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ABSTRACT
Modelling home energy consumption is necessary for study-
ing demand-response, transformer sizing, and distribution
network simulation. Using an existing classification, we pro-
pose parsimonious Markovian reference models of home load
for each class. We derive models for on-peak periods, off-
peak periods, and mid-peak periods. These models are de-
rived using traces based on fine-grained measurements of
electricity consumption in 20 homes over four months. We
validate the representativeness of our models in a specific
application.

Categories and Subject Descriptors
I.6 [Simulation and Modelling]: Model Validation and
Analysis; G.3 [Probability and Statistics]: Markov Pro-
cesses

General Terms
Design, Measurement, Verification

Keywords
Electrical grid, Markov chain, load modelling

1. INTRODUCTION
With the rapid ongoing deployment of the smart grid,

there is an increasing need for accurate and parsimonious
models for home electrical loads. Accurate home load mod-
els are the basis for research in smart appliance design,
distribution network sizing, modelling of demand response,
smart charging of electric vehicles, and home energy man-
agement. Most attempts at home load models in the past
have been constrained by the limited measurement infras-
tructure. Smart meters measure home load every five min-
utes, at best, which is too slow to capture the on-off be-
haviour of appliances. In path-breaking work, Richardson
et al at the University of Loughborough measured 22 homes
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for a year at a one-minute granularity to construct a home-
load generator [11]. However, their generator is not parsimo-
nious, in that its input is the set of appliances in each home,
the appliance load model, the number of occupants, and the
occupancy behaviour. It is difficult to obtain these inputs in
any realistic situation. In this paper, we are motivated by
the need to develop models for the sizing of transformers and
storage in distribution networks using queueing theory [2],
and hence we focus on Markovian models.

Over the years, electrical utilities have built classifications
of home loads into a small number of representative classes.
We use one of these classifications to try to derive a refer-
ence load model per class for different periods of the day.
We propose an analytical model based on a k -state Marko-
vian model. This kind of model will be very suitable for
use in mathematical analysis. We use even finer-grained
measurements than Richardson et al (every six seconds) of
20 homes over four months to develop these reference mod-
els. We show that each class in each period can be mod-
elled accurately by a Markovian model with no more than
6 states. We provide the transition rate matrix, Q, and the
power consumption matrix, R, for each of these reference
models. We believe that these models could be very useful
to the research community interested in studying demand-
response, transformer and storage sizing, and distribution
network simulation. We validate our modelling approach
for the specific application of transformer sizing by com-
paring the loss period (i.e., the period that the aggregate
load exceeds the transformer size computed by the teletraf-
fic theory) obtained from the numerical simulation with the
industry standard loss duration.

We make three contributions:

• We collect fine-grain load measurements from real us-
age using inexpensive off-the-shelf components in 20
homes over four months, mid-January to mid-May.
These 20 homes can be partitioned into 4 classes using
an existing classification.

• We create parsimonious Markovian reference models
for these 4 classes for different periods of the day.

• We validate that the accuracy of our models is suffi-
cient for our specific application.

The rest of the paper is organized as follows. We describe
the need for parsimonious models and for Markovian mod-
els, as well as related work in Section 2. We present our
measurement testbed in Section 3. We present an overview
of the data in Section 4. Our model is presented in Section 5
and is validated in Section 6. We conclude in Section 7.



2. BACKGROUND AND RELATED WORK
It is important for a home electricity consumption model

to be parsimonious because a plethora of parameters makes
it difficult to cover the model space when doing analysis or
simulations. However, parsimony comes at a cost. Many
factors determine home load such as the time of day, envi-
ronmental and geographical factors, the type of appliances
in the home, the usage pattern of these appliances, the num-
ber of occupants of the house, the occupancy pattern, and
the size and perhaps even the floor plan of the house. A
parsimonious model must necessarily ignore one or more of
these factors. To make the modelling problem tractable, we
focus on parsimonious models that are suitable for a specific
purpose, that is, the sizing of transformers in the distribu-
tion system [2]. This reduces the problem to constructing
a representative set of continuous-time Markov models, as
discussed in Section 5.

A critical modelling decision is to use continuous-time
Markov processes. We are motivated by three reasons. First,
Hidden Markov Models and Markov chains have been exten-
sively used in the past to model sequential events. For exam-
ple, they have been used to model natural languages, human
speech, molecular evolution, and animal behaviour [10, 8, 6]
In all these cases, it has been shown that Markov models
combine both parsimony with descriptive power. Second,
Markov models are the foundation for many types of math-
ematical analysis, especially queueing theory and stochastic
optimization. This makes them particularly attractive for
our application. Finally, home electricity usage arises from
the superposition of a finite set of on-off loads from individ-
ual appliances. Such superpositions have been shown in the
past to be well-modelled using Markovian models [12].

In the past, detailed models for residential loads have been
presented in the power engineering, environmental studies,
and civil engineering literature [11, 3, 4, 9]. However, these
models suffer from three problems. First, these models tend
to be highly parametrized, rather than parsimonious. Sec-
ond, the data sets on which these models are based are not
publicly available. Therefore, we cannot use them to create
Markovian models. Finally, to the best of our knowledge,
existing models group all homes into a single class. Our mea-
surements show significant differences in demand behaviour
at different homes.

Over the years, electrical utilities have built classifications
of home loads into a small number of representative classes.
In particular, they use this classification to size their trans-
formers. We use one of these classifications to partition
our measured home loads into 4 classes and derive per class
Markovian reference models for different periods of the day.

3. TESTBED
Our first step is to obtain real measurements of the elec-

trical load. To obtain our own load data set, we built a
testbed to measure aggregate loads at 20 homes. We de-
ployed measurement nodes (Figure 1) at 19 houses and one
home-based small business covering a range of living area
sizes, occupants, appliances, and energy consumption pat-
terns. For the purpose of our small pilot study, we used
a convenience sample rather than a stratified random sam-
ple. Our methodology generalizes to samples chosen using
standard population sampling techniques [5].

Each measurement node consists of a Current Cost Envi

 

Figure 1: A measurement node

Type of Heating House Size

100m2 200m2 300m2 400m2

Baseboard elec-
tric heat

3.0 4.0 5.0 6.0

Central electric
heat

4.0 5.0 6.0 7.0

Gas/oil heat, no
central A/C

1.0 1.5 2.0 2.5

Gas/oil heat, cen-
tral A/C

1.5 2.5 3.5 4.5

For town or row houses, multiply the unit value by 0.8.

Table 1: ‘Unit values’ assigned to customer homes
by a major utility.

device [1] and a netbook. The Envi device measures the
active power consumption (in Watts) of a house every six
seconds and stores it locally in flash memory1. A script on
the netbook queries the device every six seconds to obtain
an XML file that it stores on disk. This is uploaded using
a secure SSL connection to a server in our laboratory once
a day. To preserve privacy of the participants in our study,
logs files are anonymized before being stored in a secure
directory on the file server.

4. DATASET
Given the high variability of home loads, choosing a classi-

fication for them is a challenging task. Fortunately, standard
rules based on decades of field experience allow an electric
utility to both predict and classify a home load based on
a few simple parameters. We obtained such a parametriza-
tion, specifically used for transformer sizing, from a major
utility in our area (Table 1). The key sizing parameters are
the house size and the nature of the heating and cooling
systems, which constitute the major loads in our geograph-
ical area. These are used to compute a ‘unit value’ that
represents the load expected from that home.

To minimally impact participant privacy, we asked each
participant to tell us their home’s unit value computed using
this table. We then placed homes with the same unit value
in the same class. Table 2 shows the four classes so obtained

1Consequently, the device does not capture load transients
that last shorter than this time.
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Figure 2: Load measurements from typical homes in 4 classes for one week.

Class Unit value Number of houses
1 1.2 8
2 2.5 7
3 3.5 3
4 4.5 2

Table 2: Number of homes in our experiment within
each class.

(note that in our area homes are in general equipped with
gas/oil heater).

Typical loads from one home in each class for one week (in
winter) are shown in Figure 2. The main differences between
classes are the amount of peak and base loads, the width of
the peak period, and variability of the load (e.g., the average
number and the average height of spikes in a given period).
Table 3 represents the peak and base loads of each class.
The base load of each class is the smallest element of the R
matrix, described in Section 5. Similarly, the peak load is
the largest element of the R matrix.

Class 1 Class 2 Class 3 Class 4
Peak load (W) 3902 4580 6890 7132
Base load (W) 142 234 410 769

Table 3: Peak and base loads of each class.

5. MARKOV MODEL
This section describes our approach to building a reference

model for each class of homes introduced in Section 4. We
answer the following questions:

• How many reference models do we need?

• How can we choose the Markov states?

• What metric determines the goodness of a model?

• How many Markov states are needed in each model?

In this work, we assume that the homes selected for mea-
surement in our study are a representative random sample of
their assigned class. This assumption is admittedly strong,
but can be removed if homes chosen for measurement were
chosen from a stratified random sample, which we defer to
future work.

5.1 Definition
A continuous-time Markov process is the continuous ver-

sion of a Markov chain. In a Markov chain transitions hap-
pen at specific time steps; however, in a continuous-time
Markov process the system remains in the previous state for
a period of time before it transitions to a new state; these
time periods are exponentially distributed. Dynamics of a
k-states Markov process is represented by a k × k transition
rate matrix (also known as the intensity matrix), Q, where
qij is the rate of departing from state i to arrive at state j.
Since the transition rates of each state should sum to zero,



qii is defined as2:

qii = −
∑
j 6=i

qij

Similar to the approach used in [13] for modelling VBR video
sources, we assign a value, Ri, to state i of a Markov process;
this value represents the amount of power consumed in this
state. We model the electric load of a home using a k-state
continuous-time Markov process defined by the < Q,R >
tuple.

5.2 How many models do we need?
In Section 4, we classify the homes being measured into

four classes based on the ‘unit size’ assigned to them. This
motivates the need for at least four models. Furthermore,
home load is highly sensitive to the time of day. More specif-
ically, it is not stationary over the period of a day, and the
probability that the peak power will be consumed at 6am is
far lower than it is at 6pm. To deal with this issue, taking
a cue from the time periods specified by the electric utility
in our region, we divide a day into three periods, namely
on-peak (7am-11am and 5pm-9pm), mid-peak (11am-5pm),
and off-peak periods (12am-7am and 9pm-12am). Visual ob-
servation verifies that the home load is almost stationary in
each period. We caution that the definition of these periods
might be different in other geographic regions or seasons.
Nevertheless, we believe that similar three periods can be
identified in every region and season. Therefore, we con-
struct three reference models (one for each period) for each
class, for a total of 12 reference models.

5.3 Choosing Markov states
To find a k -state Markov model for each class in each

period, we first need to choose a representative load from
our measurements. This representative load must include
electric loads of all homes within the corresponding class
in that period; therefore, we construct it by concatenating
these electric loads. For example, the representative on-
peak load of a class is the concatenation of on-peak periods
of all homes selected for measurements within that class for
the entire measurement period. We then use the k -means
clustering algorithm to find k centroids of the representa-
tive load. Values of these centroids constitute the R matrix.
To increase the chance of finding the global optimum in the
k -means clustering, we run 500 replicates of the k -means
algorithm with random start points. Substituting values of
the points in each cluster with the value of its centroid, we
obtain a clustered home load. Then we use the clustered
home load to compute the Q matrix from the following ex-
pressions

qij =
no. of transitions from R(i) to R(j) in clustered load

total time spent in state i before a transition to state j

5.4 How many Markov states should a model
have?

An obvious question is that how many states are needed
in each model. To answer this question we need to define a
goodness-of-fit metric. We use the area between the cumula-
tive distribution function (CDF) of the measured home load

2An ergodic continuous-time Markov process has a station-
ary probability distribution, π, that can be easily computed
from its transition rate matrix.

On-peak Mid-peak Off-peak
Class 1 6 6 5
Class 2 5 3 5
Class 3 4 5 2
Class 4 3 3 3

Table 4: Minimum number of states necessary for
representing the home load of a class in a period.

and the CDF obtained from modelling the load of the class
it belongs to as this metric. This represents how far two
probability distributions are from each other: the greater
the metric the higher the modelling error. Therefore, to
find a sufficient number of states to model a class, we sum
the areas for all homes within that class and study this as a
function of the number of states in the model (Figures 3, 4,
and 5). We define the knee or corner point of this curve as
the minimal number of states of the corresponding Markov
model. Table 4 summarizes how many states should be used
for each class and for each period.

Thus, for example, a 5-state Markov model is a good rep-
resentative of the on-peak load of the second class. It is
defined by the following Q and R matrices3:

Q =


−0.2704 0.0141 0.0684 0.0763 0.1116
0.0114 −0.1336 0.0436 0.0513 0.0273
0.0146 0.0103 −0.0626 0.0097 0.0279
0.1186 0.0711 0.0833 −0.3029 0.0298
0.0239 0.0493 0.0650 0.0183 −0.1565


R =

[
2720 878 325 4649 1503

]
To sum up, we have shown how to derive a Markovian

reference model per class and per time period. We have also
provided the Q and R matrices for each reference model. We
now validate the representativeness of our reference models.

6. VALIDATION
Validating the representativeness of our reference models

raises some subtle issues. Every model intentionally ignores
certain aspects of reality. In this sense, no model is truly
representative of reality. To avoid this inherent limitation of
modelling, we remind the reader of the purpose of our mod-
els, which is primarily for sizing transformers in the distribu-
tion grid. We therefore claim that a model is representative
if the transformer size computed using the model matches
that computed using the raw measurements of home loads.

To this end, we start with home loads measured from 20
houses over a week. We divide the measured home loads
into two disjoint data sets, training and test. The training
data set is used to construct the reference models, whereas
the test data set contains the raw home load measurements
that are used in the validation process. We use our ref-
erence models to compute the transformer size required to
achieve a loss of load probability of 2.74 × 10−4, which is
the standard used in industry, using teletraffic theory [7],
as described in [2]. Then, using this same transformer size,
we run a numerical simulation using the raw measurements
as the input and compute the total duration of overload,
which is a numerical estimate of the loss of load probability.

3The matrices for the other 11 models are available on http:
//blizzard.cs.uwaterloo.ca/~oardakan/models.

http://blizzard.cs.uwaterloo.ca/~oardakan/models
http://blizzard.cs.uwaterloo.ca/~oardakan/models
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Figure 3: The goodness of fit metric versus the number of states for the on-peak period of classes 1, 2, and
4. Due to lack of space, the curve for class 3 is omitted. Note that the Y axis is exaggerated for emphasis.

1 2 3 4 5 6 7 8 9 10
400

600

800

1000

1200

1400

Number of states

A
re
a

1 2 3 4 5 6 7 8 9 10
500

800

1100

1400

1700

2000

Number of states

A
re
a

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

Number of states

A
re
a

Figure 4: The goodness of fit metric versus the number of states for the mid-peak period of classes 1, 2, and
4. Due to lack of space, the curve for class 3 is omitted. Note that the Y axis is exaggerated for emphasis.
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Figure 5: The goodness of fit metric versus the number of states for the off-peak period of classes 1, 2, and
4. Due to lack of space, the curve for class 3 is omitted. Note that the Y axis is exaggerated for emphasis.



Observed (seconds) Expected (seconds)
On-peak period 0 55.2
Mid-peak period 0 41.4
Off-peak period 0 69.1

Table 5: Comparison of loss durations observed in
numerical simulation and expected from the tele-
traffic theory.
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Figure 6: On-peak load measured from a house in
class 1

This is done simply by summing the actual measured load
from each home at each time instant and checking if this
sum exceeds the transformer sizing. If our models are rep-
resentative, then the probability of overflow computed using
teletraffic theory should be an upper bound on the numerical
estimate. Table 5 shows the results, indicating that our ref-
erence models are representative, at least for the purpose of
transformer sizing in the electrical grid. This result, though
positive, does not give a good ‘feel’ for our models. A less
analytical, but still useful, validation is by visual inspection.
Figure 6 shows actual measurements of on-peak loads of a
home in class 1 obtained from the test data set. We see that
it is similar to the on-peak home load generated from the
on-peak model of class 1 (Figure 7). This was true for all of
our other models as well.

7. CONCLUSION
This paper reports very encouraging preliminary results

on load modelling. Using an existing classification, we derive
per class k-state Markovian reference models for different
periods of the day. We show that none of these models need
more than 6 states. We also show that these models are
accurate enough for transformer sizing in the distribution
network.
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