
Fast and Optimal Scheduling Over Multiple Network
Interfaces

Matei A. Zaharia
Computer Science Division, Dept. of EECS

University of California, Berkeley
matei@berkeley.edu

Srinivasan Keshav
David R. Cheriton School of Computer Science

University of Waterloo
keshav@cs.uwaterloo.ca

ABSTRACT
Today’s mobile phones already contain two or more network
interfaces (NICs) and future devices are likely to have sev-
eral more, each with different energy costs, dollar costs, and
data transmission capacities [23]. Given a mobile device that
is running multiple data-oriented applications, such as email,
instant messenger, and video download, some of which may
be delay-tolerant, it becomes necessary to assign, to each
unit of application data, the network interface and the time of
transmission that maximizes user satisfaction. This schedul-
ing algorithm must take into account not only user, applica-
tion, and NIC characteristics, but also future opportunistic
availability of NICs due to device mobility.

In this paper, we begin by showing that naive schedul-
ing approaches can be far from optimal. We then show that
although optimal schedules can be found using either lin-
ear programming or network flow, these classical approaches
are infeasible in CPU- and memory-constrained mobile de-
vices. This motivates our novel hill-climbing approach that
exploits problem structure to optimally schedule application
messages over multiple NICs assuming perfect knowledge
of future connectivity. We prove mathematically that our al-
gorithm is correct.

Detailed performance measurements show that our algo-
rithm finds optimal solutions 10-100 times faster than the
simplex method and network flow. We also describe an im-
plementation of our solution in a J2ME-based scheduler that
runs on laptops, smartphones and PDAs, demonstrating its
effectiveness in a realistic setting.

1. INTRODUCTION
Today’s mobile phones already contain two or more

network interface cards (NICs), and future devices are

likely to have several more, each with different energy
costs, dollar costs, and data transmission capacities [23].
Different NICs may differ in these attributes by several
orders of magnitude; for instance, a WiFi NIC oper-
ating at 54 Mbps is nearly four orders of magnitude
faster than a GPRS NIC at 8 Kbps, and the cost per
bit for WiFi can be four orders of magnitude lower
than the cost per bit for GPRS. Moreover, such mo-
bile devices are not single-purpose voice terminals, as
was common in the past, but run multiple applications
including email, interactive text messaging, and video
download. Given that each application generates and
consumes data with different tolerance for delays, and
given that the device user may wish to optimize one
of several objective functions, such as minimizing dol-
lar cost, maximizing battery life, or maximizing perfor-
mance, a scheduling algorithm assigns each unit of ap-
plication data to the right network interface, and at the
right time, to maximize user satisfaction. This schedul-
ing problem is complex because it must take into ac-
count not only user, application, and NIC characteris-
tics, but also future availability of NICs due to mobility.

For example, consider a user who is currently only
served by an expensive, low-bandwidth cellular data
provider (a NIC characteristic), but who is willing to
delay sending a non-urgent email message for up to
an hour (an application characteristic) if this will save
money (a user requirement). This user requirement can
be met by exploiting the user’s mobility pattern. Specif-
ically, the email could be sent using a much cheaper
802.11 hotspot that comes into range within the next
hour. One can easily imagine more complicated scenar-
ios, where competing requirements of interactive and
bulk data applications need to be satisfied while deal-
ing with intermittent connectivity on each of multiple
interfaces.

Today, to accomplish even the relatively straightfor-
ward requirement in our example, the user must man-
age connectivity manually, by choosing when to run
specific applications, and on which NIC, while simulta-
neously keeping track of NIC availability and predicting
mobility. “Smart” devices are anything but: the smarts

must come from a human. With a proliferation of ap-
plications, networks, and communication opportunities,
this is neither convenient nor practicable, and the prob-
lem is only likely to get worse over time.

We therefore present an algorithm and system to au-
tomatically and non-intrusively schedule transmissions
over multiple, intermittently available network inter-
faces. Our overall solution has two complementary as-
pects. First, we build a simple mathematical model and
use it to obtain a provably correct and optimal schedul-
ing algorithm. Second, we implement this algorithm on
two mobile devices, and evaluate our solution in some
plausible mobility scenarios.

In the remainder of this section, we first introduce
goals for scheduling systems and describe the context of
our implementation. We then formalize the scheduling
problem mathematically, and present two features of
problem structure that let us solve it efficiently. Finally,
we provide a roadmap for the rest of the paper.

1.1 Goals
We believe that an ideal scheduler for mobile devices

should meet the following goals:

1. Autonomic operation: A user should only need
to specify objectives, such as “I want to send this
email urgently” or “I want to download this movie
by tonight.” The scheduler should then schedule
data transfer appropriately to accomplish the user’s
goals at the least dollar and energy cost. The
scheduling decision must take into account widely
varying application requirements as well as the ex-
pected mobility pattern of the user, so that it can
exploit future connection opportunities to send delay-
tolerant messages. Moreover, message importance,
message urgency, and NIC costs must be take into
account in scheduling transmissions.

2. Optimality: The scheduler should maximize the
user’s utility. For example, messages should not
be delayed unnecessarily. Similarly, when multiple
NICs are available, they should be used in parallel,
as long as this does not incur an excessive cost.

3. Suitable for mobile devices: The algorithm
should be simple enough to be implementable on a
CPU- and memory-constrained mobile device. In
practical terms, we would like a solution to the
scheduling problem to not take more than a sec-
ond of CPU time even on a CPU-constrained mo-
bile device, so that we can efficiently recompute
schedules when connection opportunities arise.

In this paper, we present an algorithm and system
that substantially meets these goals. We compute a
provably optimal schedule assuming future connectivity
on each NIC is precisely known, and assuming that each

NIC is associated with a constant service rate. Even
in this restricted setting, we demonstrate that naive
greedy algorithms can have as little as half the per-
formance of the optimal solution. Moreover, we show
that classical optimization techniques are too resource-
intensive to run on mobile devices. Instead, our algo-
rithm exploits problem structure to find optimal sched-
ules 10-100 times faster than classical techniques. Our
solution can be easily extended to allow re-scheduling
when new user data, or new connection opportunities,
arise. It also provides insights into the form of the gen-
eral solution.

Note that in the subsequent discussion, we only dis-
cuss the scheduling problem in the device-to-proxy di-
rection. A symmetric problem exists in the reverse di-
rection as well. While we do not explicitly present a so-
lution here due to limitations of space, our approach is
to use an always-on cellphone-NIC-based control chan-
nel between the device and proxy to let the device tell
the proxy which interfaces it has (or expects to have)
available, its utility functions and its NIC costs. This
allows the proxy to compute an optimal transmission
schedule, which it informs the device about, also on the
control channel. The device then uses this schedule to
block off reception slots on each NIC, treating them
as if they were NIC downtimes from the perspective of
uplink scheduling.

1.2 Limitations
A word about our assumptions. Although our as-

sumption of known future connectivity is strong, we
believe that it is acceptable, for the following reasons.
First, previous research has shown that mobile users
have surprisingly predictable schedules [17], implying
that past history and current location can lead to good
predictions. Second, even when there is uncertainty
about future connectivity, our algorithms can still make
useful decisions based on a pessimistic NIC-availability
schedule. Third, it is easy to detect when a user (or
NIC) is not following the predicted schedule, and this
can be used to trigger rescheduling of messages accord-
ing to an updated future outlook. Fourth, as we demon-
strate, even scheduling based on known future connec-
tivity is challenging, due to the limited computational
resources of mobile devices. Finally, our work provides
insights into how to schedule with uncertainty using
stochastic optimization.

Our assumption that each NIC has a fixed service
rate is also plausible. To begin with, wireless WAN
NICs are likely to be the bottleneck in any typical end-
to-end transport path. For instance, an EDGE NIC has
a data rate of only about 25 kbps in practice, which is
smaller than the capacity of a typical end-to-end Inter-
net paths[1]. Therefore, when the EDGE NIC is avail-
able, we can assume that the device gets a constant

service rate of 25 kbps. This assumption is less defensi-
ble for WLAN (802.11) NICs. First, the capacity of an
802.11 NIC depends on the signal to noise level, and,
due to auto-rate fallback, the capacity of the link may
vary from 6 Mbps to 54 Mbps. Second, typical 802.11
rates are much higher than the capacity of typical end-
to-end Internet paths. Hence, the actual rate seen by a
device will depend on the degree of contention on the
wired backbone, which can vary widely. Third, a single
802.11 NIC may be in range of multiple access points,
which may each provide a different service rate. Fi-
nally, the 802.11 DCF algorithm shares capacity fairly,
and at a fine-grained time scale, with other contending
devices. This changes the capacity of the NIC in an
unpredictable manner.

Nevertheless, we feel that a constant rate assump-
tion is a necessary first step in modeling this complex
problem. Besides, we can model each 802.11 AP as a
separate virtual NIC, which can reduce the variability
associate with different APs 1. Finally, as we discuss
in the next subsection, in our prototype, and indeed in
most practical wireless systems today, all communica-
tion from a mobile device to the wired network goes
through a proxy that isolates device disconnection and
mobility from legacy servers [24]. Therefore, the device
need only periodically estimate the service capacity on
a path to this proxy from each NIC. Given that we ex-
pect this path have substantially less variability than
a generic Internet path, the constant rate assumption
seems reasonable even for 802.11 NICs.

1.3 Implementation Context
Our scheduling algorithm is suitable for all multi-NIC

mobile devices. However, for the purpose of evaluating
a real system, we chose to implement our algorithm in
the context of the Opportunistic Communication Man-
agement Protocol (OCMP) implementation [15]. Be-
sides being freely available and open source, this sys-
tem provides an API to let applications take advantage
of multiple interfaces in accordance with user policies.
Moreover, it allows arbitrary scheduling policies to be
‘plugged in’ to the system. To inter-operate with legacy
applications, which cannot deal with multiple, poten-
tially disconnected paths from a single mobile, OCMP
supports a proxy that lies on every data path, hiding
device disconnections from legacy applications. The
publicly available version of the system has a simplistic
scheduler that assumes that all applications have the
same utility function. We extended OCMP to address
a more general usage environment. Additional details
of our implementation are in Section 8.

Note that in the subsequent discussion, we only dis-
cuss the scheduling problem in the device-to-proxy di-

1This also allows us to model the fact that different hotspot
providers may have different pricing schemes.

rection. A symmetric problem exists in the reverse di-
rection as well. While we do not explicitly present a
solution here due to limitations of space, our approach
is to use OCMP’s always-on cellphone-NIC-based con-
trol channel between the device and proxy to let the
device tell the proxy which interfaces it has (or expects
to have) available, its utility functions and its NIC costs.
This allows the proxy to compute an optimal transmis-
sion schedule, which it informs the device about, also on
the control channel. The device then uses this schedule
to block off reception slots on each NIC, treating them
as if they were NIC downtimes from the perspective of
uplink scheduling.

1.4 Mathematical Model
We now model the scheduling problem to make it an-

alytically tractable. We assume that all messages are
fragmented into fixed-size bundles, and split the periods
of predicted uptime of each NIC into time slots, each of
duration equal to the time it takes to transmit a bun-
dle over that interface. We categorize messages into
several service classes, each with a utility function that
decreases over time. This function represents user re-
quirements in the form of “time value of data”, that is,
how much more beneficial it is to send a message sooner
rather than later. This notion of a time/utility function
(TUF) was introduced by Jensen in real-time schedul-
ing [6] and there exists a substantial body of literature
dealing with how to choose these time/utility functions
for practical situations such as [7, 13, 10]. Finally, we
assign costs for sending a bundle of each class on each
interface. These costs represent a weighted combination
of the dollar cost and energy cost2 to send a bundle on
each NIC.

The scheduling problem at any moment in time then
reduces to mapping a set of bundles to future time slots
so as to maximize total utility. The utility of a schedule
is the sum of the utilities of each bundle at the time it
was sent, minus the sum of the costs incurred. Note that
total utility is independent of the order of transmission
of bundles of the same class; in practice, they should be
sent in FIFO order.

We observe that our model assigns utility to each
bundle, not each application-level message. This mod-
eling allows us to send portions of a message at different
times and to stripe bundles from the same message over
multiple NICs. We realize that in some cases users may
gain no utility from a fraction of a message. Neverthe-
less:

• Applications where complete messages must be sent
often have messages that fit into one bundle (∼8KB).
This includes most email and instant messages.

2We realize that, due to power control, the energy cost to
send a bundle on a NIC may vary with distance from the
base station. However, for tractability, we ignore this detail.

• Some data formats are progressive, so having even
the first few bundles provides utility. For exam-
ple, JPEG and GIF images often begin with data
that allows a low-quality version of the image to
be displayed while the rest is loaded.

• Scheduling arbitrary-length messages over even a
single interface is equivalent to Karp’s MAX-JOB-
SEQUENCING problem, which is NP-hard [8]. So,
this assumption makes the problem tractable.

We use the following notation:

Symbol Meaning
K Number of service classes.
L Number of NICs.
N Number of bundles.
Ni Number of bundles of class i.
T Number of time slots.
Tj Number of time slots on NIC j.
tj,k Time of k’th slot on NIC j.
ui(t) Utility of a bundle of class i at time t.
ci,j Cost of a bundle of class i on NIC j.
U(S) Utility of schedule S.
NB(S, i) Number of bundles of class i sent by S.
NS(S, j) Number of bundles sent by S on NIC j.

1.5 Exploiting Problem Structure
We now make two observations about problem struc-

ture. First, in practice, it is almost always true that in-
terface costs are class-independent, that is, ci,j is some
value Cj dependent only on j. This is a reasonable
assumption because energy and dollar cost of bundles
ought to depend only on the size of the bundles.

Second, we assume that the ui’s are decreasing, with
rates of decrease that are consistently ordered. This
means that the relative urgency of each class remains
constant during the scheduling problem, so bundles that
are losing utility quickly “now” will continue to lose
utility quickly in the future. Formally, if we number
the classes 1, 2, ...,K in order of urgency, then at any
time t, we require u′1(t) ≤ u′2(t) ≤ · · · ≤ u′K(t) ≤ 0.
This restriction still allows for a wide variety of utility
functions. In particular, it allows for the intuitively
appealing linear utility functions ui(t) = ai−bit, where
ai corresponds to the importance and bi to the urgency
of class i.

We observe that given arbitrary utility functions, we
can always split time into discrete time periods such
that in each time period, the ordering restriction ap-
plies. This allows us to generalize our solution to nearly
arbitrary monotone non-increasing utility functions. In
this work, we do not elaborate further on this concep-
tually straightforward generalization.

1.6 Roadmap
We begin by surveying related work in Section 2. We

then show in Section 3 that simple greedy approaches to
the scheduling problem can be far from optimal. In Sec-
tion 4, we describe how optimal schedules can be found
using linear programming or network flow, but show
that these classical approaches are infeasible on CPU-
and memory-constrained mobile devices. We then in-
troduce our hill-climbing algorithm in Section 5, and
prove that it is correct. Although our algorithm is
static, we explain how it can be adapted to incremen-
tally update schedules as new bundles become available,
reducing the work per new bundle, in Section 7. Section
8 describes an implementation of our solution in J2ME
and in Section 9 we evaluate its performance. Section
10 concludes the paper.

2. RELATED WORK
To our knowledge, the importance of multi-NIC de-

vices was first articulated by Bahl et al [3]. However, in
the literature, the presence of multiple radios has been
exploited mainly for reducing overall power usage, such
as by using the Wake-on-Wireless technique [16], with
a few exceptions, as noted next.

Our use of multiple wireless interfaces, potentially
in parallel, is similar in spirit to pTCP [5]. Unlike
pTCP, which assumes an underlying TCP connection,
we use OCMP, which provides seamless connectivity at
the session layer and can operate over arbitrary trans-
port layers. Moreover, unlike pTCP, we have built, de-
ployed and evaluated the performance of the system in
a testbed, instead of relying only on simulations.

Policy-based selection of network interfaces was first
introduced in [21], and has since been extensively ex-
plored in the context of vertical handoffs [22, 12]. The
problem was motivated by the desire to choose the net-
work that optimizes metrics such as data rates or power
consumption in the long term, while preserving seam-
less connectivity. This formulation, however, assumes
that only one NIC is used at any time, and does not
attempt to maximize user utility by exploiting a user’s
tolerance of delays for certain applications.

Optimal and opportunistic scheduling over multiple
channels has been well-studied in the context of cellular
networks (see [2] for a survey). This body of work stud-
ies the problem of assigning messages to time-varying
cellular channels to maximize performance, while simul-
taneously providing long-term fairness among compet-
ing mobile devices. This approach differs from ours in
three ways. First, we study the scheduling problem
at a device, not at the base station. Second, we do
not assume that all applications have the same utility
function, such as throughput maximization. Third, our
scheduler operates on the time scale of minutes to hours,
instead of at the time scale of milliseconds to seconds,

as in the cellular network. This makes our work neces-
sarily more complex.

Intelligent selection of network interfaces with session
persistence is also being explored in the Haggle project
[14]. However, Haggle is focused on infrastructure-less
systems where devices communicate with each other in
an ad-hoc manner. Further, the scheduling decisions
made by Haggle’s Resource Manager do not take into
account future connectivity patterns, as we do.

Scheduling to maximize a sum of time/utility func-
tions (TUFs) for a set of tasks has also been studied in
the context of realtime embedded systems [13]. Typi-
cally such systems must schedule processes of different
lengths of time using shared resources (CPU’s and po-
tentially other devices). Our problem setting differs in
three ways. First, we have two orders of magnitude
more items to schedule - we are scheduling 1000-10000
bundles instead of 10-100 processes. Therefore, we re-
quire an algorithm that is nearly linear-time, while the
majority of realtime scheduling algorithms are asymp-
totically slower. Second, time slots on network inter-
faces differ from time on a shared processor because
using each slot has an associated cost. This funda-
mental aspect of the problem is what makes it possible
to gain utility by delaying transmission of a message
until a lower-cost interface becomes available. Real-
time scheduling does not model processing costs or the
eventual availability of low-cost processors. Third, we
model NIC unavailability, which is not considered re-
altime scheduling models. For example, we show that
the greedy TUF-driven Ethernet scheduling algorithm
in [20], which is optimal for linear utility functions if
all packets are feasible, can fail to be optimal by an
arbitrarily large factor if the NIC becomes unavailable.

Finally, the use of linear programming and network
flow for optimization is well-known. Our innovation
here is in observing that the NP-hard multi-NIC schedul-
ing ILP can be reduced to an LP by exploiting “total
unimodularity” [11].

3. GREEDY IS SUB-OPTIMAL
At first glance, it might appear that a greedy al-

gorithm can solve the scheduling problem adequately.
However, such algorithms can perform as poorly as a
factor of two worse than the optimal algorithm even
with only a single NIC and even when there are enough
time slots to send all bundles. We show this for three
different greedy algorithms. Note that these greedy al-
gorithms do not take into account the fact that NICs
may become unavailable: the optimal schedule is better
because it takes this into account.

3.1 Highest Utility First (HUF)
Given a set of bundles with differing utilities, a natu-

ral greedy algorithm is to send the bundle with highest

utility first, with a secondary rule for breaking ties. We
now show that the utility gained from HUF can be as
little as half that of an optimal schedule. Consider two
bundles on a single NIC, where each bundle takes unit
transmission time. Let their utility functions u1 and
u2 respectively be as shown in Figure 1(a)–we define
the utility of a time slot as the value of the time-utility
function at the start of the time slot. With HUF, the
order of transmission is 2,1, so that the total utility of
the schedule is I because the utility of the first bundle
declines to zero by the time it is scheduled. The op-
timal algorithm sends the bundles in the order 1,2, to
get a total utility of I − ε + I − ε, which tends to 2I
as ε → 0. Thus, HUF asymptotically performs half as
well as optimal. The reason is that the Highest Utility
First algorithm does not take into account how bundle
utilities decrease over time and fails to send bundle 1
first, even though it could be sent ahead of the more
delay-tolerant bundle 2. By noting that at each time
step HUF can erroneously send at most one bundle ear-
lier than necessary, it can be seen that HUF will always
perform at least half as well as the optimal.

3.2 Earliest Deadline First (EDF)
A natural way to take delay-tolerance into account is

to send the bundles in order of their deadlines (the time
when they reach 0 utility). Again, this fails to be opti-
mal even over a single NIC. To see this, consider Figure
1(b), where the shaded area represents a time period
when the NIC is unavailable. EDF would send bundle
1 at time 0, and gain utility J. The second bundle can-
not be sent, leading to a total utility of J. In contrast,
the optimal schedule is to send bundle 2 and gain utility
I. The relative performance of EDF is J/I, which can
be made arbitrarily small. The reason is that the Earli-
est Deadline First algorithm does not take into account
the fact that bundles with early deadlines with small
utilities may force out bundles with higher utilities but
later deadlines.

3.3 Most Urgent First
These observations motivate a third algorithm: send

bundles in order of rate of decrease of their utility func-
tions (urgency), with rules to drop bundles that can-
not be sent before reaching 0 utility, and to choose
the highest-utility bundles when fewer slots than bun-
dles are available. This is the essential idea behind the
TUF-driven single-NIC Ethernet scheduling algorithm
in [20], which sorts the packets to be sent by urgency
and performs local modifications on the sorted list to
remove infeasible packets and reorder the others to in-
crease utility. Although this algorithm is optimal for
linear utility functions when the NIC is continuously
available, it can be arbitrarily worse than the optimal
algorithm when interfaces can become unavailable. For

time

utility

u1

u2I
I-epsilon

time

utility

u1

u2

I

J

1 2

(a) (b)

time

utility

u1

u2

I

J

1 2

(c)

31 2

slope = -epsilon

1

Figure 1: Utility functions for examples showing why greedy approaches can perform poorly.

example, consider the two bundles in Figure 1(c). Both
bundles can be sent before their deadline, so the MUF
algorithm will prune neither one. Bundle 1 is more ur-
gent than bundle 2, so MUF sends it first. When the
NIC becomes available again, bundle 2’s utility has de-
clined to 1, so the total utility from the MUF schedule
is J+1. In contrast, the optimal schedule would drop
bundle 1, and only send bundle 2, for a utility of I.
The ratio of the two utilities is (J + 1)/I, which can be
made arbitrarily small (note that we can make the NIC
downtime as long as needed to ensure that not matter
how large I is, by the time bundle 2 is sent, its utility
has declined to 1).

We have just shown that all three greedy algorithms
can perform poorly, as compared to an optimal algo-
rithm, even with just two bundles and a single NIC. Two
of the greedy algorithms perform arbitrarily worse, and
one performs as much as two times worse, compared to
an optimal scheduler.

If there are more bundles than available time slots
and more than one NIC, the problem becomes more
complicated. Heuristics such as “drop bundles of the
least important class” fail to work - there are situations
in which an optimal algorithm would both send and
drop bundles from every class. For example, consider
the three utility functions u1(t) = 20− 2t, u2(t) = 23−
4t, and u3(t) = 24 − 6t. At time t = 0, u3 is highest.
At t = 1, u2 is highest. And at t = 2, u1 is highest.
Therefore, if we had three time slots, at times 0, 1, and
2, and two bundles of each class, we would have to send
one bundle and drop one bundle from each class. No
simple rule tells us which bundles to send and which to
drop.

Multiple NICs complicate the problem even further.
How should a greedy algorithm decide when to postpone
a bundle transmission and send it later over a lower-cost
NIC, and which bundles should be thus postponed? In

general, we may want to use some number of slots on
each NIC, depending on when these slots are available
and what the costs of the NICs are. This motivates the
need for a more sophisticated scheduling algorithm, as
described next.

4. CLASSICAL OPTIMIZATION
Given that greedy approaches have problems, one so-

lution is to look for an optimal solution using classi-
cal optimization. We show first that linear program-
ming does, indeed, find the optimal solution. Then, we
demonstrate that, unfortunately, that LP solvers can-
not be used in current mobile devices with limited mem-
ory and CPU resources. This motivates our work on fast
and small-footprint optimal scheduling algorithms.

4.1 Linear Programming
We can always optimally assign a service class to each

time slot with the followng “brute force” integer pro-
gram, P :

Maximize:
K∑

i=1

L∑
j=1

Tj∑
k=1

(ui(tj,k)− ci,j)xi,j,k

Subject to:
K∑

i=1

xi,j,k ≤ 1 ∀j, k

L∑
j=1

Tj∑
k=1

xi,j,k ≤ Ni ∀i

xi,j,k ≥ 0 ∀i, j, k
xi,j,k integer ∀i, j, k
xi,j,k = 0 ∀k s.t. NIC j is unavailable

The variable xi,j,k represents whether to send a bun-

dle of class i in time slot k on interface j. Each xi,j,k can
only be 0 or 1, from the second and third constraints.
The first constraint ensures that no more than one bun-
dle is sent during each slot, and the second constraint
ensures that no more than Ni bundles of class i are
sent. The last constraint prevents transmission on an
unavailable NIC.

We are now in a position to state our first main result:
although integer programming is NP-complete, P can
be solved using linear programming, by the following
result:

Theorem 1. The vertices of the feasible region of P
all have integer coordinates.

Proof. Notice that this feasible region is of the form
“x ≥ 0 and Ax ≤ b” where x is a vector containing
the variables xi,j,k and Ax ≤ b represents the con-
straints

∑K
i=1 xi,j,k ≤ 1 and

∑L
j=1

∑Tj

k=1 xi,j,k ≤ Ni.
The matrix A contains only 0’s and 1’s, and each col-
umn of A (which corresponds to the coefficients for
some particular variable xi,j,t in the inequalities) con-
tains exactly two 1’s (one in

∑K
i=1 xi,j,k ≤ 1 and one in∑L

j=1

∑Tj

k=1 xi,j,k ≤ Ni). Furthermore, the rows of A
can be partitioned into two sets such that each column
has exactly one 1 in each set (separate the

∑K
i=1 xi,j,k ≤

1 rows from the
∑L

j=1

∑Tj

k=1 xi,j,k ≤ Ni rows). Finally,
the vector b contains only integers. Thus, by Theorem
13.2 in [11], the matrix A is totally unimodular and the
polytope defined by Ax ≤ b and x ≥ 0 has vertices only
at integer coordinates.

Therefore, we can solve P using any linear program-
ming algorithm that returns a vertex of the feasible re-
gion, such as the simplex method [11], to obtain an
optimal schedule.

4.2 Network Flow
Scheduling is a matching problem, where bundles must

be matched to time slots, so it can also be solved us-
ing min-cost flow. Unlike linear programming, a flow
formulation lets us specify that bundles from the same
class are equivalent, and therefore solves the problem
more efficiently.

Scheduling can be formulated as a min-cost flow prob-
lem as shown in Figure 2. This graph has:

• A source vertex, Src and a sink, Snk.

• A vertex Vi for each class i.

• A vertex Wj,k for each time slot k under consider-
ation3 on each interface j.

and the following edges:
3If there are a total of N bundles, we need to schedule at
most N timeslots on each interface.

Figure 2: Flow network for scheduling.

• An edge with capacity Ni and cost 0 from Src to
Vi.

• An edge with capacity 1 and cost 0 from Wj,k to
Snk.

• An edge with capacity 1 and cost −(ui(tj,k)− ci,j)
from each Vi to each Wj,k.

• An edge with capacity ∞ and cost 0 from each Vi

to Snk (for dropping bundles).

Figure 2 shows an example flow network two classes
and 4 time slots. Edges are labeled with their capacities.

Taking the edge Vi → Wj,k represents assigning a
bundle of class i to time slot k on interface j and con-
tributes minus the utility of this assignment to the to-
tal cost. Taking an edge Vi → Snk corresponds to
dropping a bundle of class i. The edge capacities en-
sure that no two bundles are assigned to the same time
slot and no more than Ni bundles of class i are sent.
Thus a min-cost flow on this network corresponds to a
maximum-utility schedule.

4.3 Performance Evaluation
We tested the LP and flow approaches on a high-

performance SGI Altix 3700 computation server with
64 1.4 GHz Intel Itanium2 CPU’s, using the state-of-
the-art CPLEX linear programming package [25] and
CS2 network flow solver [4]. We measured their run-
ning times on randomly generated problem instances of
various sizes.

Here, we present average running times for 5000-bundle
problems with various numbers of service classes and
NICs. More detailed results are deferred to Section 9.1:
the point we want to make here is that even on power-
ful servers, classical approaches are unacceptably slow
for typical problem sizes. Note that our problem size
is realistic: For example, if bundles are 4 KB in size,
then 5000 bundles correspond to 20 MB of data, the
size of approximately 8 songs, 5 minutes of video, or 50
photographs.

Problem Size CPLEX (s) CS2 (s)
K = 5, L = 2, N = 5000 1.39 0.42
K = 5, L = 5, N = 5000 3.08 1.13
K = 10, L = 2, N = 5000 1.94 0.50
K = 10, L = 5, N = 5000 4.72 1.19

Both algorithms require at least 400 ms to compute a
schedule, even using state-of-the-art software on a high-
end machine. This is too slow to enable a mobile device
to reschedule bundles in real time when a new message
is submitted to the scheduler. Furthermore, implement-
ing these algorithms on a CPU- and memory-limited de-
vice, such as a cell phone, would result in significantly
worse performance.

Intuitively, the problem is that the classical optimiza-
tion algorithms must work with a large number of vari-
ables: KLT variables xi,j,k in a linear program, or
KL edges in a flow network. Our algorithm, presented
next, exploits problem structure to drastically reduce
the number of variables to consider.

5. HILL-CLIMBING APPROACH
We obtain a more efficient algorithm by restricting

our attention to a smaller class of schedules that we
call simple schedules. Our algorithm searches through
the space of simple schedules using hill-climbing.

We present our algorithm in four parts. First, we
describe simple schedules, in Section 5.1. An important
characteristic of simple schedules is that their utility
can be evaluated efficiently, as described in Section 5.2.
We present the hill-climbing algorithm itself in Section
5.3. Finally, prove its correctness in Section 5.4.

5.1 Simple Schedules
Simple schedules are defined based on two observa-

tions about what characterizes a “good” schedule.
Our first observation is that it is never beneficial to

leave a time slot empty on some interface, then use a
later time slot on the same NIC. This is because utilities
never increase over time, so any schedule that leaves an
early slot empty and sends some bundle b during a later
slot can be improved by moving b to the earlier slot.

Recall that we made two assumptions about the prob-
lem parameters in Section 1.5, based on the problem
structure: bundle transmission costs are class-independent,
and rates of decrease of utility functions are consistently
ordered (relative urgencies of bundles remain constant).
These assumptions lead to our second observation: it is
never beneficial to send a less urgent bundle before a
more urgent bundle. This might seem counterintuitive
at first: it may appear that total utility of each bun-
dle, not just its rate of decrease, should be a factor in
selecting which to send first. However, recall that we
seek to optimize the total utility of the schedule, not
just the utility of the next action. Informally, by de-

tj1

tj2

t1

t2

i1

i2

u1(t1)

u2(t2)

Total utility = u1(t1) + u2(t2)

tj1

tj2

t1

t2

i2

i1

u2(t1)

u1(t2)

Total utility = u2(t1) + u1(t2)

Gain in utility = (u2(t1) - u2(t2)) + (u1(t1) -u1(t2)), which is
positive because u2 is more urgent than u1

Figure 3: Simplifying a schedule - sending a
more urgent bundle earlier is always beneficial.

laying a more urgent bundle, we are losing more utility
than by delaying a less urgent bundle, so more urgent
bundles should always be sent first.

To illustrate this point formally, suppose that in some
schedule S, there was a bundle of class i1 being sent on
interface j1 at time t1, and a bundle of class i2 < i1
(a class more urgent than i1) being sent on interface
j2 at time t2 > t1 (Figure 3). Then one can improve
total utility by swapping these two bundles: Send the
bundle of class i2 earlier, over interface j1 at time t1,
and send the bundle of class i1 later, over interface j2
at time t2. Since the utility functions are ordered so
u′i1(t) ≤ u′i2(t) at every time t, the bundle of class i1
loses u1(t2)−u1(t1) utility when moved from time t1 to
t2, but the bundle of class i2 gains u2(t1)−u2(t1) utility
by being sent earlier, which is a larger quantity than the
utility lost. (Transmission costs are the same in either
case, because NIC costs are class-independent.)

Definition 1. A schedule S is simple if the follow-
ing conditions are satisfied:

• For each interface j and each slot number k, if S
transmits a bundle in slot k on interface j, then
it transmits bundles in slots 1 through k − 1 on
interface j as well.

• For any two classes i1 < i2, all bundles of class i1
are transmitted before any bundle of class i2.

That is, there are no unused slots followed by non-
empty slots on each NIC, and the bundles are transmit-
ted in order of urgency.

5.1.1 Uniqueness of Simple Schedules

We observe that every simple schedule S is specified
uniquely by two sets of values:

• The number of bundles it sends of each class i,
NB(S, i).

• The number of slots it uses on each NIC j, NS(S, j).

If these sets of values are given, then we can construct
the schedule by taking the first NS(S, j) time slots from
each interface j, sorting all of them in order of time,
then assigning the bundles of class 1 to the first NB(S, 1)
slots, the bundles of class 2 to the next NB(S, 2) slots,
etc. This gives a unique schedule with these values of
NB and NS that ensures that no slot is skipped and
no bundle is sent before a more urgent bundle, so this
schedule must be S.4

Consequently, we will represent every simple schedule
S as two vectors of integers, NB(S, i)|Ki=1 and NS(S, j)|Lj=1.

5.1.2 Simplification
Any non-simple schedule can be converted to a simple

schedule by reordering its bundles. We call this proce-
dure simplification. As we shall see, the simplification
of a schedule always has utility at least as high as the
original schedule. An immediate consequence of this is
that there exists an optimal schedule which is simple.
These results let us design an algorithm which operates
only on simple schedules, but finds a globally optimal
schedule. We first present the mathematics of simplifi-
cation. We conclude this subsection with a discussion
about the significance of simple schedules.

Definition 2. The simplification of a schedule S is
the unique simple schedule σ(S) where NB(σ(S), i) =
NB(S, i) for all i and NS(σ(S), j) = NS(S, j) for all j.

Theorem 2. For any schedule S, U(σ(S)) ≥ U(S).

Proof. S can be converted to a simple schedule while
keeping NB(S, i) and NS(S, j) constant and never de-
creasing U(S) through the following process:

1. While there is an unused slot followed by a used
slot on some interface j, move the last bundle sent
on j to the first unused slot.

2. While there are bundles of classes i1 and i2 with
i1 < i2 on some interfaces j1, j2 such that a bundle
of class i2 is being sent earlier than one of class i1,
swap their positions in the schedule.

4This procedure may be ambiguous when two slots on dif-
ferent interfaces occur at the same time. In practice, using
a well-known optimization technique, we perturb the slot
times in the inputs by very small random values without
changing the form of the solution, to ensure that this never
happens [11].

Figure 4: Figure illustrating the complexity of
simple schedules

The first step terminates because it moves each bundle
on an interface at most once (when it is the last bundle
sent on that interface). The second step terminates
because it reduces the number of “inversions” (bundles
being sent in the wrong order of urgency) at each step,
and this number is finite to begin with and can never
be below 0. The resulting schedule is simple (since the
two steps can no longer be performed), and NB(S, i)
and NS(S, j) have been kept constant, so it is σ(S).
Finally, neither of these steps reduces utility, as argued
in the observations earlier, so U(σ(S)) ≥ U(S).

Corollary 1. There exists an optimal schedule which
is simple.

Proof. Let O be any optimal schedule. Then σ(O)
is simple and U(σ(O)) ≥ U(O), so σ(O) is optimal.

5.1.3 Discussion
The results in this section mean that, to choose an

optimal schedule, it suffices to select K + L numbers:
the number of bundles to send from each class, NB(S, i),
and the number of slots to use on each interface, NS(S, j).
Subsequently, the optimal order for the bundles is pre-
determined - it must be the unique simple schedule with
these values of NS and NB.

At first, this might appear counterintuitive, because
selecting numbers NB(S, i) and NS(S, j) seems to be a
relatively simple problem. However, two factors make
selection of these numbers difficult:

First, because each interface has an uptime schedule
that may include gaps when it is unavailable, choosing
NS(S, j) is equivalent to deciding how many of the in-
tervals of connectivity on interface j to employ. The
fact that the schedule is simple indicates only that the
earliest intervals should be used. For example, consider
the NIC availability schedule shown in Figure 4, where
each white rectangle represents a time slot:

In this schedule, a slow GPRS interface (with long
time slots) is always available. The user begins in a
WiMAX zone, but then moves out of it. She then
enters a second WiMAX zone, and eventually a Wifi
hotspot. In this case, selecting NS(S, 1) is equivalent
to choosing whether, and how much, to use GPRS. For
example, choosing NS(S, 1) = 0 means that GPRS will

not be used. Selecting NS(S, 3) is equivalent to choos-
ing whether to take advantage of the Wifi hotspot: if
bundles must be sent before it, then this number will
be 0. Finally, selecting NS(S, 2) > 2 means that some
bundles will be delayed until the second WiMAX zone.

An optimal schedule may choose NS(S, 1) = 1 (to
send an urgent message), NS(S, 2) = 1 (to send a few
messages earlier on WiMAX), and then NS(S, 3) = 7
(to ignore the second WiMAX zone at the cost of a
small delay, and take advantage of the Wifi hotspot).
Choosing NS(S, j) is equivalent to making these deci-
sions.

Second, selecting NB(S, i) is equivalent to choosing
which messages to drop. Although a simple schedule
dictates which order to send bundles in, deciding which
bundles to send is also important. For example, if the
user is sending an urgent email and streaming video for
a chat with a friend, then as long as there is time to
perform both tasks, video packets should take priority,
because delaying the email by a few seconds is not as
harmful as degrading video quality. However, if there
is only enough bandwidth to send the email, then the
video should be suspended.

In summary, the fact that a schedule is simple is use-
ful only after we have chosen NS and NB. The diffi-
cult decisions a scheduler must make are equivalent to
choosing these numbers.

5.2 Finding the Utility of a Simple Schedule
An important advantage of simple schedules is that

their utilities can be computed efficiently. We can com-
pute utilities in O(KL log2 T) time, with a one-time
O(KLT) precalculation step (or just O(LT) for linear
utility functions). This enables a hill-climbing algo-
rithm to evaluate schedules efficiently.

Recall that we are representing simple schedules as
two vectors, NB and NS. We compute utility of a simple
schedule S from these vectors in two steps:

1. Determine how many bundles of each class i are
sent over each interface j. We call this n[i, j].

2. Compute the utility using the indices of the first
and last slots each class uses on each NIC.

For simplicity, we assume that all time slots occur
at distinct times. This is reasonable because we can
perturb the time of each slot in the input by a small
random amount to ensure that this condition holds.

Computing n[i, j]:
n[i, j] = 0 for all i and j
used[j] = 0 for all j // Slots used so far on NIC j
for i = 1..K do

/* Use binary search to find the time t at which
class i will be finished sending. */
left = 0
right = maxTime // Highest slot time

while true do
t = (left+ right)/2
slots = 0 // Num. of slots usable for i before t
for j = 1..L do

/* Find number of slots on NIC j before time
t. (Can be done by binary search on tj,k.) */
sb = min(countSlotsBefore(t, j),NS(S, j))
newSlotsOn[j] = max(0, sb− used[j])
slots = slots+ newSlotsOn[j]

end for
if slots == NB(S, i) then

for j = 1..L do
used[j] = used[j] + newSlotsOn[j]
n[i, j] = slotsOn[j]

end for
break

else if slots < NB(S, i) then
left = t

else
right = t

end if
end while

end for
This algorithm runs in time O(KL log2 T): there is

a binary search on t to find one of T slot times, and
during each iteration, we perform a binary search on
the times of slot on interface j in countSlotsBefore.

Now, given n[i, j], the utility provided by the bundles
of class i sent on interface j is:

u[i, j] =
n[1,j]+···+n[i,j]∑

k=n[1,j]+...+n[i−1,j]+1

ui(tj,k)− ci,j

This is because the bundles of class i use up time slots
n1,j +· · ·+ni−1,j +1 through n1,j +· · ·+ni,j on interface
j, since they are sent after those of classes 1 . . . i− 1.

This can be computed efficiently with some precalcu-
lation. Let γ[i, j, k] =

∑k
l=1 ui(tj,l) − ci,j (the sum of

utilities, for class i, of the first k time slots on interface
j). Then:

u[i, j] = γ[i, j, n[1, j]+...+n[i, j]]−γ[i, j, n[1, j]+...+n[i−1, j]]

These γ[i, j, k]’s can be precalculated inO(KLT) time,
by scanning through each time slot on interface j and
adding its utility to the sum of the utilities of the pre-
vious time slots.

Thus, we obtain the following O(KL log2 T) algo-
rithm to calculate the utility of a simple schedule:

ComputeUtility(S):
utility = 0
for j = 1..L do
n = 0 // Number of bundles sent on NIC j so far
for i = 1..K do

if n+ n[i, j] > Tj then
return INVALID // Too many bundles on j

end if
utility = utility + γ[i, j, n+ n[i, j]]− γ[i, j, n]
n = n+ n[i, j]

end for
end for
return utility

Note that this algorithm also verifies schedule validity
(a schedule is invalid if it assigns more bundles to an
interface than there are available slots).

If the utility functions are all linear, then the precal-
culation time can be reduced to O(LT). Suppose the
utility function for class i is ui(t) = ai − bit. Then:

γ[i, j, k] =
k∑

l=1

ai − bitj,l − ci,j = k(ai − ci,j)− bi
k∑

l=1

tj,l

Therefore, we can precalculate τ [j, k] =
∑k

l=1 tj,l for
each j and k, and obtain γ[i, j, k] from τ [j, k].

Finally, when the interface uptime schedule has ad-
ditional structure, it may be possible to evaluate the
utility of a simple schedule faster than described here.
For example, if the time slots form some small number
M of contiguous intervals, then we can perform a binary
search over these intervals instead of over all time slots,
which reduces the running time of evaluating a simple
schedule to O(KL log T logM). This case is likely to
occur in practice.

5.3 Hill-Climbing Algorithm
We now present an algorithm for finding an optimal

schedule by hill-climbing in the space of simple sched-
ules, starting from any schedule and improving it by
moving to a “neighboring” schedule with higher utility
until we reach a local maximum. We prove in Section
5.4 that, in fact, this method always finds a global max-
imum, i.e. the space of simple schedules is convex.

Define the neighbors of a simple schedule as follows:

Definition 3. A simple schedule S ′ is a neighbor of
a simple schedule S if S ′ can be obtained from S by:

1. Either moving a bundle from one interface to an-
other, adding a bundle into an empty slot, remov-
ing a bundle, or changing the type of a bundle.

2. Simplifying the resulting schedule.

The following theorem motivates the hill-climbing al-
gorithm (the proof constitutes Section 5.4).

Theorem 3. Every non-optimal simple schedule S
has a neighbor S ′ with U(S ′) > U(S).

This implies the following: If we start with a sim-
ple schedule S, then either S is optimal, or we can im-
prove S by replacing it with a neighboring schedule that
has higher utility. Since there are only finitely many

simple schedules, and we are strictly increasing utility,
this process must terminate. Furthermore, because any
non-optimal schedule has a higher-utility neighbor, the
schedule we terminate with must be optimal. By Corol-
lary 1, there exists a globally optimal simple schedule,
so the schedule we terminate with is globally optimal.

A naive hill-climbing algorithm is simply: Start with
any schedule, and repeatedly move to a neighbor with
higher utility until no better neighbor exists. In prac-
tice, hill-climbing converges much more rapidly with the
following simple optimization. Note that the neighbors
of a simple schedule are obtained by moving, adding,
removing or changing the type of a single bundle. In-
stead, we can work with several bundles at once, and
gradually reduce the number of bundles affected (the
step size) to 1. This process is similar to simulated
annealing [9]. Our algorithm is:

Hill-Climbing Algorithm
S = any schedule
n = blog2(N)c
for step = 2n, 2n−1, 2n−2, . . . , 2, 1 do

while there exists S ′ obtained by moving, adding,
removing or changing step bundles in S and then
simplifying the resulting schedule, with U(S ′) >
U(S) do
S = S ′

end while
end for
return S
This technique lets the algorithm converge to an op-

timal schedule rapidly, because it merges multiple steps
into one. For example, for a problem size of 5000 bun-
dles and K = L = 5, our algorithm takes approximately
150 iterations, and for 10000 bundles, it takes approx-
imately 200 iterations. This leads to greater perfor-
mance than classical optimization approaches.

We now describe how to list the neighbors of a sched-
ule S given a step size step. The command yield in the
following code means “submit this neighbor for exami-
nation.”

GenerateNeighbors(S, step)
// neighbors formed by adding bundles
for k = 1..K do

for l = 1..L do
S ′ = S
NB(S ′, k) = NB(S, k) + step
NS(S ′, l) = NS(S, k) + step
yield S ′

end for
end for
// neighbors formed by removing bundles
for k = 1..K do

for l = 1..L do
S ′ = S
NB(S ′, k) = NB(S, k)− step

NS(S ′, l) = NS(S, k)− step
yield S ′

end for
end for
// neighbors formed by moving bundles
for l1 = 1..L do

for l2 = 1..L do
S ′ = S
NS(S ′, l1) = NS(S, l1)− step
NS(S ′, l2) = NS(S, l2) + step
yield S ′

end for
end for
// neighbors formed by changing bundle types
for k1 = 1..K do

for k2 = 1..K do
S ′ = S
NB(S ′, k1) = NB(S, k1)− step
NB(S ′, k2) = NB(S, k2) + step
yield S ′

end for
end for
This algorithm lists all neighbors because the NB and

NS values of a neighbor of a simple schedule always
differ from its values in one of the ways described here.

5.4 Proof of Theorem 3
We now prove that any non-optimal simple schedule

S has a neighbor S ′ with U(S ′) > U(S).

Proof. In this proof, we assume that no two dis-
tinct schedules have the same utility. This is ensured
by adding small “noise” values to the tj,k’s, cj ’s, and
ui’s (this is explained in more detail in Section 5.5).

We temporarily extend the notion of “class” to in-
clude empty slots, which we consider “class 0”. We also
extend the notion of “NIC” to include a “drop interface”
for dropped bundles, with N slots, which we call “NIC
0”. A schedule is then an assignment of class numbers
0, 1, . . . ,K to T +N time slots (T slots on the original
NICs, and N on the new “drop interface”), such that
N1 slots contain class 1, N2 contain class 2, etc, and
T contain class 0. In this proof, we treat schedules as
vectors of T +N numbers assigning a class to each slot.

Now, suppose that S is a non-optimal simple sched-
ule. Let O be an optimal schedule. Because S 6= O,
there must exist at least one time slot, s1, on some
interface j1, in which S contains some class i1 but O
contains some other class i2 6= i1. Now, both S and O
have the same number of slots containing i2 (Ni2), so
there must exist a second time slot, s2, on some inter-
face j2, in which S contains i2 but O contains a different
class i3. (If i2 appeared in O in each time slot where
it appeared in S, then O would contain at least one
more instance of i2 than S, in slot s1, which is impossi-
ble.) Similarly, because both O and S contain the same

number of bundles of class i3, there must exist a third
time slot, s3, on some interface j3, in which S contains
i3 but O contains a different class i4. Eventually, be-
cause there are finitely many classes, we will get to a
slot sm in which S contains im and O contains a class
we have already seen, ik (1 ≤ k ≤ m − 1). Therefore,
the classes in slots sk, . . . , sm are cycled between S and
O: these slots contain classes ik, . . . , im respectively in
S, but ik+1, . . . , im, ik respectively in O. Furthermore,
the classes ik, . . . , im are distinct, because we chose m
to be the first index where a repeat occurs. We call
sk, . . . , sm a cycle sequence (see Figure 5).

For any cycle sequence sk, . . . , sm, consider the sched-
ule T formed by modifying S to place the bundles in
slots sk, . . . , sm in the same order as in O. T is distinct
from S, so by our assumption, U(T) 6= U(S). In fact,
U(T) > U(S): the only difference between T and S
is the bundles in slots sk, . . . , sm, and if their ordering
in S was better, then we could create a better schedule
than O by cycling its bundles to place them in the same
configuration as in S, which is a contradiction because
we chose O to be optimal. Now define T ′ = σ(T). T ′
simple, and because it is the simplification of T , we
have :

U(T ′) ≥ U(T) > U(S) (1)

If T ′ were a neighbor of S, we are done. Unfortu-
nately, this is not necessarily the case. Nevertheless, we
show that it is always possible to use cycle sequences to
find a neighbor, S ′, with higher utility than S.

Consider a cycle sequence sk, . . . , sm that is minimal
in length among all valid cycle sequences. (There may
be other cycle sequences of the same length, but none
should be shorter.) Let jk refer to the interface that
was used at schedule slot sk. There are three cases:

1. All interfaces in the cycle sequence are the drop
interface. Then T ′ is equal to S, so U(T ′) = U(S),
contradicting (1).

2. The drop interface does not appear in the cycle
sequence. Then when we go from S to T , we
are only moving some bundles, and possibly one
empty slot (which corresponds to the 0th class),
within the schedule. In either case, the number
of bundles of each class (NB) within the schedule
remains constant. If no empty slot is moved, then
the number of slots on each interface (NS) also re-
mains constant, so T ′ = S (since both are simple),
so U(T ′) = U(S), contradicting (1). Therefore an
empty slot must have been moved. If so, T ′ is
a neighbor of S because it can be obtained from
S by moving a bundle from one interface to an-
other (swapping it with the empty slot) and then
simplifying the resulting schedule.

T N

Slot 1 Slot 2 ... Slot s_k Slot s_k+2 Slot s_m Slot s_k+1

Bundle from
class i_1
sent on

interface j_1

Bundle from
class i_1
sent on

interface j_2

Bundle from
class i_k
sent on

interface j_k

Arrows indicate
cycle sequence

Class 0 = empty slot
NIC 0 = 'drop' interface

Figure 5: A cycle sequence.

3. Some of the interfaces in the cycle sequence are the
drop interface, and some are not. This is the most
complex scenario. Our strategy here is to show
that we can eliminate any subsequence of the cycle
sequence between two uses of the drop interface,
and, having done this, the resultant schedule must
be a neighbor.

Because the drop interface appears at least once,
and not in all the slots, there must be at least one
index n such that jn = 0 and jn+1 6= 0. (We
are writing all indices modulo the length of the
cycle sequence.) Now, suppose the next index of
0 along the cycle occurs at jl (which might be jn
again, if there is only one slot on the drop NIC).
When we move bundles along the cycle to go from
S to T , we essentially add a bundle of class in
by moving it in from the drop interface to jn+1,
then move some bundles from jn+1 to jn+2, jn+2

to jn+3, etc, and eventually drop a bundle of class
jl−1 by moving it onto jl. Therefore, in set of slots
S = {sn+1, . . . , sl−1}, all of which are on non-drop
interfaces, the classes of the bundles have changed
from in+1, . . . , il−1 to in, . . . , il−2. The net result
is that we have removed a bundle of class il−1 and
added a bundle of class in.

Suppose that, as a result, the sum of the utilities
of the bundles in the slots in S is no larger in S ′
than in T . Then we could obtain a shorter cy-
cle sequence by simply removing the changes in
these slots: make bundle n − 1 move directly to
slot sl and bundle l directly to slot sl+1, and leave
the rest of the sequence the same, thus skipping
the changes to sn+1, . . . , sl. This is a contradic-
tion, because we chose a minimal cycle sequence.
Thus, removing a bundle of class il−1 and adding
a bundle of class in to the slots in S strictly in-

creases the utility of the schedule S. Let Y be
the schedule obtained this way, and let S ′ = σ(Y).
Then U(S ′) ≥ U(Y) > U(S), and S ′ is a neigh-
bor of S because it can be obtained by changing
the contents of a slot (from il−1 to in) and then
simplifying the resulting schedule.

Thus, in all three cases, S has a neighbor S ′ with
U(S ′) > U(S).

5.5 Justifying the Unique Utility Assumption
It now remains to justify our assumption that no two

distinct simple schedules S and S ′ have the same util-
ity. If two or more schedules do have the same util-
ity, then the hill-climbing algorithm may cycle between
these schedules indefinitely and never terminate. This
problem also arises in the the classical simplex algo-
rithm [11]. As with simplex, we now show that if any
two schedules do happen to have the same utility, it
is possible to slightly perturb utility functions and slot
times so that the hill-climbing algorithm still finds the
optimal schedule.

Theorem 4. For any pair of schedules S and S ′ such
that U(S) = U(S ′), it is always possible to create new
schedules Sn and S ′n respectively such that U(Sn) 6=
U(S ′n), and there is no change in the optimal schedule
found by the hill-climbing algorithm.

Proof. First, we consider how small perturbations
need to be so that the hill climbing algorithm continues
to find the optimal schedule. Essentially, we want to
avoid the situation where a perturbation to the utility of
the optimal schedule causes the hill climbing algorithm
to wrongly choose a non-optimal schedule.

Suppose we perturb schedules so that a schedule’s
utility changes by at most d. Then, in the worst case,
the optimal schedule’s utility will decrease by d and

some non-optimal schedule’s utility will increase by d.
By choosing d to be half the minimum difference among
any pair of non-perturbed schedules with distinct utili-
ties we ensure that the hill climbing algorithm will con-
tinue to find the correct optimal schedule even after the
perturbations. In practice, we have found that we do
not need to enumerate all possible schedules to estimate
d: arbitrarily choosing a small enough d yields schedules
that are as close to optimal as desired.

We now show how to perturb utility function so that
the change in utility of any schedule is bounded by d. To
begin with, assume that the utility functions are linear,
that is, ui(t) = ai − bit. Recall that in schedule S class
i sends NB(S, i) ≤ Ni bundles. Let Nmax(S) denote
the largest NB(S, i) in S. Recall that in schedule S,
class i sends bundles at times ti1, ti2, ..., tiNB(S,i). Let
Tmax(S) denote the largest of the tiNB(S,i)s.

The utility to class i from S is ai− biti1 +ai− biti2 +
...+ai−bitiNB(S,i). We can rewrite this as NB(S, i)ai−
bi(ti1 + ti2 + ...,+tiNB(S,i)). Suppose we perturb bi to
bi + ε. Then, the utility to class i of the schedule is now
NB(S, i)ai− (bi + ε)(ti1 + ti2 + ...,+tiNB(S,i)), and the
change in utility is ε(ti1 + ti2 + ...,+tiNB(S,i)). This is
upper bounded by εNmax(S)Tmax(S). Given that there
are K classes in S, if we perturb all the bis, the total
change in utility is bounded by KεNmax(S)Tmax(S).
We wish this to be ≤ d, so we get:

ε ≤ d/KNmax(S)Tmax(S)

To deal with nonlinear utility functions, we add a
linear term equal to 0 to each utility function. We can
then perturb these linear terms by the process above.

We now use random perturbations for hill climbing
as follows. Suppose that a particular schedule chosen
in the hill climbing process has a neighbour with the
same utility. We perturb the bis in all the utility func-
tions by a randomly chosen ε bounded as above. With
high probability, this will cause the two schedules with
the same utility to now have slightly differing utilities,
while still preserving the overall utility ordering. The
perturbation process can be repeated, if necessary, to
make the probability of having the same utility made
as small as necessary.

It is possible that a perturbation in the utilities at
one step of the hill climbing process may cause some
other pair of schedules to have the same utility. There-
fore, we should make sure that, even with multiple per-
turbations, the ordering of schedule utilities remains
the same. To do so, recall that a simple schedule is
described by two vectors of integers, NB(S, i)|Ki=1 and
NS(S, j)|Lj=1. The total number of simple schedules is
therefore loosely upper bounded by N (K+L), and this
is also the length of the longest hill-climbing path. In
the worst case, we may need to perturb schedules once
at every step (the chosen perturbation make be the re-

sult of multiple attempts, as explained earlier, but the
net result is a single perturbation). To make sure that
this does not change the ordering of schedule utilities,
we need to simply upper bound the perturbations by ε′,
where

ε′ = ε/N (K+L)

Given this upper bound on the size of a perturbation,
we are assured that even in the worst case, the ordering
on schedule utilities is maintained, yet every schedule
has a distinct utility, as desired.

6. ANALYSIS
Each iteration involves trying all possible neighbors of

a schedule. We first quantify this number of neighbors:

Theorem 5. A simple schedule S has O(K2 + L2)
neighbors.

Proof. Each neighbor is obtained by performing one
of the following operations:

• Moving step bundles from one interface to another,
which can be done in O(L2) ways.

• Changing the contents step slots. There areO(KL)
ways to add step bundles (we must choose their
class and the interface to add them on), O(KL)
ways to remove bundles, andO(K2) ways to change
the types of step bundles (we must choose a class
to change and a new class to put in place of it).

Therefore, the total number of neighbors is O(L2 +
2KL+K2) = O(K2 + L2).

Evaluating each neighbor of a schedule takesO(KL log2 T)
time using the procedure in Section 5.2. Therefore, the
total time of each iteration is O((K2 + L2)KL log2 T).

The number of iterations taken by the hill-climbing
algorithm depends on the starting schedule, S, so we
have not formally analyzed it. In practice, we observe
that it is roughly proportional to logN . For exam-
ple, for N = 10000,K = 5, and L = 5, our algo-
rithm rarely uses more than 200 iterations. Empiri-
cally, therefore, we expect the total running time to be
O(KLT+(K2+L2)KL log2 T logN). Measurements of
performance on random problems shows that the run-
ning time does increase roughly linearly with T (note
that N and T are generally proportional).

Note also that when the interface uptime schedule has
additional structure, it may be possible to evaluate the
utility of a simple schedule faster, as described in 5.2.
This reduces the total running time of the algorithm.

7. INCREMENTAL RESCHEDULING
Our scheduling algorithm must be re-run whenever

new bundles become available or when new connection
opportunities arise. We can improve performance of
this process by using the previous schedule as a starting
point for the hill-climbing algorithm, since it is likely to
be close to the new optimal schedule. We simply re-
move all sent bundles from the previous schedule and
start hill-climbing from a schedule equal to the config-
uration of the rest of the bundles. Note that this ap-
proach only works for hill-climbing: both simplex and
network flow would require a full re-computation of the
entire schedule. We defer a more comprehensive study
of rescheduling to future work.

The performance of scheduling can also be improved
by rescheduling less frequently. First, for large mes-
sages, we can reschedule when an entire message rather
than one bundle at a time. Second, we can reschedule at
regular intervals (say every m time units) rather than
every time a new message arrives. This way, a bun-
dle is delayed up to m time units, but if this is small
enough, there is little loss of utility. Of course, we can
always reschedule instantly whenever there are so few
outstanding bundles that they will likely be sent before
m time units.

8. IMPLEMENTATION
Although our algorithm can be used in any multi-

NIC device, we implemented it in the context of the Op-
portunistic Connection Management Protocol (OCMP)
[15]. OCMP allows applications on a mobile device
to communicate on multiple network interfaces, switch
across interfaces, remain disconnected or powered off for
arbitrarily long periods of time, and interoperate with
legacy applications and servers. The implementation is
in J2ME so that it can be run on any Java-based mobile
device. Extensive policy control for interface selection is
also provided to applications, along with a simple API
for application developers. The main components are
the legacy host, a proxy (which runs an OCMP server),
and the mobile host, which runs the OCMP client. We
refer the interested reader to [15] for additional details.

Applications typically access OCMP using a “direc-
tory API”. To transmit a message, the application
places it as a file in a special directory on the file system,
along with a “config file” specifying policy parameters.
We have currently implemented linearly decreasing util-
ity functions for each application class. Therefore, the
user simply has to specify, for each application class, the
importance,i.e. the initial utility, and the urgency, i.e.,
the rate at which the utility decreases over time. The
user also has to specify a utility cost per NIC. OCMP
then takes responsibility for delivering the message to
the proxy using the best possible network interface(s).
Symmetrically, when messages for an application are re-

ceived, they are also placed in files, and an application-
specific script is invoked to notify the application.

Internally, the OCMP client daemon maintains data
in persistent storage and, when a connection opportu-
nity becomes available on a particular NIC, connects
to a proxy over a TCP connection bound to that NIC.
These TCP connections are organized into by a connec-
tion pool (Figure ??). The daemon periodically invokes
a scheduler to determine when to send each outstand-
ing piece of data and on what NIC. (If the previously
scheduled messages are still unsent, these are automat-
ically rescheduled.) It is also notified by the proxy over
an always-on control channel, such as GPRS when new
messages are available for download, and it uses this in-
formation both to compute the upload schedule, and to
turn on its NICs at the right time to receive incoming
data.

The OCMP proxy contains plugins for interfacing
with legacy services on the Internet. Developers using
the directory API can also write proxy-side applications
that employ it in the same way as it is used on the client.

We implemented hill-climbing as a separate scheduler
in OCMP. Our scheduler reads a list of future interface
uptimes, as well as application utility function parame-
ters, from a config file. It then schedules any messages
passed to it by OCMP for maximum utility. We also im-
plemented two greedy schedulers: Highest Utility First
and Earliest Deadline First. We didn’t implement the
third algorithm in Section 3, Most Urgent First, be-
cause, by ignoring utility values and interface costs, it
is clearly inadequate.

9. EVALUATION
We compare the time-efficiency of our hill-climbing

algorithm with standard LP and flow packages in Sec-
tion 9.1 and and its average case behavior in Section
9.2. Finally, in Section 9.3 we discuss the performance
of hill climbing on cell phones and laptop environments.

9.1 Efficiency
We first compared the performance of a C++ version

of our hill-climbing algorithm with two state-of-the-art
optimization packages: the CPLEX linear optimization
package [25] and the CS2 network flow package [4]. We
ran all three algorithms on a high-performance SGI Al-
tix 3700 computation server with 64 1.4 GHz Intel Ita-
nium2 CPU’s. We measured the algorithms’ running
times on randomly generated problem instances with
parameters chosen as described next.

The number of classes was chosen to be either 5 or
10, and the number of NICs was chosen to be either
5 or 2. We then varied the number of bundles from
200 to 10000. For each problem size, we generated 20
random problem instances with linear utility functions
and timed 10 runs of each algorithm on each of them.

K,L N CPLEX CS2 HC Gain vs CS2
5,2 2500 0.82 0.16 0.018 9x
5,2 5000 1.39 0.42 0.026 16x
5,2 10000 2.67 1.13 0.049 23x
5,5 2500 1.65 1.30 0.041 7x
5,5 5000 3.08 1.13 0.100 11x
5,5 10000 5.73 2.82 0.159 18x
10,2 2500 0.93 0.16 0.041 4x
10,2 5000 1.94 0.50 0.065 8x
10,2 10000 3.69 1.21 0.106 11x
10,5 2500 2.19 0.37 0.121 3x
10,5 5000 4.72 1.19 0.192 6x
10,5 10000 9.21 2.95 0.296 10x

Figure 6: Mean running time (s) for selected
problem sizes.

 0.001

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ru
nn

in
g

tim
e

(s
) (

lo
g

sc
al

e)

Number of messages

Performance evaluation (K=5, L=2)

CPLEX
CS2

HillClimbing

Figure 7: Performance for K = 5, L = 2.

We summed system and user time for each run.
Table 6 shows running times of CPLEX, CS2 and

Hill-Climbing, and gain of Hill-Climbing over CS2, for
selected problem sizes. Figure 8 compares performance
of the algorithms for a variety of problem sizes for K =
10, L = 5. We observe a gain of roughly one order
of magnitude over classical approaches at all problem
sizes. Compared to CS2, our algorithm is 4 to 23 times
faster. Gains over CPLEX are larger, usually by an
additional factor of 4-8, because CPLEX performs worse
than CS2. This validates our claim that hill-climbing is
more efficient than classical approaches.

9.2 Average Case Behaviour
We have already shown in Section 3 that, in the

worst case, the utility of a greedy algorithm can be 50%
lower than that of the utility of an optimal schedule (in

 0.01

 0.1

 1

 10

 100

 0 2000 4000 6000 8000 10000

Ru
nn

in
g

tim
e

(s
) (

lo
g

sc
al

e)

Number of messages

Performance evaluation (K=10, L=5)

CPLEX
CS2

HillClimbing

Figure 8: Performance for K = 10, L = 5.

the case of HUF), or unboundedly worse (for EDF and
MUF). In this section, we use simulations to evaluate
the relative performance of the HUF and EDF greedy
algorithms in the average case (we did not evaluate
MUF for the reasons given in Section 8).

It is difficult, perhaps even impossible, to quantify
the average case workload for a system that is not in
widespread use. Yet, there is valuable insight to be
gained from such a comparison. We have, therefore,
tried our best to create a plausible workload, while be-
ing aware of the inherent limitations of this process. We
stress that our results are merely illustrative.

We consider the case of a cellphone that has two wire-
less interfaces:

• WiFi: transmission rate 1 Mbps

• EDGE: transmission rate 24 kbps

The WiFi NIC starts by being down and comes up at
a random time within the first hour. It then alternates
being up and down. The length of each time period
is exponentially distributed, with means of 10 minutes
and 20 minutes respectively. The EDGE NIC is always
up.

We assume that a bundle is 1024 bytes. We assume
that one unit of utility corresponds to one-thousandth
of a dollar5. To model the relative costs of the EDGE
and WiFi NICs, we set the cost of transmission per
bundle on the EDGE NIC to 0.4 (i.e. 40 cents/MB)
and on WiFi NIC to 0.

We identified five typical services: Instant Messaging
(IM), Video streaming, Email, Urgent Email, and Photo
uploads. Each service corresponds to a service class and
generates messages that consist of one or more bundles.
5With the Canadian and US dollars achieving parity re-
cently, we are happy not to need to further qualify this!

The utility of a message is uniformly divided among its
constituent bundles. We chose the initial utility (the ’a’
value) essentially ’out of a hat’ and the rate of utility
decay (the ’b’ value) to correspond to the expiry times
shown in Table 1. Note that jobs leave the system when
the job utility drops to zero.

To create a scheduling problem, we needed to pick
a set of bundles to be scheduled, where each bundle
belongs to one of the five service classes. Instead or ar-
bitrarily picking different number of bundles from each
service class, we created a ‘warm start’ workload. To do
so, we associated a Poisson message generation process
with each service class and simulated message arrivals
to each class for a randomly chosen period between one
and two hours. Whatever messages did not expire at the
end of the period were considered to be the scheduling
problem at hand: we considered scheduling them for the
time period of up to six hours in the future. We created
a suite of 500 such random scheduling problems.

Figure 9 shows the utilities obtained by the EDF
and HUF algorithms for these 500 scheduling problems,
sorted in order of increasing utility and as a fraction of
the corresponding utility obtained by HC. Note that
the optimal algorithm always outperforms the greedy
algorithms. In roughly 300 of 500 tests, EDF does
as well as HC, but it can be nearly five times worse.
HUF is almost always within about 20% of optimal in
all the problems. The mean improvement of HC over
EDF is about 14%, and over HUF is about 10%. This
shows that, although greedy algorithms can be a factor
of two or more worse than optimal in some cases, at
least in this scenario they can perform nearly as well
as the optimal hill-climbing algorithm. We found that
the utility gained by the greedy algorithms depends
greatly on the urgency of the messages: if most mes-
sages are not urgent, they perform almost as well as
optimal (as shown here), but as the fraction of urgent
messages increases, they tend to perform increasingly
poorly. Given that the optimal algorithm has little com-
putational cost, however, there is no reason to prefer
greedy heuristics to it.

9.3 Performance in Resource-limited Environ-
ments

To evaluate absolute performance, we ran a J2ME
version of our hill climbing algorithm, implemented as
a scheduling policy in OCMP, on two mobile devices:
a 2.8 GHz laptop and a 200 MHz iMate KJAM SP55
smartphone.

For the K=5, L=2 case, with 5000 bundles, which
takes 26 ± 4 ms on the server, we observed a running
time of 25± 1 ms on the laptop and 913± 1 ms on the
smartphone.

For the same values of K and L, and 500 bundles,
our algorithm took 8+=2 ms on the server, 10+-1 ms

0

0.2

0.4

0.6

0.8

1

1.2

1 101 201 301 401

Problem number

%
 o

f
H

C
 u

ti
li

ty

HUF
EDF

Figure 9: Utility of Hill Climbing vs. HUF and
EDF greedy algorithms.

on the laptop, and 548+=2 ms on the smartphone.
Note that the laptop CPU is actually substantially

faster (2.8GHz) than each of the server’s CPUs (1.4
GHz), which explains why its performance is indistin-
guishable from that of the server. The smartphone is
about 40-50 times slower than both of them. Never-
theless, even with 5000 bundles to schedule, the smart-
phone took under a second to run the hill climbing al-
gorithm, which is well within the time constraints im-
posed by user mobility, where we would need to po-
tentially re-compute scheduler once every few minutes.
With a faster smartphone (400 MHz is common today),
or using native code, an additional factor of two can be
easily extracted, allowing us to schedule 5000 bundles
in under half a second.

10. CONCLUSIONS
To our knowledge, although the growing importance

of multi-NIC devices was recognized as far back as 2003
[3], this paper represents the first attempt at the com-
putation of optimal schedules for such devices.

Our scheduling algorithm maximizes user utilities, al-
lowing a device to autonomously exploit transmission
opportunities on multiple NICs without user interven-
tion. We believe that such an approach is crucial for any
non-intrusive usage of multi-NIC devices. Note that our
algorithm extends the well-known concept of vertical
handoff [18] to match applications to NICs, and poten-
tially allow data to be striped across multiple interfaces.
Moreover, by exploiting a user’s tolerance of delays for
certain applications, we can reduce energy and dollar
costs.

Scheduling, especially of large numbers of jobs, is a

Class Message Utility Expiry (s) Bundles/message a b Mean arrival rate
Instant message 150 3 1 150 50 1 msg/5s
Video streaming 75 0.2 25 3 15 2 msg/s

Email 220 10800 40 5.5 0.00051 1 msg/480s
Urgent email 200 60 40 5 0.083 1 msg/120s
Photo upload 500 21600 1000 0.5 2.31 E-05 1 msg/2hr

Table 1: Service Class Characteristics

known hard problem, and therefore, at first glance, it
seems too challenging to be carried out in CPU- and
memory-constrained devices. Our work shows that a
highly-efficient hill-climbing approach is both compu-
tationally efficient (10-100 times faster than classical
algorithms) and provably optimal. Additionally, un-
like classical network flow and simplex, our algorithm
is ideally suited for incremental updates, so it can be
efficiently re-run in response to packet arrivals.

Finally, we have not only mathematically studied the
problem, we have also implemented it in a real system.
Our algorithm runs on J2ME-enabled laptops and cell
phones, and is able to schedule 5000 bundles in under a
second, demonstrating its use in realistic environments.

We now discuss the degree to which we have met
our stated goals of autonomic operation, efficiency and
implementability:

• Once the scheduler is given the utility functions,
it autonomous schedules messages based on NIC
availability. Users do not need to intervene to
maximize utility, as is necessary today.

• Our solution is provably optimal.

• Finally, we have implemented our solution on a
Windows Mobile iMate KJAM smartphone.

Our solution suffers from two primary limitations.
First, it requires knowledge of future NIC schedules.
To address this, we are planning to exploit research in
user mobility observation and prediction [17] to come
up with approximate future schedules. Second, our al-
gorithm is optimal only if the NIC uptime schedule is
precise. If the actual NIC availability differs from the
expected value, it is possible that the algorithm may
be far from optimal. To deal with this problem, we are
currently extending our optimization approach to deal
with stochastic variations by drawing on the extensive
literature in the area of stochastic optimization [19].

Due to these limitations, our work, though promising,
represents only the first step in the solution of an in-
herently complex problem, a problem that we continue
to address in ongoing and future work.

11. REFERENCES
[1] M. Allman, “Measuring end-to-end bulk transfer

capacity,” Proc. IMC 2001.
[2] M. Andrews. “A survey of scheduling theory in

wireless data networks,” Proc. 2005 IMA Summer
Workshop on Wireless Communications.

[3] V. Bahl, A. Adya, J. Padhye, and A. Wolman,
“Reconsidering the Wireless LAN Platform with
Multiple Radios,” ACM SIGCOMM FDNA
Workshop, 2003.

[4] Andrew Goldberg’s Network Optimization
Library,
http://www.avglab.com/andrew/soft.html

[5] H. Hsieh and R. Sivakumar, “A Transport Layer
Approach for Achieving Aggregate Bandwidths on
Multi-homed Mobile Hosts,” Proc. ACM
MOBICOM, 2002.

[6] E. D. Jensen, C. D. Locke, and H. Tokuda. “A
Time-Driven Scheduling Model for Real-Time
Systems.” IEEE Real-Time Systems Symposium,
p.112?122, 1985

[7] E. D. Jensen, ‘ The Time/Utility Function Model
of Real-Time: Worked Examples”
http://www.real-time.org/casestudies.htm.

[8] Richard M. Karp, “Reducibility Among
Combinatorial Problems,” Complexity of
Computer Computations, Proc. Sympos. IBM
Thomas J. Watson Res. Center, Yorktown
Heights, N.Y.. New York: Plenum, p.85-103. 1972.

[9] S. Kirkpatrick, C.D. Gelatt Jr, M.P. Vecchi,
“Optimization by Simulated Annealing,” Science,
1983.

[10] C. Douglass Locke, “Best-Effort Decision Making
for Real-Time Scheduling,” Ph.D. Thesis,
CMUCS-86-134, Department of Computer
Science, Carnegie Mellon University, 1986.

[11] C. Papadimitriou and J. Steiglitz, “Combinatorial
Optimization,” Dover 1992.

[12] T. Pering, Y. Agarwal, R. Gupta, R. Want,
“CoolSpots: Reducing Power Consumption Of
Wireless Mobile Devices Using Multiple Radio
Interfaces,” Proc. ACM/USENIX MOBISYS,
2006.

[13] B. Ravindran, E.D. Jensen and P. Li, “On Recent

Advances in Time/Utility Function Real-Time
Scheduling and Resource Management,” IEEE
ISORC 2005.

[14] J. Scott, J. Crowcroft, P. Hui, C. Diot, “Haggle: A
Networking Architecture Designed Around Mobile
Users,” Conference on Wireless On-demand
Network Systems and Services (WONS), 2006.

[15] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S.
Keshav, “Low-cost Communication for Rural
Internet Kiosks Using Mechanical Backhaul,”
Proc. ACM MOBICOM, 2006.

[16] E. Shih, P. Bahl, M. Sinclair, “Wake on Wireless:
An Event Driven Energy Saving Strategy for
Battery Operated Devices,” Proc. ACM
MOBICOM, 2002.

[17] V. Srinivasan, M. Motani, and W. Ooi, “Analysis
and Implications of Student Contact Patterns
Derived from Campus Schedules,” Proc. ACM
MOBICOM, 2006

[18] M. Stemm and R. Katz, “Vertical Handoffs in
Wireless Overlay Networks,” In Mobile Networks
and Applications, Volume 3, Number 4, Pages
335-350, 1998.

[19] Stochastic Optimization - Wikipedia,
http://en.wikipedia.org/wiki/Stochastic optimization

[20] J. Wang and B. Ravindran, “Time-Utility
Function-Driven Switched Ethernet: Packet
Scheduling Algorithm, Implementation, and
Feasibility Analysis,” IEEE Transactions on
Parallel and Distributed Systems, 2003.

[21] H. Wang, R. Katz, and J. Giese, “Policy-Enabled
Handoffs across Heterogeneous Wireless
Networks,” In Mobile Computing Systems and
Applications, 1999.

[22] F. Zhu and J. McNair, “Optimizations for
Vertical Handoff Decision Algorithms,” Proc.
WCNC, 2004.

[23] Intel PXA270 Processor Based Reference Design,
http://www.embeddedintel.com/catalog/datasheet.php?ds=5
March 2007.

[24] ByteMobile Unison Services Optimization
Solution, http://www.bytemobile.com March
2007.

[25] ILOG CPLEX,
http://www.ilog.com/products/cplex/

