
On the Efficient Implementation of Fair Queueing

Srinivasan Keshav

Computer Science Division, Department of EECS,
University of California, Berkeley,

Berkeley, CA 94720, USA.

Abstract

The performance of packet switched data networks is greatly influenced by the queue service disci-

pline in routers and switches. In particular, the Fair Queueing discipline [1] has several advantages over the

traditional first-come-first-served discipline. This paper studies data structures and algorithms for the effi-

cient implementation of Fair Queueing. We present a novel performance evaluation methodology and use

it to evaluate the relative merits of several alternate implementations.

Keywords: Computer networks, Fair Queueing, Implementation

- 2 -

Introduction

Network performance is quite sensitive to the queue service discipline implemented at the output

trunks of routers and switches. While most current implementations are of the first-come-first-served disci-

pline, recent work has shown that the Fair Queueing (FQ) discipline [1] provides better performance. Thus,

there has been considerable interest in studying the theoretical and practical aspects of the algorithm [2-7].

Earlier work on Fair Queueing discussed its properties and its behavior in simulated networks. How-

ever, no particular implementation strategy was suggested. If future networks are to implement the disci-

pline, it is desirable to study efficient implementation strategies. Thus, this paper examines data structures

and algorithms for the efficient implementation of Fair Queueing.

We begin by reviewing the Fair Queueing Algorithm. After pointing out its three components, we

study the efficient implementation of each component. The element that critically affects implementation

performance is a bounded size priority queue. In the rest of the paper, we develop a novel technique to

study average case performance of data structures, and use it to compare several priority queue implementa-

tions. Our results indicate that cheap and efficient implementations of Fair Queueing are possible. Specifi-

cally, if packet loss can be avoided, an ordered link list implements a bounded priority queue simply and

efficiently. If losses can occur, then explicit per-conversation queues provide excellent performance.

The Fair Queueing Algorithm

The algorithm is implemented at the server that schedules packets on the output trunk of a router or

switch in a store-and-forward packet network. Assume for the moment that data from each source-

destination pair (a conversation) can be distinguished, and is stored in a logically distinct per-conversation

queue. Consider a hypothetical service discipline where one bit from each logical queue is served in round

robin order. This discipline allocates bandwidth fairly, since at every instant in time each conversation gets

exactly its fair share of the trunk bandwidth. Let R(t) denote the number of rounds of service made in this

hypothetical service discipline up to time t. Let N ac (t) denote the number of active conversations, i.e. those

that have bits in their queue at time t. Then, ∂R /∂t = L / N ac (t), where L is the linespeed of the gateway’s

outgoing line. Clearly, a packet of size P whose first bit gets serviced at time t 0 will have its last bit ser-

- 3 -

viced P rounds later, at time t such that R(t) = R(t 0) + P.

Let t i
α be the time that packet i belonging to conversation α arrives at the gateway. Define the vari-

ables S i
α and F i

α to be the values of R(t) when the packet started and finished service, and let P i
α denote

the size of the packet. Then:

F i
α = S i

α + P i
α

S i
α = MAX(F i − 1

α , R(t i
α))

Sending packets in a bit-by-bit round robin fashion is impractical, and the Fair Queueing algorithm

can be thought of as a way to emulate the hypothetical service discipline by a practical packet-by-packet

transmission scheme. We define a conversation to be active whenever R(t) ≤ F i
α for

i = MAX(jt j
α ≤ t) (i.e. whenever the round number is less than the largest finish number of all packets

queued for a conversation). The packet-by-packet transmission algorithm is simply that whenever a packet

finishes transmission, the next packet sent is the one with the smallest value of F i
α . It can be shown that

over sufficiently long conversations, this packetized algorithm asymptotically approaches the fair band-

width allocation of the BR scheme [2].

The delay and bandwidth allocations are separated by introducing a nonnegative parameter δ, and

defining a new quantity, the bid B i
α , by:

B i
α = P i

α + MAX(F i − 1
α , R(t i

α) − δ)

The quantities R(t), N ac (t), F i
α , and S i

α are as before, but the sending order is determined by the bid

numbers, not the finish numbers. Note that the asymptotic bandwidth allocation is independent of δ, since

the finish numbers control the bandwidth allocation. However, the algorithm can give lower delays to

packets that arrive at an inactive conversation. The parameter δ controls the extent of this additional

promptness.

Summary

Let the ith packet from the conversation α, of size P i
α arrive at the server at time t. Let F α denote

the largest finish number for any packet that has ever been queued for conversation α. Then, we compute

the packet finish number F i
α and the packet bid number B i

α as follows:

- 4 -

if(α is active)
F i

α = F α + P i
α ;

else
F i

α = R(t i
α) + P i

α ;
endif

B i
α = P i

α + MAX(F α , R(t i
α) − δα) ;

F α = F i
α ;

If the packet arrives when there is no more free buffer space, packets are dropped in order of decreas-

ing bid number until there is space for the incoming packet. The next packet sent on the output line is the

one with the smallest bid number.

Components of a Fair Queueing Server

It is illustrative to trace a FQ server’s actions on packet arrival and departure. When a packet arrives

at the server, it first determines the packet’s conversation ID α. The server then updates the current round

number R(t). The conversation ID is used to index into the server state to retrieve the conversation’s finish

number F α and offset δα . These are used to compute the packet’s finish and bid numbers, F i
α and B i

α .

If the output line is idle, the packet is sent out immediately, else it is buffered. If the buffers are full,

some buffered packets may need to be discarded. On an interrupt from the output line indicating that the

next packet can be sent, the packet in the buffer with the smallest bid number is retrieved and transmitted.

From this description, we identify three major components of a FQ implementation: bid number

computation, round number computation and packet buffering. We discuss each component in turn.

Bid number computation

A FQ server maintains, as internal state, the finish number F α and the offset δα of each conversation

α passing through that gateway. An implementor has to make two design choices: determining the ID of a

conversation, and deciding how to access the state for that conversation.

The choice of the conversation ID depends on the entity to whom fair service is granted (see the dis-

cussion in Reference [1]), and the naming space of the network. For example, if the unit is a transport con-

nection in the IP Internet, one such unique identifier is the tuple (source address, destination address, source

port number, destination port number, protocol type). The elements of the tuple can be concatenated to pro-

- 5 -

duce a unique conversation ID. For virtual circuit based networks, the Virtual Circuit ID itself can be used

as the conversation ID.

Note that for the IP Internet, one cannot always use the source and destination port numbers, since

some protocols do not define them. For example, if an IP packet is generated by a transport protocol such as

NetBlt [8], this information may not be available. An engineering decision could be to recognize port num-

bers for some common protocols and use the IP (source address, destination address) pair for all other pro-

tocols. This may result in some unfairness since transport connections sharing the same address pair are

treated first-come-first-served.

The conversation ID is used to access a data structure for storing state. Since IDs could span large

address spaces, the standard solution is to hash the ID onto a index, and the technology for this is well

known [9]. Recently, a simple and efficient hashing scheme that ignores hash collisions has been proposed

[5]. In this approach, some conversations could share the same state, leading to unfair service, since these

conversations are served first-come-first-served. However, this is attenuated by occasionally perturbing the

hash function.

Round number computation

The round number at a time t is defined to be the number of rounds that a bit-by-bit round robin

server would have completed at that time. To compute the round number, the FQ server keeps track of the

number of active conversations N ac (t), since the round number grows at a rate that is inversely propor-

tional to N ac . However, this computation is complicated by the fact that determining whether or not a con-

versation is active is itself a function of the round number.

Consider the following example. Suppose that a packet of size 100 bits arrives at time 0 on conversa-

tion A, and let L = 1. During [0,50), since N ac = 1, and ∂R(t)/∂t = 1/ N ac , R(50) = 50. Suppose that

a packet of size 100 bits arrives at conversation B at time 50. It will be assigned a finish number of 150 (=

50 + 100). At time 100, P 0
A has finished service. However, in the time interval [50, 100), N ac = 2, and

so R(100) = 75. Since F A = 100, A is still active, and N ac stays at 2. At t = 200, P 0
B completes ser-

vice. What should R(200) be? The number of conversations went down to 1 when R(t) = 100. This

- 6 -

must have happened at t = 150, since R(100) = 75 , and ∂R(t)/∂t = 1/2. Thus,

R(200) = 100 + 50 = 150.

Note that each conversation departure speeds up the R(t), and this makes it more likely that some

other conversation has become inactive. Thus, it is necessary to do an iterated deletion of conversations to

compute R(t), as shown in Figure 1.

/* F, ∆ and N are temporary variables */
N = N ac (t chk);
do:

F = MIN(F αα is active);
∆ = t − t chk;
if (F ≤ R chk + ∆ * L / N) {

declare the conversation with F α = F inactive;
t chk = t chk + (F − R chk) * N / L;
R chk = F;
N = N − 1;

}
else {

R(t) = R chk + ∆ * L / N;
R chk = R(t);
t chk = t;
N ac (t) = N
exit;

}
od

Figure 1: Round number computation
_ __




























_ __




























The server maintains two state variables, t chk and R chk = R(t chk) . A lower bound on R(t) is

R chk + L / N ac (t chk) *(t − t chk), since N ac is strictly non-increasing in [t chk , t]. If some F α is less than this

expression, then conversation α has become inactive some time before time t. We determine the time when

this happened, checkpoint the state at that time by updating the t chk , R chk pair, and repeat this computation

till no more conversations are found to be inactive at time t.

Round number computation involves a MIN operation over the F αs, which suggests a simple scheme

for efficient implementation. The F αs are maintained in a heap, and as packets arrive the heap is adjusted

(since F α is monotonically increasing for a given α, this is necessary for each incoming packet). This takes

time O(log N ac (t)) per operation. However, it only takes constant time to find the minimum, and so each

step of the iterated deletion takes time O(log N ac (t)) (for readjusting the heap after the deletion of the con-

- 7 -

versation with the smallest finish number).

In related work, a heuristic for computing the round number has been proposed [6]. In this scheme,

the round number is set to the finish number of the packet currently being transmitted, and all packets with

the same finish number are served first-come-first-served. If this heuristic (or a small variant) is acceptable,

the round number can be easily computed.

Packet buffering

FQ defines the packet selected for transmission to be the one with the smallest bid number. If all the

buffers are full, the server drops the packet with the largest bid number (unlike the algorithm in Reference

[1], this buffer allocation policy accounts for differences in packet lengths). The abstract data structure

required for packet buffering is a bounded heap. A bounded heap is named by its root, and contains a set of

packets that are tagged by their bid number. It is associated with two operations, insert(root, item,

conversation_ID) and get_min(root), and a parameter, MAX, which is the maximum size of the

heap.

insert() first places an item in the bounded heap. While the heap size exceeds MAX, it repeat-

edly discards the item with the largest tag value. We insert an item before removing the largest item since

the inserted packet itself may be deleted, and it is easier to handle this case if the item is already in the heap.

To allow this, we always keep enough free apace in the buffer to accommodate a maximum sized packet.

get_min() returns a pointer to the item with the smallest tag value and deletes it.

Determining a good implementation for a bounded heap is an interesting problem. There are two

broad choices.

I Since we are interested only in the minimum and maximum bid values, we can ignore the conversa-

tion ID, and place packets in a single homogeneous data structure.

II We know that within each conversation, the bid numbers are strictly monotonically increasing. This

fact can be used to do some optimization.

It is not immediately apparent what the best course of action should be, particularly since per-conversation

queueing is computationally more expensive. Thus, we did a performance analysis to help determine the

- 8 -

best data structure and algorithms for packet buffering. The next sections describe some implementation

alternatives, evaluation methodology and the results of the evaluation.

Buffering Alternatives

We considered four buffering schemes: an ordered linked list (LINK), a binary tree (TREE), a double

heap (HEAP), and a combination of per-conversation queueing and heaps (PERC). We expect that the

reader is familiar with details of the list, tree and heap data structures. They are also described in standard

texts such as References [10, 11].

Ordered List

Tag values usually increase with time, since bid numbers are strictly monotonic within each conver-

sation. This suggests that packets should be buffered in a ordered linked list, inserting incoming packets by

linearly scanning from the largest tag value. Monotonicity implies that most insertions are near the end, and

so this reduces the number of link traversals required.

Binary Tree

We studied a binary tree, since this is simple to implement and has good average performance.

Unfortunately, monotonic tag values can skew the tree heavily to one side, and the insertion time can

becomes almost linear. This skew can be removed by using self-balancing trees such as AVL trees, 2-3

trees or Fibbonacci trees. However, the performance of the self-balancing trees is comparable to that of a

heap, since operations on balanced trees as well as heaps require a logarithmic number of steps. Since we

do study heaps, we have not evaluated self-balancing trees explicitly. Our performance evaluation of heaps

will also be representative of the results for self-balancing trees.

Double Heap

A heap is a data structure that maintains a partial order. The tag value at any node is the supremum

(or infremum) of all the tags that lie in the subtree rooted at that node. Since we require both the minimum

and the maximum elements in the heap, we maintain two heaps (implemented as arrays) and cross pointers

between them. The code for implementing double heaps is presented in Appendix 1.

- 9 -

We know that within a conversation, bid numbers are strictly monotonic. So, we queue packets per

conversation, and keep two heaps keyed on the bid numbers of the head and tail of the queue for each con-

versation. insert() adds a packet to the end of the per channel queue and updates the max heap.

get_min() finds the packet with smallest bid number from the min heap and dequeues it.

Performance Evaluation

The performance of a data structure is measured by the cost of performing an elementary operation,

such as an insertion or a deletion of an element, on it. Traditionally, performance has been measured by the

asymptotic worst case cost of the operation as the size of the data structure grows without bound. For exam-

ple, the insertion cost into a ordered list of length N is O(N), since in the worst case we may need to tra-

verse N links to insert an item into the list.

How should we measure the performance of the four buffering data structures for the insert() and

get_min() operations? Since constant work is needed to add or delete a single item at a known position

to any data structure, the unit of work for linked lists and trees is a link traversal and for heaps is a swap of

two elements. For linked lists and trees, the time for get_min() is a constant, and for the other two data

structures, it is comparable to the insertion time. Thus, an appropriate way to measure the performance of

the data structures is to measure the number of links of the data structure that are traversed, or the expected

number of swaps, during an insert() operation. Let B denote the number of buffers in a gateway, and

let N denote the and the number of conversations present at any time. Table 1 presents well known results

for the performance of the data structures described above for the insert() operation.

_ ___ __
Best Worst Average (Uniformly random workload)_ __

LINK O(1) O(B) O(B)
TREE O(1) O(B) O(log(B))
HEAP O(log(B)) O(log(B)) O(log(B))
PERC O(log(N)) O(log(N)) O(log(N))_ ___ __ 














Table 1: Theoretical insertion costs

While the asymptotic worst case cost is an interesting metric, we feel that it is also desirable to know

the average cost. However, average case behavior is influenced by the workload (the exact sequence of

insert and get_min operations) that is presented to the data structure. Thus the best that we can do ana-

lytically is to assume that the workload is drawn from some standard distribution (uniform, gaussian, etc.),

- 10 -

and compute the expected cost. We believe that this is not adequate. Instead, we use a general analysis

methodology that we think is practical, and has considerable predictive power.

We first parameterize the workload by some (small) number of parameters. The parameters are then

fed to a realistic network simulator to create a trace of the workload for that parameter point. Then, we

implement the data structure and associated algorithms, and measure the average performance over the

trace length. This enables us to associate an average performance metric at that point in the workload

parameter space. By judicious exploration of the parameter space, it is possible to map out the average per-

formance as a function of the workload, and thus extrapolate performance to regions of the space that are

not directly explored.

In our opinion, this methodology avoids a significant difficulty in average case analysis, that is,

reliance on unwarranted assumptions about the workload distribution. Also, by mapping algorithm perfor-

mance onto the workload space, it enables a network designer to choose an appropriate algorithm given the

operating workload.

The drawback with this method is that it requires a realistic network simulator, and considerable

amounts of computing time. Further, parameterizing the workload and exploration of the state space are

more of an art than a science. However, we feel that these drawbacks are more than compensated for by the

quality of the results that can be obtained.

Evaluation Results

We chose the scenario of Figure 2 for detailed exploration.

.

.

.

SOURCES

GATEWAY SINK

56kbps

800kbps

Figure 2: Simulation scenario

- 11 -

Stability of metrics

e
u
l
a
v
e
t
a
m
i
t
s
E

Length of trace

50

40

30

20

10

0
30502050105050

TREE

LINK

HEAP

PERC

Simulation State Space

s
r
e
f
f
u
b

#

Number of Conversations

400

300

200

100

0
403020100

A

B

C

D E

Figure 3 Figure 4
The gateway serves multiple sources (each of which originates one conversation) that share two common

resources: the bandwidth of the output (trunk) line, and buffers in the gateway. Since there are no inter-

trunk service dependencies, it suffices to model a single output trunk. Further, by changing the number of

sources, and the number of buffers, it is possible to drive the system into congestion, something that we

want to study. Finally, it is simple enough that it can be easily parameterized. Thus, our choice.

Note that we do not introduce any ‘non-conformant’ traffic in the sense of [6], since we wish to

explore design decisions for well behaved sources only. If the network is expected to carry non-conformant

sources as well, then an performance evaluation similar to the one described here probably needs to be car-

ried out.

The simulated sources obey the DARPA TCP protocol [12] with the modifications made by Jacobson

[13]. They have a maximum window size of W each. By virtue of the flow control scheme, each source

dynamically increases its window size, till either a packet is dropped by the gateway (leading to a timeout

and a retransmission) or the window size reaches W. It is clear that the gateway cannot be congested if

W * N ≤ B

If the network is not congested, then each source behaves nearly independently, and the workload is

- 12 -

deterministic. When there is congestion, retransmissions and packet losses dramatically change the work-

load. Thus, one parameter for the workload is the ratio N / B. We also expect the workload to change as the

number of conversations N increases. Thus, keeping W fixed, the two parameters that determine the work-

load are N and B.

Following the experimental methodology outlined above, we used the REAL network simulator [14]

to generate workload traces for a number of (N, B) tuples. One practical problem was to determine the

appropriate trace length. Since generating a trace takes a considerable amount of computation, we decided

to generate the shortest trace for which the cost metrics for all the four implementations stabilized. For

simplicity, we determined this length for a single workload, with N = 10, B = 200, and generated a trace for

2500 seconds of simulated time. We then plotted the four cost metrics as a function of the trace length (Fig-

ure 3). We find that at 2500 seconds, all the metrics are no more than 10% away from their asymptotes.

Since we only wanted to make qualitative cost comparisons, we generated each trace for 2500 seconds.

The (N, B) state space was explored along the five axes (labeled A through E) shown in Figure 4.

Each ‘+’ marks a simulation, there were a total of 35 simulations. Cost metrics for each implementation

were determined along each axis. Axis A is the underloaded axis - along every point in the axis the gate-

way is lightly loaded, that is W * N < B. Symmetrically, axis B is the overloaded axis. Axes C, D and E

are partly in the underloaded regime, and partly in the overloaded regime. Thus, congestion-dependent tran-

sitions in relative cost of the implementations occur along these axes. The axis between axes A and B

marks W * N = B.

Figures 5 and 6 show the average insertion cost along each of the five axes for each implementation.

This is computed as

elementary operations / # insertions in the trace

where an elementary operation is the traversal of a single link or a single heap exchange. All Y axes are

drawn to logarithmic scale. Conceptually, one can imagine that for each implementation, there is a perfor-

mance surface overlaying the workload space. Figures 5 and 6 represent cross sections of these surfaces as

we slice along axes A-E. We can extrapolate the surfaces from these cross sections.

Results

- 13 -

Average work per insertion (20 conversations)(log
scale)

Number of buffers

5

210.0160.0110.060.010.0

4

3

2

1

0

-1

-2

-3

TREE

HEAP

PERC

LINK

Average work per insertion (underloaded)(log scale)

Number of conversations

15

10

5

0

413121111
-5

TREE

HEAP

PERC

LINK

Average work per insertion (Overloaded)(log
scale)

Number of conversations

4

3

2

1

0

413121111

-1

-2

-3

-4

-5

LINK

TREE

HEAP

PERC

Average work per insertion (50 buffers)(log scale)

Number of conversations

12

423222122

7

2

-3

-8

LINK
TREE

HEAP
PERC

Figure 5: Average cost results

- 14 -

Examination of the surfaces points out several facts:

• The performance surface for all the implementations (except LINK) are generally smooth, with few

discontinuities. Thus, extrapolating the curves is meaningful.

• LINK behavior is somewhat erratic, since the insertion cost is is highly dependent on the workload.

However, it still has a well defined behavior: in some cases, it is the by far the cheapest implementa-

tion, in others, it is clearly the most expensive. Figure 7 divides the workload space into three zones,

numbered I-III. In zone I, it is best to use LINK, in zone III, LINK has the worst metric.

• As the number of conversations increases, the average HEAP and PERC insertion cost increases in

the overloaded regime and is roughly constant in the underloaded regime.

• The cost metric for PERC is always less than that for HEAP or TREE.

• The cost metric for HEAP is within an order of magnitude of that for PERC in most cases.

• In the underloaded regime, binary trees become skewed, and hence are costly. They perform better in

the overloaded regime.

• Average insertion cost for PERC is less than its theoretical average case cost.

• The maximum work done, which is shown for a typical case in Figure 6, is as expected from theory.

• In the underloaded case, HEAP and PERC show a declining trend, but this is offset by a larger

increasing trend in the deletion time (not shown here).

Interpretation of Results

The results give several guidelines for FQ implementation. TREE performs the worst in the under-

loaded regime, and in the overloaded regime, HEAP and PERC are better. Hence, TREE is a bad imple-

mentation choice. We will not discuss it further.

Among the other strategies, PERC is always better than HEAP, and both of them have small worst

case insertion costs. The worst case work per insertion is bounded by O(log(B)) for HEAP, and by

O(log(N)) for PERC. Assuming that a gateway has 32 Mbytes of buffering per trunk line, and that packets

are, on the average, 1Kbyte long, there will be at most be on the order of 32K packets in the buffer. The

- 15 -

number of conversations will be on the order of the square root of this number, i.e. around 200. With these

figures, HEAP requires log(32K) ˜ 15, and PERC requires log(200) ˜ 8 elementary operations. Our simula-

tions (Figure 5) show that in the trace driven simulation, the average work for HEAP and PERC is less than

half of the worst case work. Thus, the average cost per insertion for PERC will be more like 4 elementary

operations. This is a small price to pay to implement Fair Queueing.

The behavior of LINK (Figure 7) points to another implementation tactic. Note that in region I, LINK

has the least cost. If the network designer can guarantee that the system will never enter the overloaded

region (for example, by preallocating enough buffers for conversations, as in the Datakit network), then

implementing LINK is the best strategy.

One consideration that is orthogonal to the insertion cost is implementation cost. For example, it is

clear that an implementing PERC involves much more work than LINK. There are two implementation

costs, corresponding to the work that is done independent of the number of elementary operations (static

cost), and the work done per elementary operation (dynamic cost).

One simple metric to measure static cost is to measure the code size for insert(). We extracted

the code for insert() and all the functions that it calls, for each implementation and placed it in a file.

This file was compiled to produce optimized assembly code (in Unix, cc -S -O -c). We then stripped the

file of all assembler directives, leaving pure assembly code. Since this was done on a RISC machine, all

instructions have the same cost, and the file length is a good metric of the complexity of implementing a

given strategy. Table 2 presents this metric for the four implementations, normalized to the cost of imple-

menting LINK.

_ ________________________________
Implementation Static Dynamic

Cost Cost_ ________________________________
LINK 1.0 5
TREE 1.1 18
HEAP 2.5 88
PERC 5.5 96_ ________________________________ 
















Table 2: Implementation cost

The dynamic cost was determined by examining the optimized assembly code, and counting the num-

ber of instructions executed per elementary operation. Table 2 presents the results. We did not specifically

concentrate on reducing the number of instructions while writing the source code. We believe that the

- 16 -

dynamic cost can be considerably reduced by hand coding in assembly language.

To summarize, we draw four conclusions:

1 Implementing TREE is a bad idea.

2 HEAP provides good performance with low implementation cost.

3 PERC consistently provides the best performance, but has the highest implementation cost.

4 If the network designer can guarantee that the network never goes into overload, LINK is cheap to

implement and has the minimum running cost.

Conclusions

In this paper, we have considered the components of a FQ server, and have presented and compared

several implementation strategies. Our work indicates that cheap and efficient implementations of FQ are

possible. Along with the work done by McKenney [5] and Heybey et al [6], this work provides the practi-

tioner with well defined guidelines for FQ implementation. We hope that these studies will encourage more

implementations of Fair Queueing in real networks.

The performance evaluation methodology described here enables realistic evaluation of the average

case performance of network algorithms. As LINK shows, this can lead to interesting results. We believe

that a similar methodology can be used to evaluate a number of other workload sensitive network algo-

rithms.

Finally, we believe that these results can be extended to other scheduling disciplines that are similar

to Fair Queueing, such as the Virtual Clock algorithm [15]. Thus, our work has some generality of applica-

tion.

Future Work

This paper does not examine hardware implementation of Fair Queueing. Given the need for faster

packet processing in high speed networks, this is an obvious direction to pursue.

While our paper presented the means for the cost metric, we ignore the variance. This is because our

simulations are completely deterministic. It would be useful to enhance the performance methodology

- 17 -

described earlier to determine the variance and confidence intervals.

Acknowledgments

This work was prompted by conversations with D. Presotto and E. Hahne at Bell Labs, Murray Hill.

The idea of backward insertion into a linked list is due to D. Presotto. My thanks to Prof. D. Ferrari at UC

Berkeley for his advice on performance analysis.

References

1. Demers, A., Keshav, S. and Shenker, S., Analysis and Simulation of a Fair Queueing Algorithm,

Journal of Internetworking Research and Experience, September 1990, 3-26;. also Proc. ACM Sig-

Comm, Sept. 1989, pp 1-12..

2. Greenberg, A. and Madras, N., How Fair is Fair Queueing?, Proc. Performance 90, 1990.

3. Shenker, S., Making Greed Work in Networks: A Game-Theoretic Analysis of Gateway Service Dis-

ciplines, Preprint, Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304., September 1989.

4. Shenker, S., A Theoretical Analysis of Feedback Flow Control, Proc. ACM SigComm 1990, Septem-

ber 1990, 156-165.

5. McKenney, P. E., Stochastic Fairness Queueing, Proc. INFOCOM ’90, June 1990.

6. Heybey, A. T. and Davin, J. R., A Simulation Study of Fair Queueing, Computer Communications

Review 20, 5 (October 1990), 23-29.

7. Mankin, A. and Ramakrishnan, K. K., Performance and Congestion Control Working Group Report,

Internet Engineering Task Force Meeting, July 1989.

8. Clark, D. D., Lambert, M. L. and Zhang, L., NETBLT: A Bulk Data Transfer Protocol, RFC-998,

Network Working Group, March 1987.

9. Jain, R., A Comparison of Hashing Schemes for Address Lookup in Computer Networks , Tech.

Rpt.-593, Digital Equipment Corporation , February 1989.

10. Horowitz, E. and Sahni, S., Fundamentals of Data Structures , Prentice Hall, 1981.

11. Knuth, D., Fundamental Algorithms, Addison-Wesley, 1973.

- 18 -

12. Postel, J., Transmission Control Protocol, RFC 793, USC Information Sciences Institute, 1981.

13. Jacobson, V., Congestion Avoidance and Control, Proc. ACM SigComm 1988, August 1988, 314-

329.

14. Keshav, S., REAL : A Network Simulator, Comp. Sci. Dept. Tech. Rpt. 88/472 , University of Cali-

fornia, Berkeley, December 1988.

15. Zhang, L., A New Architecture for Packet Switching Network Protocols, PhD thesis, Massachusetts

Institute of Technology, July 1989.

- 19 -

Appendix I

A double heap consists of a pair of heaps. Since operations on one heap must be reflected in the
other, we need pointers between the two instances of an element in the double heap. Since we represent
heaps as arrays, pointers are indices, and we implement cross pointers using two integer arrays of indices.

The physical data structures used are four arrays, min, max, i_min and i_max. min and
max are the arrays that store the two heaps, one has the minimum element at the root, the other has the
maximum. i_min[k] is the position in max of the kth element of min. i_max is defined symmet-
rically.

Every move in either heap must update i_min and i_max. We note that the only time an element
is moved is when it is exchanged with some other element. We encapsulate this into an operation
exchg() that swaps elements in the min or max heap, and simultaneously updates i_min and i_max so
that the pointers are consistent. We actually need two symmetric operations, min_exchg() and
max_exchg() that swap elements in the min and max heap respectively. min_exchg() looks like
the following:

min_exchg(a, b) /* calls to swap are call by name */
{
swap(min[a], min[b]);
swap(i_max[i_min[a]], i_max[i_min[b]]);
swap(i_min[a], i_min[b]);
}

We now prove that this operation preserves pointer consistency, i.e. i_min[i_max[a]] = a and
i_max[i_min[a]] = a. Elements are inserted only in the last (say, nth) position in the heap, so the
initial pointer positions are: i_min[n] = i_max[n] = n . It is easy to see that at the end of each
min_exchg() operation, the pointers will remain consistent. Hence, by induction, pointers are always
consistent.

Given the exchange operation, the rest of the heap operations are simple to implement. Heap inser-
tion is done by placing data in the last element, and sifting up.

min_insert(data,num)
/* num is the current size of the heap */
{
ptr = num + 1;
min[ptr] = data;

for (; (ptr/2 >= 1) &&(min[ptr] < min (ptr/2]); ptr /=2)
min_exchg(ptr, ptr/2);

}

Deletion is done by changing both the min and the max heaps, then adjusting them to recover the
heap property.

min_delete()
{
int save;

min[1] = INFINITY;
save = i_min[1];

- 20 -

min_exchg(1,num);
min_adjust(1);

max[save] = -1;
max_exchg(save,num);
max_adjust(save);
}

Adjusting a heap consists of recursively sifting the marked element up or down as the case may be.
Termination in a logarithmic number of steps is assured: because of the heap property, calls either go up the
heap or down, and there can be no cycles.

min_adjust(a)
{
int smaller, smaller_son;

smaller = a;
if (min[a] < min[a/2]) smaller = a/2;
smaller_son = (min[lson(a)] < min[rson(a)]) ? lson(a) : rson(a);
if (min[smaller_son] < min[a]) smaller = smaller_son;
if (smaller != a)

{
min_exchg(a, smaller);
min_adjust(smaller); /* recursive call */
}

}

