the ultimate destinations of the data. They are the peer processes of the sources that receive
and consume the received data, and they are typically assumed to acknowledge the receipt
of each packet. Switches route and schedule incoming packets on outgoing lines, placing
data in output buffers when the arrival rate exceeds the service rate. The simplex stream of
packets between a source of data and its sink is called a conversation. Usually, a conversation
corresponds to a pair of transport level endpoints, for example, two BSD sockets [21, 23].

The first type of network under consideration, called a reservationless network, is an
abstract model for networks such as the Internet. In such a network, while intermediate switches
may reserve buffers (which does not reduce statistical multiplexing of the bandwidth), they may
not reserve bandwidth (which does). Hosts on reservationless networks are assumed to be con-
nected directly to switches, that in turn connect to other switches or hosts. A switch could be a
piece of software that resides in a host, or could be a separate piece of hardware.

The other type of networks are those where switches reserve both bandwidth and buffers
on behalf of Virtual Circuits (VCs) (such as in Datakit [41]). We call these reservation-oriented
networks. We assume that these networks carry two types of traffic: performance-oriented
traffic, which usually needs some form of real-time delay, bandwidth and jitter guarantees, and
best-effort data traffic, which does not make such demands [35]. Since no bandwidth is
reserved on behalf of best-effort traffic [68], the best-effort component of a reservation-oriented
network can be modeled as a reservationless network. Hence, schemes that are designed for
reservationless networks can be transferred, with appropriate modifications, to reservation-
oriented networks.

We believe that most future generation networks will tend to be reservation-oriented.
Nevertheless, there are still some valid reasons to study congestion control in reservationless net-
works. First, reservationless networks will always be able to use bandwidth more efficiently than
reservation-oriented networks due to the gain from statistical multiplexing. So, network providers
who want to optimize cost will continue to build reservationless networks. Second, the tech-
niques that are developed for congestion control can be applied to control best-effort traffic in
reservation-oriented networks. Thus, the results of this work will apply even in those networks.
Third, reservationless networks are currently the most common type of computer network. We
believe that because of inertia, and a desire to stay with known and proven technology, they
will continue to exist in the future.
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1.3. What is congestion?
Despite the large and rapidly proliferating literature on congestion control, we are not

aware of a satisfactory definition of congestion. We now discuss some common definitions,
point out their flaws, and then propose a new definition that we consider to be superior.

Some common definitions of congestion
Since congestion occurs at high network loads, definitions of congestion focus on some

aspect of network behavior under high load. We first discuss a scenario that leads to network
congestion in reservationless networks, and then motivate some definitions.

Consider a reservationless network, where, due to some reason, the short term packet
arrival rate at some switch exceeds its service rate. (The service rate is determined by the pro-
cessing time per packet and the bandwidth of the output line. Thus, the bottleneck could be
either the switch’s CPU or the outgoing line: in either case, there is congestion.) At this point,
packets are buffered, leading to delays. The additional delay can cause sources to time out
and retransmit, increasing the load on the bottleneck [101]. This feedback leads to a rapidly
deteriorating situation where retransmissions dominate the traffic, and effective throughput
rapidly diminishes [63, 114]. Further, if there is switch to switch flow control (as in ARPANET, Tym-
net, Datapac, Sirpent, etc.), new packets may not be allowed to enter the switch, and so pack-
ets might be delayed at a preceding switch as well. This can lead to deadlock, where all traffic
comes to a standstill [132].

Note that three things happen simultaneously. First, the queueing delay of the data pack-
ets increases. Second, there may be packet losses. Finally, in the congested state, the traffic is
dominated by retransmissions, so that the effective data rate decreases. The standard
definitions of congestion are thus of the form: ‘‘A network is congested if, due to overload, con-
dition X occurs’’, where X is excessive queueing delay, packet loss or decrease in effective
throughput. The first definition is used in references [66, 117], the second in reference [63], and
the third in reference [85].

These definitions are not satisfactory for several reasons. First, delays and losses are indices
of performance that are being improperly used as indices of congestion, since the change in
the indices may be due to symptoms of phenomena other than congestion. Second, the
definitions do not specify the exact point at which the network can be said to be congested
(except in a deterministic network, where the knee of the load-delay curve, and hence conges-
tion, is well defined, but that is the trivial case). For example, while a network that has mean
queueing delays in each switch of the order of 1 to 10 service times is certainly not congested, it
is not clear whether a network that has a queueing delay of 1000 service times is congested or
not. It does not seem possible to come up with any reasonable threshold value to determine
congestion!

Third, a network that is congested from the perspective of one user is not necessarily cong-
ested from the perspective of another. For example, if user A can tolerate a packet loss rate of 1
in 1000, and user B can tolerate a packet loss rate of 1 in 100, and the actual loss rate is 1 in 500,
then A will claim that the network is congested, whereas B will not. A network should be called
uncongested only if all the users agree that it is.

New definition
From the discussion above, it is clear that network congestion depends on a user’s perspec-

tive. A user who demands little from the network can tolerate a loss in performance much better
than a more demanding user. For example, a user who uses a network only to send and receive
electronic mail will be happy with a delivery delay of a day, while this performance is unaccept-
able for a user who uses a network for real-time audio communication. The key point is the
notion of the utility that a user gets from the network, and how this utility degrades with network
loading.
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The concept of ‘utility’ used here is borrowed from economic theory. It is used to refer to a
user’s preference for a resource, or a set of resources (often called a resource bundle). Strictly
speaking, the utility of a user is a number that represents the relative preference of that user for a
resource (or performance) bundle, so that, if a user prefers bundle A to bundle B, the utility of A is
greater than the utility of B. For example, if A is {end-to-end delay of 1 second, average
throughput 200 pkts/second}, and B is {end-to-end delay of 100 seconds, average throughput
20000 pkts/second}, a user may prefer A to B, and we would assign a utility to A that is greater
than the utility of B, while another user may do the opposite. In classic microeconomic theory,
utilities are represented by a function over the resources [140]. Since utilities express only a
preference ordering, utility functions are insensitive to monotonic translations, and the utilities of
two users cannot be compared; the function can only be used to relatively rank two resource
bundles from the point of view of a single user.

An example of a utility function is αT − (1−α)RTT, where α is a weighting constant, T is the aver-
age throughput over some interval, and RTT is the average round-trip-time delay over the same
interval. As the throughput increases, the utility increases, and as delays increase, the utility
decreases. The choice of α determines the relative weight a user gives to throughput and delay.
A delay-sensitive user will choose α→0, whereas a delay-insensitive user’s α→1.

In practice, a utility function may depend on a threshold. For example, a user may state
that he or she is indifferent to delay, as long as it is less than 0.1 seconds. Thus, if the user gets a
delay of 0.05 seconds during some interval of time, and 0.06 seconds in a later period, as far as
the user is concerned, there has been no loss of utility. However, if some user’s utility does
decrease as a result of an increase in the network load, that user will perceive the network to be
congested. This motivates our definition.

Definition
A network is said to be congested from the perspective of user i if the utility of i decreases
due to an increase in network load.

Remarks:

1. A network can be congested from the perspective of one user, and uncongested from the
perspective of another.

2. A network can be said to be strictly uncongested if no user perceives it to be congested.

3. A user’s utility may decrease due to something other than network load, but the user may
not be able to tell the difference. The onus on the user is to determine the cause of the loss
of utility, and to take appropriate corrective action.

This definition is better than existing definitions since it avoids the three problems raised ear-
lier. First, we make a clear distinction between a performance index and a congestion index. It
is possible for a performance metric to decrease (for example, for RTT to increase), without a
change in the congestion index (for example, if α = 1). Second, the definition makes it clear that
congestion occurs from the point of view of each individual user. Finally, the point of congestion
is precisely the one where the user detects a loss of utility. No further precision is necessary,
since, if the users are not dissatisfied with the available service, then the network performance,
no matter how poor it is in absolute terms, is satisfactory.

Our definition places congestion control in a new light. A network that controls congestion,
by our definition, must be responsive to the utility function of the users, and must be able to
manage its resources so that there is no loss of utility as the load increases. Thus, the network
must be able to differentiate between conversations, and prioritize conversations depending on
the stringency of their owner’s utility. A naive approach that ignores the user’s quality-of-service
requirements is automatically ruled out by this definition.
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1.4. Congestion control
The previous section presented a new definition of congestion; this section describes

congestion control. Two styles of control, proactive and reactive control, are presented. It is
shown that congestion control must happen at several different time scales.

1.4.1. Proactive and reactive control
Congestion is the loss of utility to a user due to an increase in the network load. Hence,

congestion control is defined to be the set of mechanisms that prevent or reduce such a
deterioration. Practically speaking, a network can be said to control congestion if it provides
each user with mechanisms to specify and obtain utility from the network. For example, if some
user desires low queueing delays, then the system should provide a mechanism that allows the
user to achieve this objective. If the network is unable to prevent a loss of utility to a user, then it
should try to limit the loss to the extent possible, and, further, it should try to be fair to all the
affected parties. Thus, in reservationless networks, where a loss of utility at high loads is unavoid-
able, we are concerned not only with the extent to which utility is lost, but also the degree to
which the loss of utility is fairly distributed to the affected users.

A network can provide utility in one of two ways. First, it can request that each user specify
a performance requirement, and can reserve resources so that this level of performance is
always available to the user. This is proactive or reservation-oriented congestion control. Alter-
natively, users can be allowed to send data without reserving resources, but with the possibility
that, if the network is heavily loaded, they may receive low utility from the network. The second
method is applicable in reservationless networks. In this case, users must adapt to changes in
the network state, and congestion control refers to ways in which a network can allow users to
detect changes in network state, and corresponding mechanisms that adapt the user’s flow to
changes in this state.

In a strict proactive scheme, the congestion control mechanism is to make reservations of
network resources so that resource availability is deterministically guaranteed to admitted
conversations. In a reactive scheme, the owners of conversations need to monitor and react to
changes in network state to avert congestion. Both styles of control have their advantages and
disadvantages. With proactive control, users can be guaranteed that they will never experi-
ence loss of utility. On the other hand, to be able to make this guarantee, the number of users
has to be restricted, and this could lead to underutilization of the network. Reactive control
allows much more flexibility in the allocation of resources. Since users are typically not
guaranteed a level of utility by the network, resources can be statistically multiplexed. However,
there is always a chance that correlated traffic bursts will overload the network, causing perfor-
mance degradation, and hence, congestion.

It is important to realize that proactive and reactive control are not mutually exclusive.
Hybrid schemes can combine aspects of both approaches. One such hybrid scheme is for the
network to provide statistical guarantees [37, 48]. For example, a user could be guaranteed an
end to end delay of less than 10 seconds with 0.9 probability. Such statistical guarantees allow a
network administrator to overbook resources in a controlled manner. Thus, statistical multiplexing
gains are achieved, but without completely giving up performance guarantees.

Another hybrid scheme is for the network to support two types of users: guaranteed service
users and best-effort users [35, 68]. Guaranteed service (GS) users are given a guarantee of
quality of service, and resources are reserved for them. Best-effort (BE) users are not given
guarantees and they use up whatever resources are left unutilized by GS users.

Finally, a server may reserve some minimum amount of resources for each user. Since every
user has some reservation, some minimum utility is guaranteed. At times of heavy load, users
compete for resources kept in a common pool [62]. Assuming some degree of independence
of traffic, statistical multiplexing can be achieved without the possibility of a complete loss of util-
ity.
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1.4.2. Time scales of control
Congestion is a high-load phenomenon. The key to congestion control lies in determining

the time scale over which the network is overloaded, and taking control actions on that time
scale. This is explained below.

Consider the average load on a single point-to-point link. Note that the ‘average load’ is
an interval-based metric. In other words, it is meaningless without also specifying the time interval
over which the average is measured. If the average load is high over a small averaging interval,
then the congestion control mechanism (for example, the reservation mechanism) has to deal
with resource scheduling over the same small time scale. If the average load is high over a
longer time scale, the congestion control mechanism needs to deal with the situation over the
longer time scale as well as on shorter time scales.

An example should clarify this point. Consider a conversation on a unit capacity link. If the
conversation is bursty, then it could generate a high load over, say, a 1ms time scale, though the
average load over a 1 hour time scale could be much smaller than 1. In this case, if the conver-
sation is delay-sensitive, then the congestion control scheme must take steps to satisfy the user
delay requirement on the 1ms time scale. Over longer time scales, since the average demand is
small, there is no need for congestion control.

On the other hand, if the conversation has a high average demand on the 1 hour time
scale as well as the 1ms time scale, then congestion control has to be active on both time
scales. For example, it may do admission control (which works over the 1 hour time scale) to
make sure that network resources are available for the conversation. Simultaneously, it may also
make scheduling decisions (which work on the 1ms time scale) to meet the delay requirements.

This example illustrates three points. First, congestion control must act on several different
time scales simultaneously. Second, the mechanisms at each level must cooperate with each
other. Scheduling policies without admission control will not ensure delay guarantees. At the
same time, the admission control policy must be aware of the nature of the scheduling policy to
decide whether or not to admit a conversation into the network. Third, the time scale is the time
period over which a user sees changes in the network state. A congestion control mechanism
that is sensitive to network state must operate on the same time scale.

We now discuss five times scales of control: those of months, one day, one session, multiple
round trip times (RTTs), and less than one RTT. We believe that the design of congestion control
mechanisms for each time scale should be based on sound theoretical arguments. This has the
obvious advantages over an ad hoc approach: general applicability, ease of understanding,
and formal provability of correctness. At each time scale of control, a different theoretical basis
is most appropriate, and this is discussed below.

1.4.2.1. Months
Some changes to networks happen over a period of months: for example, an increase in

the number of connected sites, or additional communication loads due to a new collaboration
between geographically distributed sites. If these changes cause trunk lines to be substantially
overloaded over long periods of time, then the only way to provide acceptable service may be
to increase trunk bandwidths. Otherwise, no matter how clever the schemes at faster time
scales, the network will not be able to accommodate the additional demand.

The typical response to long term overload is to lay additional bandwidth: the gradual
replacement of 9600 baud serial lines with 10 Mbps Ethernets and 56 kbps trunks, and now with
100 Mbps FDDI rings and T1 trunks, is a graphic illustration of this process. Over this time scale, the
formal problem corresponding to congestion control is that of capacity planning. This problem
has been studied in the operations research literature. Basically, a traffic matrix, representing the
volume of traffic between all pairs of sites, is constructed. A cost function describing the cost of
trunk bandwidth and the utility from the network is then optimized using standard linear pro-
gramming techniques to obtain an optimal capacity allocation along each path.
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The problem with this approach lies in the determination of the traffic matrix. It is hard to
collect all the required information, and, besides, the matrix can be quite large. Furthermore,
there is no guarantee that the system workload during the next time period would be similar, so
the computed solution may solve the wrong problem. Nevertheless, the use of a formal capa-
city planning approach would be an advance over the current ad hoc approach.

1.4.2.2. One day
Traffic measurements have shown that network usage exhibits cyclical behavior, with the

time period of a day [13, 105]. Networks are typically lightly loaded or idle at night, but are busy
from 9 am to 5 pm, reflecting the work day. A congestion control scheme that spreads the load
more uniformly throughout the day will ensure that the workload is less bursty, leading to better
utilization of capacity. This can be done by introducing a pricing scheme for data transfer
[20, 155], and charging more for data transmitted during peak hours than during off-peak hours
[7, 111, 130]. Peak-load pricing schemes used by electric and telephone utilities have much the
same purpose. We believe that using ideas from economics to shape the workload on the order
of a day (or several hours) is a useful form of congestion management at this time scale.

While some economic approaches have been proposed in the recent past [32, 146], we
feel that the area needs much more study. Current approaches have numerous problems, such
as:

g a user’s assumed utility function, or, in some approaches, demand curve, is overly simple

g the system takes a long time to reach equilibrium. For example, the SPAWN system [146]
postulates multiple rounds of bidding each time a new user enters the system, and each
round could take many seconds. Since new users could join every few seconds, it is not
clear that the system can ever reach equilibrium.

g the approaches assume that the number of users is fixedl; in fact, given that the systems are
slow to reach equilibrium, this number is like to have changed by the time equilibrium is
reached

g all the users are assumed to be rational; in reality, some users may make unsophisticated,
and hence irrational, decisions

g a single administrative authority is assumed

g it is time-consuming for users to bid for every resource they need

g bursty users, whose peak and average resource requirements differ considerably, are not
considered.

However, the economic approach is promising, since it gives deep insights into network
pricing and usage accounting that are otherwise unavailable.

1.4.2.3. Session
In connection-oriented networks, a session is the period of time between a call set-up and

a call teardown. Admission control in connection oriented-networks is essentially congestion
control on the time scale of a session: if the admission of a new conversation could degrade the
quality of service of other conversations in the network, then the new conversation should not be
admitted. This is yet another form of congestion control.

At the time a conversation is admitted to the network, the network should ensure that the
resources requested by the conversation are what it really needs. Thus, the admission control
scheme should give incentives to users to declare their resource needs accurately [20]. This can
be designed using a variant of the standard Clark-Groves direct truth revelation mechanism
(since naive users in a system with partial information would choose a dominant strategy equili-
brium over more sophisticated Bayesian or sequential equilibria) [80]. The theoretical basis of this
work is the area of game-theory known as ‘mechanism design’. An admission control system
based on such principles has been extensively studied by Sanders [121-123].
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The mechanism design approach has all the problems of the economic approach, and
more. Mechanism design makes strong assumptions about the information structure in the sys-
tem: for example, each switch is assumed to know the form of the utility function of each user.
Further, the dynamics of the system over time are ignored. However, in the same way as
economics, it can provide insights into the design of admission control.

The choice of a route at session establishment time can also be used to control congestion.
If the routing establishment algorithm keeps track of network utilization along the links, it can
route a new circuit along lightly loaded paths. Some proposals have exploited this idea
[29, 77, 92]. Integrating feedback flow control with adaptive routing is complex, and the dynam-
ics of their interaction are not well known. Some simplified models for the problem have been
studied [29], but the applicability of these studies to real networks is unclear. In this thesis, we
assume static routing, so this form of congestion control is specifically ignored.

1.4.2.4. Multiple round trip times
One round trip time (RTT) is the fundamental time constant for feedback flow control. It is

the minimum time that is needed for a source of data to determine the effect of its sending rate
on the network [117]. Congestion control schemes that probe network state and do some kind
of filtering on the probes operate on this time scale. Examples are various window adjustment
schemes [54, 63, 96, 117].

The theoretical bases for these approaches lie in queueing theory and control theory. The
queueing theory approach is well studied [44], but requires strong assumptions about the net-
work such as: Poisson arrivals from all sources, exponential service time distribution at all servers,
and independence of traffic. Since observations of real networks have shown that none of
these assumptions are satisfied in practice [51, 52, 104], the results obtained from a stochastic
queueing approach are not entirely convincing. We believe that a naive deterministic queue-
ing approach has several benefits, though, and this is discussed in Chapter 4.

The control-theoretic approach has also been studied in the literature, though not as
thoroughly [1, 38, 66, 79, 133, 137, 138]. The drawback with existing studies is that either they are
informal, and thus do not provide any formal proofs [63, 117], or they make strong assumptions
about traffic behavior, service rates and so on, that do not hold in practice [126, 137, 138].
Chapter 5 presents an alternative approach that overcomes some of these problems.

Assuming that each packet is acknowledged, multiple acknowledgements can be
received each RTT. If information about the state of the network is extracted from each ack-
nowledgement, then the congestion control scheme can react to changes even faster than
once per RTT. Such a scheme is described in Chapter 5, and is also made possible by a control
theoretic modeling of the network.

Previous work in the area of congestion control schemes that work at the multiple RTT time
scale is examined in greater detail in section 1.7.

1.4.2.5. Less than one RTT
On a scale of less than once per RTT, congestion control can be considered to be identical

to scheduling data at the output queues of switches. The goal of a scheduling policy is to
decide which data unit is the next to be delivered on a trunk. This choice determines the
bandwidth, delay, and jitter received by each conversation, and hence the choice of the
scheduling discipline is critical. A scheduling discipline that does not vary its allocations as a
function of the network load is hence a congestion control mechanism. Examples are the Vir-
tual Clock scheme [154], Delay-EDD [37] and Stop-and-Go queueing [47].

If the trunk bandwidth is considered as a resource, then the server implementing the
scheduling discipline is essentially a resource manager that allocates bandwidths, delays and
delay-jitters to each conversation. Then, it is in the best interest of a conversation to send data in
such a way that it obtains the best possible utility from the server. Given that all the conversa-
tions have this objective, and the gain of one could be the loss of the other, it is clear that this
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framework can be cast in the form of a non-cooperative game [125]. Then, each conversation
must choose a strategy (in this case, a sending rate) such that its utility is maximized. Such a
model has been considered by Bharath-Kumar and Jaffe [6], Sanders [121-123], Douligeris and
Majumdar [25-27] and Lazar et al [59]. Unfortunately, the game theoretic formulation of the
problem requires utilities to be defined for each player, as well as strong information and
rationality assumptions, as in the economic approach. Thus, we do not feel that it is viable in
practice.

1.4.3. Need for congestion control in future networks
Congestion is a severe problem in current reservationless networks. However, in future net-

works the available bandwidths and switching speeds will be several orders of magnitude larger
[84]. Why should congestion arise in such networks? There are several reasons:

g Large bandwidth-delay product : The service rate of a circuit multiplied by the round trip
time determines the amount of data that a conversation must have outstanding in order to
fully utilize the network. The round trip time is bounded from below by the speed-of-light
propagation delay through the network. Hence, as the raw trunk bandwidth and the ser-
vice rate of a conversation increases, so does the amount of outstanding data per conver-
sation. For example, a conversation that is served at 6 Mbps and has a round trip time
delay of 60 ms can have as much as 45 kbytes of data outstanding. If the service rate sud-
denly drops to half of its previous value, or 3 Mbps, due to cross traffic, then it takes 60 ms to
react to this change, and 45/2 = 22.5 Mbytes of data can accumulate at the slowest server
along the path. Since this far exceeds most buffer sizes, data loss is likely, leading to a loss
of utility. Thus, a large bandwidth-delay product causes problems for reactive control and
can lead to congestion.

g Speed Mismatch : If a switch connects a high speed line to a slower line, then a bursty
conversation can, when sending data at the peak rate, fill up its buffer share, and subse-
quently lose packets at the switch. This creates congestion for loss-sensitive conversations.
This source of congestion will persist in high-speed networks, in fact, it is probably more likely
in such networks.

g Topology : If several input lines simultaneously send data through a switch to a single outgo-
ing line, the outgoing line can be overloaded, leading to large queueing delays, and possi-
ble congestion for delay-sensitive traffic. This is a special case of the speed mismatch prob-
lem noted earlier.

g Increased Usage : Memory sizes have increased exponentially during the last decade. Yet,
the demand for memory has remained, since larger memory sizes have made it feasible to
develop applications that require them. Drawing a parallel to this trend, we postulate that
as bandwidth increases, new applications (such as real time video) will demand these
enormous bandwidths. As the available bandwidth gets saturated, the network will be
operated in the high-load zone, and congestive problems are likely to reappear.

g Misbehavior : Congestion can be induced by misbehaving sources (such as broken sources
that send a stream of back-to-back packets). Future networks must protect themselves and
other sources from such misbehavior, which will continue to exist.

g Dynamics : As network speeds increase, the dynamics of the network also changes. Since
queues can build up faster, congestive phenomena can be expected to occur much
more rapidly, and perhaps have catastrophic effects [101, 132].

From these observations, we conclude that even though future networks will have larger trunk
bandwidths and faster switches, congestion will not disappear.

1.5. Fundamental requirements of a congestion control scheme
We would like a congestion control scheme to have a number of properties. These are:
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g Efficiency

g Ability to deal with heterogeneity

g Ability to deal with ill-behaved sources

g Stability

g Scalability

g Simplicity

g Fairness

We discuss these in turn. In the discussion, we will use the term ‘the control scheme’ to mean an
integrated control scheme that simultaneously operates over all the time scales of control.

1.5.1. Efficiency
There are two aspects to efficiency. First, how much overhead does the congestion control

scheme impose upon the network? As an extreme example, control packets such as the Source
Quench packets in TCP/IP [112] themselves overload the congested network. We would like a
control scheme to impose a minimal additional burden upon the network. This is not necessarily
a binding condition: with the rapid increase in communication bandwidth, the extra load may
not significantly affect network efficiency.

Second, does the control scheme lead to underutilization of critical resources in the net-
work? Inefficient control schemes may throttle down sources even when there is no danger of
congestion, leading to underutilization of resources. We would not like to operate the network
suboptimally. (This raises the issue of determining what is meant by optimal utilization, but we
defer the discussion to Chapter 4.)

1.5.2. Heterogeneity
As networks increase in scale and coverage, they span a range of hardware and software

architectures. A control scheme that assumes a single packet size, a single transport layer proto-
col, or a single type of service cannot be successful in such an environment. Thus, we want the
control scheme to be implementable on a wide range of network architectures.

1.5.3. Ability to deal with misbehaving sources
Note that in current networks, a network administrator does not have administrative control

over the sources of messages. Thus, sources (such as users of personal workstations) are free to
manipulate the network protocols to maximize the utility that they get from the network. When a
switch informs a source that it should reduce its sending rate, a well-behaved source should do
so. However, it is possible that an ill-behaved source may choose to ignore these signals, in the
hope that this may enable it to send more data. A congestion control scheme should not fail in
the presence of such hosts. In other words, badly behaving sources should not adversely affect
the performance of well-behaved sources. This may require punishment of a badly behaved
source, or threats of punishment that will give all sources an incentive to behave well.

1.5.4. Stability
Congestion control can be viewed as a classic negative-feedback control problem. One

added complexity is that the control signals are delayed. That is, there is a finite delay between
the detection of congestion and the receipt of a signal by a source. Further, the system is noisy,
since observations of the system’s parameters may be corrupted by transients. These complexi-
ties may introduce instabilities into the network. Thus, we would like the control scheme to be
robust, and if possible, provably stable.
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1.5.5. Scalability
It is the nature of a distributed system to grow with time, and we have seen an explosive

growth in network sizes in the last decade. The key to success in such an environment is scalabil-
ity. We would like a congestion control scheme to scale along two orthogonal axes: bandwidth
and network size.

The development of high bandwidth fiber-optic media has made it possible to build net-
works that have three orders of magnitude more bandwidth than networks of the recent past
(45000 kbps to 56 kbps) [69]. Further, hundreds of thousands of local area networks have been
interconnected in the last five years into an enormous internetwork that spans the globe. These
developments make it imperative that any proposed congestion control scheme scale well on
both axes.

1.5.6. Simplicity
Simplicity (unlike stupidity) is always an asset. Simple protocols are easier to implement,

perhaps in hardware, and can handle increases in bandwidth. Also, simple protocols are more
likely to be accepted as international standards. Thus, we would like an ideal congestion control
mechanism to be simple to implement.

1.5.7. Fairness
It may be necessary for some sources to reduce their network load to control congestion.

The choice of which source to throttle (either by requesting it to do so, or by dropping its pack-
ets) determines how fairly the network allocates its resources [23]. For example, if an excessive
demand by some source A causes the throttling of another source B, then clearly the network is
treating B unfairly. We do not want a congestion control scheme that results in unfair network
resource allocation.

There are two tricky aspects of fairness: definition and implementation. The problem of
defining fairness has worried network designers and welfare economists alike. Numerous fairness
criteria have been proposed in the literature [43, 55, 106, 107, 115, 139, 149]. Each criterion has
some problems, and there seems to be no absolute guide to deciding which is the best criterion
to adopt [44]. Nevertheless, it is necessary to pick some justifiable criterion, since this is much
better than none at all.

The second aspect is that of implementation. Implementing a fairness criterion brings in
issues that lie beyond what is traditionally considered to be the scope of congestion control. For
example, we may decide that it is fair to give preference to sources that are willing to pay for it.
If this criterion is to be implemented, a switch needs to determine a pricing schedule and incor-
porate a contract negotiation and enforcement mechanism [20, 155]. This leads naturally to
issues in contract theory, mechanism design and incentive compatibility. Such issues have been
ignored by existing congestion control schemes.

To summarize, there are a number of issues that are affected by the choice of a conges-
tion control scheme. In this thesis, we present the design of a set of congestion control mechan-
isms that substantially meet the requirements posed in this section.

1.6. Fundamental assumptions
Underlying any congestion control scheme are some implicit assumptions about the net-

work environment. These unstated assumptions largely determine the nature of the control
scheme and its performance limits. We consider some of these assumptions in this section.
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1.6.1. Administrative control
Can we, as designers of congestion control mechanisms, assume administrative control

over the behavior of sources (for example, by dictating that only one version of a transport pro-
tocol is to be used in the network)? Or, can we assume administrative control only over the
behavior of switches? Some schemes assume that we can control sources but not switches e.g.
[63]. Others assume that we can control both the sources and the switches [117]. Still others
assume complete control over the switches, and the ability to monitor source traffic, but no con-
trol over source traffic [54].

This assumption should be constrained by reality. In our work, we assume that we have
administrative control over switches. However, source behavior is assumed to be outside our
direct control (though it can be monitored, if needed). The implication is that the network must
take steps to protect itself and others from malicious or misbehaving users. (Of course, users that
abuse the network because of a hardware failure, such as a jammed ethernet controller, are
always a threat, even when the sources can be controlled administratively.)

1.6.2. Source complexity
How complex should one assume sources to be? Since we do not have administrative

control over sources, we assume that sources will perform actions that will maximize their own
utility from the network. If the congestion control scheme allows intelligent users to manipulate
the scheme for their own benefit, they will do so. On the other hand, users may not have the
capability to respond to complex directives from the network, so we cannot assume that all
users will act intelligently. In other words, while a congestion control scheme should not assume
sophisticated behavior on the part of the users, at the same time, it should not be open to
attack from such users.

1.6.3. Gateway complexity
Some authors assume that switches can be made complex enough to set bits on packet

headers, or even determine user utility functions, whereas others assume that switches simply
route packets. Ignoring monetary considerations, since we have administrative control, we can
make switch control algorithms as complex as we wish, constrained only by speed requirements.
It has been claimed that for high speed operation, switches should be dumb and fast. We
believe that speed does not preclude complexity. What we need is a switch that is fast and
intelligent. This can be achieved by

g having hardware support for rapid switching [100]

g optimizing for the average case [18]

g removing signaling information from the data path [41]

g choice of scheduling algorithm [156]

g an efficient call processing architecture [131].

Thus, we will assume that a switch can make fairly intelligent decisions, provided that this can be
done at high speeds.

1.6.4. Bargaining power
The ultimate authority in a computer network lies in the ability to drop packets (or delay

them). Since this authority lies with the switches, they ultimately have all the bargaining power. In
other words, they can always coerce sources to do what they want them to do (unless this is so
ridiculous that a source would rather not send any data). Any scheme that overlooks this fact
loses a useful mechanism to control source behavior. Thus, schemes that treat switches and
sources as peer entities (for example, [117]) are fundamentally flawed: they need to posit
cooperative sources precisely because they ignore the authority that is automatically vested in
switches.
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1.6.5. Responsibility for congestion control
Either the sources or the switches could be made responsible for congestion control. If

sources are responsible, they must detect congestion and avert it. If switches are responsible,
they must take steps to ensure that sources reduce their traffic when congestion occurs, or allo-
cate resources to avert congestion.

We believe that congestion control is a network function. If we leave the responsibility for it
to sources that are not under our administrative control, then we are endangering the network.
Further, the congestion detection and management functionality has to be duplicated at each
of the (many) sources. In contrast, it is natural to make the fewer, controllable switches responsi-
ble for congestion control.

Note that responsibility is not the same as functionality. In other words, having responsibility
for congestion does not mean that the switches have to actually perform all the actions neces-
sary for congestion control. Switches can enforce rules that make it incentive compatible for
sources to help in containing congestion. For example, a Fair Queueing [23] switch has the
responsibility for congestion control, but it does congestion control by forcing sources to behave
correctly during congestion (this is discussed in Chapter 2).

1.6.6. Bandwidth-delay product
The physical characteristics of the network play a crucial role in determining how effective

a scheme will be. A congestion control scheme has to operate in some bandwidth and delay
regime. When the bandwidth times round-trip-time product is small in comparison to the window
size, feedback from switches to sources is feasible. However, if this product is large, buffering full
windows for all users may not be feasible.

Many current schemes operate on the scale of multiple round-trip-time delays (for exam-
ple, taking flow control decisions only once every two round-trip times [66]). They become
infeasible when the bandwidth-delay product is large. This large product is precisely why
congestion control schemes for high speed networks are so difficult, and so necessary. In this
thesis, we assume that the network operates in the large bandwidth-delay product regime.

1.6.7. Traffic model
The choice of a traffic model influences the design of a congestion control scheme, since

the scheme is evaluated with respect to this model. There are hidden dangers here: for exam-
ple, schemes that assume Poisson sources may not robust, if, in practice, traffic does not obey
this distribution. It is best to design schemes that are insensitive to the choice of the traffic model.
This is achieved if a scheme does not make assumptions about the arrival distribution of packets
at the switches.

What should be the traffic model? We do not have much data at our disposal, since there
are no high-speed WANs yet available to measure. However, there are three trends that point to
a reasonable model. First, the move towards integration of data, telephony and video services
indicates that some number of sources in our environment will be phone and video sources.
These can generate high bandwidth traffic over periods of time spanning minutes or hours.

Second, existing studies have shown that data traffic is very bursty [52, 104]. This tendency
will certainly be exaggerated by increases in line speeds. Finally, we note that current applica-
tions are mostly of two sorts - low bandwidth interactive conversations, and high bandwidth off-
line bulk data transfer [12]. At higher speeds, the bulk data transfers that last several seconds
today will collapse into bursts. This reinforces our belief that future traffic will basically be bursty.

To sum up, we expect that the traffic will be generated by two kinds of sources: one that
demands a sustained high bandwidth, and the other that generates bursts of traffic at random
intervals of time. We call these sources ‘FTP’ and ‘Telnet’ in this thesis (these terms are probably
outdated, but we use them for convenience). This model is fairly simple, and does not involve
any assumptions about packet arrival distributions. Thus, schemes that work for this model will
probably work for a large variety of parametrically constrained models as well (e.g. for traffic
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where the bursts are exponentially or uniformly distributed). Since the traffic characteristics for
future networks are still unknown, this model is speculative. However, we think that it is as reason-
able as any that have so far been studied.

Summary of our assumptions
g We assume that we have administrative control over switches, but not over sources.

g Some sources will be intelligent enough to exploit any flaws in the design, but not all the
sources will be able to implement complex congestion and flow control strategies.

g Switches should be fast, but they should carry out intelligently designed congestion control
strategies.

g The switches should not be treated as peer entities of sources, their inherent capacity to
delay or drop packets should be used to coerce sources to behave in a socially accept-
able manner.

g The responsibility for congestion control should lie with the switches, sources cannot be
trusted with this job.

g The scheme should operate in a regime where the delay bandwidth product is large as
compared to current window sizes.

g Traffic consists of two types of sources, ones that generate sustained high bandwidth traffic,
and others that generate intermittent bursts.

1.7. Previous work
This section surveys previous work in congestion control at the session, multiple RTT and less

than one RTT time scales. Research in these areas of congestion control has mushroomed in the
recent past. Consequently, this survey cannot claim to be complete. We have tried to mention
all the research efforts that we are aware of, but it is almost certain that some others have been
overlooked.

While our work stresses the need for a network to be sensitive to a user’s utility, previous work
on congestion control has concentrated mainly on mechanisms for avoiding packet losses and
reducing queueing delay. The efforts have been strongly oriented towards either reservationless
networks or reservation-oriented networks. For reservation-oriented networks, the work had been
at the session and scheduling time scales, and for reservationless networks exclusively at the mul-
tiple RTT time scale. We now discuss previous work for each class of network.

1.7.1. Reservationless networks
In reservationless networks, control has to be reactive. A reactive congestion control

scheme is implemented at two locations: at the switches, where congestion occurs, and at the
sources, which control the net inflow of packets into the network. Typically, a switch uses some
metric (such as overflow of buffers) to determine the onset of congestion, and implicitly or expli-
citly communicates this problem to the sources, which reduce their input traffic. Even in this
simplified picture, a few problems are apparent.

How is congestion to be detected? (Congestion Detection)

How is the problem signaled to sources? (Communication)

What actions do the switches take? (Decongestion)

Which sources are held responsible for congestion? (Selection)

What actions must the sources take? (Flow Control)

What if some sources ignore these signals? (Enforcement)
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These questions must be answered by every reactive congestion control scheme. Depending
upon the choices made in answering each question, a variety of schemes have been proposed.

Comprehensive surveys by Gerla and Kleinrock [44] and Pouzin [110] discuss numerous
congestion control schemes. However, the taxonomies they develop are oriented towards clas-
sifying flow control techniques, and are not appropriate in our work. Instead, we will base our sur-
vey on the questions raised earlier.

1.7.1.1. Congestion detection
How is a switch or source to detect congestion? There are several alternatives.

g The most common one is to notice that the output buffers at a switch are full, and there is
no space for incoming packets. If the switch wishes to avoid packet loss, congestion
avoidance steps can be taken when some fraction of the buffers are full (such as in the
FQbit scheme discussed in Chapter 2). A time average of buffer occupancy can help
smooth transient spikes in queue occupancy [116, 117].

g A switch may monitor output line usage. It has been found that congestion occurs when
trunk usage goes over a threshold (typically 90%) and so this metric can be used as a signal
of impending congestion (as in CIGALE or Cyclades) [61, 88]. The problem with this metric is
that congestion avoidance could keep the output line underutilized, leading to possible
inefficiency.

g A source may monitor round-trip delays. An increase in these delays signals an increase in
queue sizes, and possible congestion [66].

g A source may probe the network state using some probing scheme (for example, the
packet-pair method described in Chapter 4).

g A source can keep a timer that sets off an alarm when a packet is not acknowledged ‘in
time’ [108]. When the alarm goes off, congestion is suspected [153].

1.7.1.2. Communication
Communication of congestion information from the congested switch to a source can be

implicit or explicit. When communication is explicit, the switch sends information in packet
headers [115] or in control packets such as Source Quench packets [112], choke packets [88],
state-exchange packets [79, 120], rate-control messages [148], or throttle packets [70] to the
source. Implicit communication occurs when a source uses probe values [75], retransmission
timers [153], throughput monitoring [147], or delay monitoring [66] to indicate the (sometimes
only suspected) occurrence of congestion.

Explicit communication imposes an extra burden on the network, since the network needs
to transmit more packets than usual, and this may lead to a loss in efficiency. On the other hand,
with implicit communication, a source may not be able to distinguish between congestion and
other performance problems, such as a hardware problem [153]. Thus, the communication
channel is quite noisy, and a cause of potential instability.

1.7.1.3. Switch action
An overloaded switch can signal impending congestion to the sources, and, at worst, can

drop packets. In virtual circuit network layers, hop level flow control can throttle upstream virtual
circuits. In any case, the problem is to select either the source to throttle, or whose packets to
drop. The fairness of the congestion control scheme depends on this choice made by the
switches.

Schemes that rely on line usage as a congestion metric throttle all sources sending packets
on an overloaded link [14, 110]. This scheme is unfair in the sense that sources that use a small
fraction of the congested link are punished as severely as large users. The Loss-load curve
scheme [148] and the selective DECbit scheme [115] seek to overcome this problem by comput-
ing the share of the load due to each user, and selectively dropping packets from that source.
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If buffer usage is a congestion metric, switches drop packets or throttle sources when a
source exceeds its share of buffers. This share is determined by the buffer allocation strategy,
and the rate at which the buffers are emptied depends upon the service discipline. Thus, the
buffer allocation strategy and the service discipline jointly determine which sources are affected
(with the three exceptions noted below). We now discuss these two aspects of switch behavior.

The optimal buffer allocation scheme has received a lot of attention in the literature, and is
surveyed in [44]. Overall, the conclusion in that survey is that a scheme where each output line
is guaranteed a minimum number of buffers, and is not allowed to exceed a maximum, is fair
and efficient. Other schemes, such as Input Buffer Limit [81], Channel Queue Limit [70], Buffer
Class [45] and Matsumoto’s X.75 proposal [91] discriminate against some sources, and are thus
unfair.

Queue service disciplines are implemented in the servers on the output queues of packet
switches [100]. The choice of service discipline influences the kind of performance guarantees
that can be made to network clients in reservation-oriented networks [156]. We defer a discus-
sion of the choice of service discipline in reservationless networks to Chapter 2.

We claimed earlier that the choice of which source or conversation is affected by conges-
tion is implicitly determined by the service mechanism and the buffer allocation policy. Some
exceptions are in the DEC scheme [115], the Loss-load curve approach [148] and the Random
dropping scheme [90]. These schemes explicitly try to be fair in allocating responsibility for
congestion to sources. In the DECbit and Loss-load schemes, a switch maintains state informa-
tion about the demand for bandwidth by each source and its fair share. When the demand
exceeds the fair share, and the buffers are getting filled, that source is penalized. This is fair by
design. Random dropping is an ad hoc technique to achieve fairness. The essential idea is that,
when a buffer is full, the packet to drop is selected at random. Hence, users who use more
bandwidth, and will probably occupy a larger fraction of the buffer, have a higher chance of
packet loss. However, work by Mankin has shown that, by itself, this scheme does not reduce
congestion [90].

1.7.1.4. Flow control
A number of congestion control schemes have been proposed that operate at the

sources. These schemes use the loss of a packet (or the receipt of choke information) to reduce
the source sending rate in some way. The two main types of schemes are choke schemes and
rate-control schemes.

In a choke scheme, a source shuts down when it detects congestion. After some time, the
source is allowed to start up again [63, 88]. Choking is not efficient, since the reaction of the
sources is too abrupt. The stability of the choke scheme has not been analyzed, but the simple
example given in §1.5.4 seems to indicate that the scheme is prone to oscillations.

In a rate-control scheme, when a source detects congestion it reduces the rate at which it
sends out packets, either using a window adjustment scheme [117] or a rate adjustment scheme
[17, 75]. The latter is particularly suitable for sources that do rate based flow control. The advan-
tage of rate control schemes over choke schemes is that rate control allows a gradual transition
between sending no packets at all to sending full blast. Rate control seems to be an attractive
alternative for congestion control. Detailed analysis of the stability and efficiency of rate control
are presented in Chapters 5 and 6.

1.7.1.5. Enforcement
Congestion is a social problem and, unless the performance perceived by each source is

decoupled from the performance perceived by other sources, every source must cooperate in
solving it. However, in the large non-trustable, non-cooperative networks of the future, such
cooperation can no longer be assumed [118]. Thus, solutions that are predicated upon
cooperative sources are not satisfactory.
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Many current schemes do not study enforcement. For example, in the DECbit scheme
[117], if a source chooses to ignore the congestion avoidance bits set by a switch, then the other
cooperative sources will automatically give up bandwidth to the ill-behaved source. The same is
true for the Jacobson-Karels TCP scheme [63]. This problem is avoided partially by the Random-
drop scheme [90], and completely by the Loss-load curve method [148].

There is a need for solutions that will work in the presence of ill-behaved hosts. That is, a
congestion control decision must not only be communicated to the sources, it must also be
enforced. Of all existing proposals, only the ones based on the round-robin (such as Fair Queue-
ing, or Earliest Due Date) service discipline have this property. This is discussed in Chapter 2.

1.7.2. Reservation-oriented networks
In reservation-oriented networks, network resources can be allocated at the start of each

session. Then, the network can guarantee a performance level to a conversation by performing
admission control. This can guarantee congestion control, but perhaps at the cost of underutili-
zation of network resources.

One of the earliest schemes to prevent packet losses was developed for the Datakit net-
work [41]. Here, the network places a limit on the size of the flow control window of each
conversation, and the connection establishment packet reserves a full window’s worth of buffer
space at each intermediate switch. Thus, every virtual circuit, once established, is guaranteed
to find enough buffers for each outstanding packet, and packet loss is avoided.

The complementary scheme is to reserve bandwidth instead of buffers. This is the approach
taken by Zhang in the Flow Network [154], by Ferrari et al in their real-time channel establishment
scheme [37], by Topolcic et al in the ST-II proposal [134] and by Cidon et al for the PARIS network
[16]. In a hybrid scheme described in reference [24] a source makes a reservation for buffers at
the beginning of a call, and a reservation for bandwidth before the start of each burst. This
allows bandwidth to be efficiently shared, but each burst experiences a round trip time delay.

There are four major problems with any naive reservation scheme: scaling, queueing delay,
underutilization and enforcement.

1.7.2.1. Scaling
For large and high speed networks, each switch needs a considerable amount of memory.

For example, if the RTT is 70ms over a 1Gbps fiber, one may need as much as 70Mbits of buffering
per conversation per switch! The two-window scheme proposed by Hahne et al [54] greatly
reduces this memory demand, and makes buffer reservation quite attractive. Work by Mitra et
al has shown that, theoretically, this requirement can be reduced even further [96]. Another
way to reduce buffer requirements is to require the user to obey some traffic profile [34].

1.7.2.2. Delay
In a proactive scheme, at overload, a full window could be buffered at the bottleneck.

When this happens, the queueing delay could be unacceptable. Delays can be bounded by
computing the worst-case delay at the time of call set-up, and doing admission control [37].

1.7.2.3. Underutilization
The major problem with reservations is that the network could be underutilized: an over-

zealous admission control scheme could prevent congestion by allowing only a few conversa-
tions to enter. This is not acceptable. The crux of the problem lies in determining how many
conversations can be admitted into the network without reducing the performance guarantees
made to the existing conversations. This has been studied by Ferrari et al [37]. One solution to
the problem is to define statistical guarantees, where some degree of performance loss can be
tolerated [35]. Conversations with statistical guarantees can be statistically multiplexed. Other
hybrid schemes have been described in section 1.4.1.
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1.7.2.4. Enforcement
How can we ensure that conversations actually send data at their reserved rate? There

are two types of enforcement mechanisms: those that act at the network access point, and
those that act at each switch.

Some researchers, especially from the telecom community, have postulated the existence
of Network Access Points (NAPs) where users (subscribers) can access a homogeneous switching
fabric. The NAPs can monitor and shape user traffic. If some users violate their stated traffic
envelope, their data can be dropped or violation-tagged [5]. An efficient way to monitor, and,
if necessary, reshape user traffic behavior to make it less bursty, is the leaky-bucket scheme
[87, 128, 136, 141].

Other schemes do enforcement at each switch. This is through some form of round-robin-
like queueing discipline at each switch. In the Flow network, the Virtual Clock mechanism is
used [154], and in the real-time channel establishment proposal, the discipline is Earliest-Due-
Date with distributed flow control [37]. Ferrari and Verma [36] and Kanakia [68] have proposed
mechanisms based on calendar queues [11] that have a similar effect.

1.7.3. Quality of service
One can view congestion control as being able to guarantee quality of service at high

loads. There has been some previous work in guaranteeing quality of service in networks.

Postel made an early suggestion for reservationless networks, though this was not studied in
any depth [113]. Golestani’s Stop-and-go queueing provides conversations with bandwidth,
delay and jitter bounds, and is similar in spirit to Kalmanek et al’s Hierarchical Round Robin
scheme [46, 47, 68]. Ferrari et al have proposed schemes that deliver deterministic and statistical
guarantees for delay, bandwidth, packet loss and jitter [37, 142]. Other related work is that of
Lazar, who has proposed a network that offers classes of service, where each class has a perfor-
mance guarantee [83]. Note that having only a small number of classes of service, instead of let-
ting each user define its own performance requirements, makes implementation easier, but does
not adequately satisfy our definition of congestion control. Work by Estrin and Clark to ensure
that a conversation can determine a route that best satisfies its quality of service requirement
(policy routing) is also relevant [19, 31].

1.8. Scope of the thesis
As our survey indicates, the study of congestion control is a large and rapidly expanding

area. Since it is impossible to study the entire area in any depth in a single dissertation, we limit
our scope to congestion control in reservationless networks and only at the multiple-RTT and fas-
ter than one RTT time scales. The techniques developed in this work can be used for the ‘best-
effort’ data traffic in reservation-oriented networks.

We initially turn our attention to the problem of protecting well-behaved users from ill-
behaved ones by allocating all users a fair share of the network bandwidth (Chapter 2). We
show that this Fair Queueing discipline not only ensures that each user gets a fair share of the
network bandwidth, but also enables users to probe the network state. After describing tech-
niques for the efficient implementation of Fair Queueing (Chapter 3), we present a novel state
probing technique that a source can use in networks of Fair Queueing servers (Chapter 4). A
flow control algorithm based on control theoretic principles that uses the probe values to do
predictive control is then described in Chapter 5. Chapter 6 provides simulation studies to back
up our claims, and Chapter 7 presents our conclusions.

Our original contributions are in the theoretical modeling of the congestion and congestion
control problems, deriving theoretically sound solutions, and using these to develop practical
algorithms. These algorithms are tested using a network simulator [73] on a set of eight test
scenarios.
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