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ABSTRACT
Data-ferrying disconnection-tolerant networks allow remote
rural areas to access the Internet at very low cost, making
them viable alternatives to more expensive access technolo-
gies such as DSL, CDMA, and dial-up. In such a network,
an Internet-based proxy gathers data from the Internet and
sends it to a set of edge nodes called “gateways”, from which
data ferries, such as buses and cars, opportunistically pick
up the data using short-range WiFi as they drive past, and
deliver it wirelessly to kiosks in remote villages. In this con-
text, we pose the following question: assuming knowledge
of ferry schedules, when and to which gateway should the
proxy send each data bundle so that the overall delay is min-
imized and the bandwidth is shared fairly among competing
kiosks? We show that a well-known schedule-aware rout-
ing scheme proposed in the literature, i.e., EDLQ [11] is far
from optimal. Moreover, EDLQ does not provide means to
enforce bandwidth allocations. To remedy these problems,
we employ a token bucket mechanism to decouple fairness
and delay minimization concerns. We also describe a utility-
maximizing scheduler based on the classical minimum-cost
network flow problem, that finds optimal schedules. Through
simulations, we show that our scheme performs at least as
well as EDLQ in scenarios that favour EDLQ, yet achieves
up to 40% reduction in delay in those that do not.

1. INTRODUCTION
Ferry-based networks provide a means of bringing ex-

tremely low-cost non-interactive Internet access to re-
mote rural areas, where conventional access technolo-
gies such as DSL and CDMA are currently economically
infeasible. Such networks trade off a lack of interactivity
and increased delay for a substantial reduction in data
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transmission costs. An architecture for ferry-based net-
works is proposed in [9, 18], which we sketch next.

The system contains four major components: rural
kiosks, ferries (or buses), Internet gateways, and a proxy
server. End users send and receive data (in the form of
fixed-length bundles) at rural kiosks. Buses serve as
ferries, ferrying data between the kiosks and Internet
gateways, using short-range WiFi to download and up-
load data as they drive past. Internet gateways (or
gateways for short), usually located in nearby towns or
cities, have persistent Internet connections such as dial-
up or DSL. Their job is to forward data to and from
the proxy. A proxy is a well-provisioned machine on
the Internet. It communicates on behalf of users with
legacy servers such as web, FTP, and mail servers. In
the uplink direction (i.e., from kiosks to the Internet),
it receives requests from users and initiates communi-
cation with legacy servers. In the downlink direction
(i.e., from the Internet to the kiosks), the proxy buffers
data from legacy servers, forwarding the data to the
gateways. Buses opportunistically pick up data from
the gateways for eventual delivery to destination kiosks.
Note that a kiosk may be reached by more than one
gateway.

We study the operation of the proxy in the downlink
direction. Here, the proxy acts as an application-layer
switch, whose incoming and outgoing links are TCP
connections to legacy servers and the gateways. When-
ever an outgoing link to a gateway becomes free, we
say the link presents a transmission opportunity to the
proxy. The job of the proxy is to choose a bundle from
its buffer and transmit the bundle over that link. In
other words, the proxy continually assigns transmission
opportunities to bundles with the goal of minimizing
end-to-end delay and, during times of congestion, en-
sure fair allocation of bandwidth among kiosks.

By assigning transmission opportunities to bundles,
the proxy selects a gateway for each bundle and decides
the order in which different kiosks are served. Existing
schemes tend to decouple these two tasks. Typically,
they select an outgoing link (i.e gateway) immediately
after a bundle arrives, placing the bundle into a buffer
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associated with the chosen link. When a transmission
opportunity arises on that link, they apply a schedul-
ing discipline such as FCFS or Round-Robin to deter-
mine the order in which bundles destined to different
kiosks (but sharing the same gateway) are served. To
our knowledge, the best such scheme is EDLQ [11]. As
we show later, EDLQ can be far from optimal.

We propose a novel scheme for downlink scheduling.
We use a token bucket traffic regulator for each kiosk
to enforce fair allocation of bandwidth during times of
congestion. Moreover, every time new bundles leave
the regulator, a utility-maximizing scheduler is invoked
to compute a schedule for all unserved bundles. In
other words, we associate with each bundle some util-
ity, which captures the “value” gained from delivering
it as a function of its delay. The scheduler computes
a schedule that maximizes the total utility. We show
that if we define the utility function in a certain way,
the optimal scheduling problem can be formulated as
a minimum cost network flow problem, for which effi-
cient algorithms exist. We evaluate our scheme using
simulations. We simulate a number of scenarios and the
results show that our scheme performs at least as well as
EDLQ in scenarios that favour EDLQ and significantly
better in scenarios that do not.

2. SYSTEM MODEL AND OBJECTIVE

2.1 System Model
Figure 1 shows the system model. Data arriving

from legacy servers is fragmented and encapsulated into
fixed-length bundles and stored in the proxy’s buffer.
We use arr(b) and dst(b) to denote the arrival time and
index of the destination kiosk of bundle b, respectively.
The delay of a bundle is measured from the moment it
arrives at the proxy to the moment it is delivered to
its destination kiosk. There is a logical link between
the proxy and each gateway — in reality, a TCP con-
nection — which we assume has a constant rate. The
proxy is usually hosted in a data centre, provisioned
with effectively unlimited inbound and outbound net-
work bandwidth. The gateways, on the other hand,
are usually connected to the Internet via DSL, which
typically provide a limited data rate of not more than
100 Kbps [16]. As a result, the bandwidth of individual
links between the proxy and the gateways is limited by
the capacity of the DSL subscription the gateways have.
We assume that all proxy-gateway links have the same
constant data rate r1 and that the proxy may communi-
cate with any number of gateways simultaneously. Be-
1In reality, solution only requires the rate of each individual
proxy-gateway link to be constant over time, but does not
require all their rates to be the same. However, allowing the
rates to be different only makes the notation more complex,
but without offering additional insight.

Figure 1: System model

cause we assume bundles all have a fixed size, it takes
a fixed amount of time to transfer a bundle from the
proxy to any gateway. Whenever a link becomes free,
the scheduler may either select a bundle from the buffer
and sends the bundle over that link or decide to leave
the link idle. Data sent to a gateway is temporarily
buffered at the gateway, waiting to be picked up by a
bus that would take it to the destination kiosk.

The gateways and kiosks are connected by bus routes.
Bus schedules define the start and end times of oppor-
tunistic connection windows when a bus passes by a
gateway or a kiosk. We assume that the schedules of all
buses are known and that the buses follow their sched-
ules precisely (we will relax this assumption later). We
further assume, as an approximation, that during an
opportunistic connection window, the bandwidth of the
wireless link between the two parties is infinite, and that
therefore data transfer over wireless links finishes in-
stantly.2 Given these assumptions, by applying a mod-
ified version of Dijkstra’s shortest path algorithm [11],
we can tell exactly what the earliest possible delivery
time of a bundle would be if it were to be sent to a
given gateway at a given time. Essentially, the bus
schedules allow us to define a function Di,j(t) for each
kiosk-gateway pair 〈ki, gj〉, which is the delivery time
of a bundle destined to kiosk ki if it were to be sent to
gateway gj at time t. If there are not any bus routes
from gateway gj to kiosk ki, Di,j(t) =∞ for all t.

Note that Di,j(t) is necessarily non-decreasing. For
any two bundles b1 and b2 with dst(b1) = dst(b2) =
i, if they are both sent to gateway gj at time t1 and
t2, respectively, with t1 < t2, then b1 can always be
delivered no later than b2. On the other hand, Di,j(t) is
not strictly increasing — that is, b1 may be delivered at
the same time as b2, which is the case if between t1 and
t2 no bus departs from gateway gj for kiosk ki. In this
case, since we assume that wireless links are infinitely

2This assumption is not as strong as it might appear. [10]
reports that a vehicle can transfer about 30 MB of data to a
roadside access point during a 30-second connection window
using 802.11g. At this rate, 1 GB of data can be transferred
in less than 20 minutes, which would take one day at 100
Kbps, the typical rate of a proxy-gateway link.
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fast, b1 and b2 will be guaranteed to be sent to the same
bus and delivered at the same time. In fact, Di,j(t) is a
step function, where jumps in delivery time occur when
buses leave the gateway gj for kiosk ki.

2.2 Requirements
We now state the optimization criteria. First, note

that given the unlimited inbound bandwidth of the proxy
and the limited capacities of proxy-gateway links, traf-
fic may arrive to the proxy at a higher rate than it can
leave the proxy, which, coupled with our assumption
that all wireless links have infinite bandwidth, indicates
that the proxy-gateway links are the only bottlenecks of
the system. The bandwidth of the proxy-gateway links
therefore must be shared fairly.

But among whom should the bandwidth be allocated?
We consider each kiosk as an economic entity for which
a fair share of bandwidth is allocated. A kiosk owner
would pay the network provider a certain subscription
fee proportional to the amount of bandwidth this kiosk
gets allocated. The kiosk owner then charges end users
who access the network through the kiosk. This pro-
vides economic incentives for kiosk owners to subscribe
an appropriate amount of bandwidth according to the
size of their business. In view of this allocation scheme,
in the rest of the paper we shall use the term “kiosk”
interchangeably with the term “user”.

Returning to the issue of congestion, we require then,
that when demands exceeds capacity, each kiosk be
guaranteed to receive a certain amount of bandwidth
that is allocated to it. As a secondary objective, the
scheduler should minimize overall bundle delay across
all kiosks. This requirement is more subtle than ap-
pears at first glance, because it requires the scheduler
to choose gateways keeping in mind future bus arrivals
as well as future bundle. Also note that the primary and
secondary objectives are inherently in conflict: meeting
a certain bandwidth requirement may cause excess de-
lay. When the goals conflict, the primary goal is given
priority. A more formal description of the scheduling
objectives can be found in Section 5.2.

3. EDLQ
Three schemes are proposed in [11] for routing in

delay tolerant networks where information of precise
future contact schedules is available, namely Earliest
Delivery (ED), Earliest Delivery with Local Queuing
(EDLQ), and Earliest Delivery with All Queues (EDAQ).
All three schemes use a modified Dijkstra’s algorithm,
which can be applied to a graph with time-varying edge
costs, to find shortest paths. We summarize only EDLQ
here because EDAQ reduces to EDLQ in our system,
and EDLQ has already been demonstrated to be con-
siderably better than ED.

Let ∆j∗ be the queuing delay before a bundle can be

Figure 2: A scenario where EDLQ performs
well. The top axis shows the schedule of buses
from gateway g1 to kiosk k1 and the bottom one
shows the schedule of buses from gateway g2 to
kiosk k1. Each arc represents one bus trip, with
the tail of the arc indicating the time when the
bus leaves the gateway and the head indicat-
ing the time when the bus arrives at the kiosk.
Downward arrows represent batched bundle ar-
rivals at the proxy. (The same graphical repre-
sentation of bus schedules used in other figures)

sent to gateway gj∗ . EDLQ chooses the gateway gj∗
such that

j∗ = arg min
j
Di,j(t+ ∆j).

Note that Di,j(t + ∆j) is an accurate estimate of the
delivery time if the bundle is to be sent to gateway gj .
Therefore, EDLQ is able to find a best gateway for the
incoming bundle, given there is a way to compute ∆j

at the time the bundle arrives. This is only possible
when bundles for which the same gateway is chosen are
served in FIFO order. To compute ∆j then, we only
need to see how many bundles are already in the queue
for gateway gj and multiply the number by 1/r, the
time it takes to transmit one bundle.

4. WHAT IS WRONG WITH EDLQ?
At a first sight, EDLQ appears to be a viable solu-

tion to our problem. It is able to accurately estimate
delivery times and always chooses gateways that will
result in the earliest delivery. When the load is high,
it correctly responds to the increase in the local queue
length by spreading the load across multiple links, as
shown in Figure 2.

However, closer study reveals three limitations. The
first — and most obvious — is that EDLQ cannot guar-
antee fair allocation of bandwidth. The fact that EDLQ
relies on bundles being served in FIFO order on each
proxy-gateway link allows a kiosk that requests an ex-
cessive amount of data to dominate the usage of band-
width. One could argue that EDLQ is just a routing
algorithm and is not charged with providing fairness in
the first place, and that therefore it is not a problem
with EDLQ itself. However, the point we are making
here is that at least EDLQ alone is not sufficient to
serve our purposes.

The second problem with EDLQ stems from its greedy
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Figure 3: A scenario where EDLQ performs
poorly due to its greedy nature.

nature. Although, as shown before, it has the ability
to switch to a secondary path when there is already
enough load on the primary path, sometimes such ac-
tions come too late. Consider the scenario shown in
Figure 3, which looks similar to Figure 2 but now the
buses from gateway g2 to kiosk k1 leave g2 earlier than
they do in Figure 2. Suppose the proxy receives a batch
of bundles at time t0. It finds that there is just enough
time to send all the bundles to gateway g1 before t2, so
it puts all the bundles in the queue for g1. Shortly after
t1, the proxy receives another batch. No bundle from
the second batch can be sent to g1 before t2 because
the bundles from the first batch already occupied all
the slots before t2. At this time, even if we send these
bundles to gateway g2, we cannot expect them to be
delivered at t4, since the bus that will arrive at kiosk k1

at t4 has already left. As a result, the delivery time of
the second batch can only be t7 or later. Had we sent
some bundles from the first batch to g2 — which delays
their delivery slightly, from t3 to t4 — we would have
saved some slots for the second batch, which could bring
forward the delivery time of at least some bundles from
the second batch from t7 to t3, a significant reduction
in delay. The reason why EDLQ fails to be optimal in
this case is because it chooses gateways greedily, with
no regard to the fact that a path that is only slightly
worse may disappear soon and the next path in line may
be considerably worse.

Finally, the third problem with EDLQ lies with the
its inability to reorder bundles. Consider the scenario
shown in Figure 4. t0, t1, . . . , t10 are evenly spaced, with
ti+1 − ti = δ. In this paragraph we shall use the term
“batch” to refer to the amount of bundles that would
take δ to be transferred from the proxy to a gateway.
Suppose the proxy receives two batches for kiosk k1

at time t0, and one batch for kiosk ki at time ti−1,
i = 2, 3, 4. Using EDLQ which serves bundles in the or-
der of arrival, the first batch for kiosk k1 will be trans-
mitted between t0 and t1, and the second batch between
t1 and t2. The batch for kiosk ki will be transmitted
between ti and ti+1, i = 2, 3, 4. As a result, the first
batch for kiosk k1 will experience a delay of 3δ, while
all the other batches will experience a delay of 7δ. The
optimal scheduling in this case is to send the first batch
for kiosk k1 between t0 and t1, the batch for kiosk ki
between ti−1 and ti, i = 2, 3, 4, and finally send the sec-

Figure 4: A scenario where EDLQ performs
poorly due to its inability to reorder bundles.

ond batch for kiosk k1 between t4 and t5. This way, all
batches except the second batch for kiosk k1 will expe-
rience a delay of 3δ, and the second batch for kiosk k1

will experience a delay of 7δ. Compared to the optimal
scheduling, EDLQ more than doubles the delay of three
of the five batches. It is not hard to see that, by adding
more kiosks, we can construct scenarios where EDLQ
performs arbitrarily worse than optimal scheduling.

5. OUR SOLUTION
We now present our utility-based approach to down-

link scheduling in data ferrying networks. To ensure
fair bandwidth allocation, we use a token-bucket traffic
regulator for each kiosk, where the token arriving rates
reflect the allocated bandwidth. We associate some util-
ity with every bundle transmitted, which captures the
“value” of sending a bundle based on the delay it will
experience. Every time new bundles are admitted by
the token-bucket regulators, the scheduler is invoked to
compute a bundle transmission schedule3 for all admit-
ted bundles — which determines which bundle should
be sent to which gateway at what time — that would
maximize the total utility. The subsequent subsections
describes our solution in more detail.

5.1 Token-Bucket Traffic Regulator
As discussed earlier, we allow each kiosk to receive

a bandwidth allocation at the proxy. To be able to
provide bandwidth guarantees at all times, the sum of
rates allocated to all kiosks is not allowed to exceed
the capacity of the system. These allocations are man-
aged by a standard token-bucket (TB) traffic regulator
with parameters of filling rate σ and token bucket depth
d. Bundles leaving the regulator are deemed eligible
for subsequent scheduling and are buffered in per-kiosk
queues. If the token bucket is empty, bundles are tem-
porarily buffered in a pre-bucket queue with a fixed ca-
3This schedule should not be confused with bus schedules.
The meaning of the term “schedule” should be clear from
its context.
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pacity. If the pre-bucket queue is full, newly arriving
bundles are dropped.

The use of TB regulators decouples fairness and delay
minimization. The scheduler only considers the set of
eligible bundles and focuses solely on delay minimiza-
tion, without any regard to fairness. It significantly
simplifies the design of the scheduler as compared to
one that has to concern itself with both fairness and
delay minimization.

On the other hand, the limitation of TB regulators
is that are non-work-conserving. Thus, there may be
times when bundles are blocked by the regulators while
the links sit idle. An alternative is to use a work-
conserving fair allocator, such as WFQ, to allocate bun-
dles. In our work, for simplicity, we only study TB
regulators.

5.2 Utility Model
Consider a scheduling decision made at time ts. We

assume that the usefulness of a bundle to kiosk ki is
captured by a utility function Ui(x) where x is the bun-
dle’s delay from ts to its time of delivery. Let Wi,j(t)
denote the utility of sending a bundle from kiosk ki’s
post-bucket queue at time t to gateway gj . Recall that
Di,j(t) is the delivery time of a bundle destined to kiosk
ki if it were to be sent to gateway gj at time t. It is
easy to see that

Wi,j(t) = Ui(Di,j(t)− ts)

Although this formulation requires all bundles to the
same kiosk to share the same utility, we can easily trans-
form a single kiosk into multiple virtual kiosks, each
corresponding to a different utility function, so there is
no loss of generality.

It is easy to see that if we define Ui(x) to be simply
−x, the opposite of the remaining delay, then a sched-
ule that maximizes the total utility, therefore minimiz-
ing the total remaining delay, will minimize the total
end-to-end delay for all currently eligible bundles. It
should be noted that such a schedule is not necessar-
ily one that eventually minimizes the total delay of all
bundles, which would require knowledge of future traf-
fic arrival. We refer to schedules that minimizes the
total delay of all bundles as being globally optimal, and
ones that minimizes the total delay of bundle that are
eligible at the time they are computed as being locally
optimal. It is impossible for an online algorithm to de-
terministically compute globally optimal schedules.

5.3 Scheduling
Each time new bundles become eligible, the sched-

uler computes a schedule that would maximize the to-
tal utility gained from sending all the bundles that are
currently eligible.

We divide the time into slots where the length of a slot

is the time it takes to transmit a bundle over a proxy-
gateway link. We refer to the combination of time slot h
(which ends at th) and gateway gj as a transmission op-
portunity pjh. A schedule assigns transmission opportu-
nities to bundles. We formulate the optimal scheduling
problem as a minimum cost network flow problem [2].
We first describe a basic formulation, then show how we
can reduce the input size using a more efficient formu-
lation exploiting the fact that Di,j(t) is a step function,
and finally discuss some subtle issues involved in mak-
ing scheduling decisions.

5.3.1 A Basic Formulation
In a minimum cost network flow problem, there are

some nodes with certain units of supply of goods, some
nodes with certain units of demand, and some relay
nodes. There are arcs connecting these nodes, each
with a capacity and a unit cost. The goal is find a way
to transport goods from supplying nodes to demand-
ing nodes that incurs the least cost under the capacity
constraints.

Formally, we create a directed bipartite graph G =
(Ns +Nd,A). For every kiosk ki, we add a node si to
Ns and associate with it a number S(i) indicating the
number of eligible bundles destined to kiosk ki, which
corresponds to the number of units of “supply” node
si has. For each transmission opportunity pjh, we add
a node djh to Nd, each of which “demands” one unit
of supply. We create an arc from node si ∈ Ns to
node djh ∈ Nd if a bundle from kiosk ki may be sent
to gateway gj in time slot h. Each edge (si, djh) ∈ A
has a capacity of 1 and a cost cijh = −Wi,j(th). The
optimal scheduling problem can be stated as follows:

Minimize z(x) =
∑

(si,djh)∈A

cijhxijh

subject to ∑
{djh:(si,djh)∈A}

xijh = S(i) for all si ∈ Ns,

∑
{si:(si,djh)∈A}

xijh ≤ 1 for all djh ∈ Nd,

0 ≤ xijh ≤ 1 for all (si, djh) ∈ A.
where x is a mapping f : A → {0, 1}, with xijh indi-
cating whether a bundle destined to kiosk ki should be
assigned to transmission opportunity pjh.

The first constraint ensures all eligible bundles are as-
signed a slot (all units of supply are removed) and the
second ensures that at most one bundle is assigned to
any transmission opportunity (demanding nodes receive
no more than what they demand). Although no con-
straints explicitly require xijh to be integral, it can be
shown that as long as the capacities of all edges are in-
tegral, xijh will also be integral [2]. Note that, because
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we are considering a potentially infinite time horizon
(we use as many future slots as we need to), there is
always a feasible solution.

Many polynomial-time algorithms exist for solving
minimum cost network flow problems. Let n = |Ns +
Nd| and m = |A|, the best algorithm knows so far solves
the problem in O((m log n)(m+ n log n)) [2].

5.3.2 A More Efficient Formulation
The formulation presented in the previous subsection

requires adding a node for each transmission opportu-
nity. Since we must consider at least as many trans-
mission opportunities as there are eligible bundles, the
input size of an instance of the problem is proportional
to the number of eligible bundles.

However, notice that nodes representing transmission
opportunities offered by a given link can be divided into
groups within which all nodes, except for representing
transmission opportunities at different times, are com-
pletely indistinguishable from one another — they are
connected to the same set of kiosk nodes by arcs with
the same costs. This is due to the fact that Di,j(t) is a
step function whose value changes only once in a while.
If for t ∈ [t~, t~+l], Di,j(t) remains the same for any
given i, then the set of nodes {djh : h = ~, . . . , ~ + l}
are equivalent.

Nodes within the same group can be aggregated to
form a new node, replacing the old nodes which rep-
resent individual transmission opportunities. The de-
mand of the new node, as well as the capacities of arcs
that point to the new node, equals the number of trans-
mission opportunities the new node represents. The
costs of all arcs remain the same as before. Solving
a minimum network flow problem on this new graph
will also give us the solution to the optimal scheduling
problem.4

Compared to the basic formulation, the input size for
the same problem instance is dramatically reduced. For
instance, suppose on average Di,j(t) changes every 30
time slots. Using the more efficient formulation, both
the number of nodes and the number arcs are reduced
by almost a factor of 30.

5.3.3 Instantiating a Schedule Class
A solution returned from the first formulation tells

us exactly which transmission opportunity should be
granted to which kiosk. That is, however, not the case
with the second formulation. Since in the second formu-
lation we aggregate multiple transmission opportunities
into one node, a solution returned only tells us, of each
group of transmission opportunities, how many should
be allocated to each kiosk, but not the exact allocation
of each individual transmission opportunities. In fact,
4But not in exactly the same way as using the basic formu-
lation. See the next subsection.

a solution does not correspond to a schedule, but rather
a class of schedules. All schedules consistent with the
solution belong to this class of schedules and have the
same total utility.

Given a schedule class, the scheduler must pick a spe-
cific schedule to execute, which we refer to as “instan-
tiating a schedule class”. With the first formulation,
the instantiation is implicit and is nothing but an ar-
tifact of the specific network flow solver used to solve
the problem, which is out of our control. With the sec-
ond formulation, we are given the opportunity to make
more intelligent choices.

One may wonder, if all schedules belonging to the
same schedule class have the same utility, why would
one be better than another? The answer lies in the fact
that we have to compute a new schedule every time new
bundles become eligible. Depending on how we instan-
tiate a schedule class, the next time new bundles come
in, we may be facing different situations, some of which
may be more desirable than others. The key insight
is that, all other things being equal, we should send
more ’urgent’ bundles first, where a bundle is consid-
ered ’urgent’ if its bus is leaving soon. By doing so, if
new bundles arrive for a soon-to-depart bus, they can
still be accommodated. Otherwise, when new bundles
arrive, there may be too many that need to leave on
soon-to-depart bus, so that some of them will miss the
bus. That is, if a bus is soon going to leave gateway
gj for kiosk ki, we should schedule bundles for ki to be
transmitted to gateway gj as early as possible so that
if more bundles for kiosk ki comes before the bus leaves
they can still make the bus.

As we have seen, one factor that affects urgency is the
time remaining before the next bus departure, and by
the same reasoning, the one after that, and so on. An-
other factor affecting the urgency is the cost of missing
a bus, that is the increase in delay as a result of miss-
ing a bus. Clearly, the higher the cost, the greater the
urgency.

This motivates the definition of “urgency” with which
kiosk ki is in need of getting bundles to gateway gj at
time t as

ui,j(t) =

∫ ∞
t

(Di,j(τ)−Di,j(t))e−γ(τ−t)dτ∫ ∞
t

e−γ(τ−t)dτ

(1)

As can be seen, ui,j(t) is defined as the weighted inte-
gral of the difference between the function Di,j(τ) and
constant Di,j(t) over time from t to infinity, where the
weights decay exponentially with time. The γ in the in-
dex of the exponential term is called the discount rate,
which controls the rate at which the weight decreases
with time.

With urgency defined, when we instantiate a schedule
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Figure 5: An example of urgency function ui,j(t)
plotted on top of a delivery time function Di,j(t)
from which it is derived.

class, we assign transmission opportunity pjh to kiosk
ki such that ui,j(th) is the highest among those that
have not used up their allocated slots from the current
group of transmission opportunities.

5.3.4 Work-Conserving vs. Non-Work-Conserving
One issue not yet addressed is which set of transmis-

sion opportunities should be considered by the sched-
uler when it computes a schedule. Since an optimal
schedule may assign all bundles to the same gateway,
it seems that we should let the scheduler consider the
next N time slots from each proxy-gateway link, or
NL transmission opportunities where N is the number
of eligible bundles and L is the number of gateways.
The problem of doing so, however, is that a utility-
maximizing scheduler may choose to leave some links
idle when there are eligible bundles waiting to be trans-
mitted. In other words, it is not work-conserving. Note
that any non-work-conserving scheduler, like EDLQ, is
prone to perform poorly in scenarios like the one shown
in Figure 3.

So should the scheduler be work-conserving? Un-
fortunately, a näıve work-conserving scheduler may, to
prevent a link from being idle, send a bundle to a ‘bad’
gateway that will delay a bundle a great deal, instead of
waiting a little while later to send the bundle to another
’good’ gateway which is currently busy.

Our solution to this dilemma is to use a work-conserving
scheduler with a retransmission mechanism. When com-
puting a schedule, we consider only the next dN

L
e time

slots from each proxy-gateway link, so the resulting
schedule is guaranteed to be work-conserving. How-
ever, this can result in bundles being allocated to ’bad’
gateways. To counteract this problem, when we execute
a schedule, after a bundle is sent, we do not delete the
bundle immediately if it is not sent to the most desir-
able gateway, but store it in a secondary buffer and keep
track of its estimated delivery time. We keep the bun-
dle in the secondary buffer as long as resending it to an-
other (currently busy) gateway could lead to an earlier
delivery. We resend bundles from the secondary buffer

when there are no eligible bundles left, so that the links
would otherwise be idle. In this situation, we assign
transmission opportunities to bundles in the secondary
buffer that maximally reduce their delay. Formally, we
assign transmission opportunity pjh to bundle b∗ such
that

b∗ = arg max
b∈Bs

(D(b)−Ddst(b),j(th))

where Bs is the set of bundles in the secondary buffer
and D(b) is the current estimated delivery time of bun-
dle b. The receiver is expected to deal with duplicates.

Such a work-conserving scheduler with a retransmis-
sion mechanism works well because when the load is
light, most bundles that are not sent to the most de-
sirable gateway the first time will get a second chance
and be delivered at the same time as with a non-work-
conserving scheduler, and when the load is heavy, a
work-conserving scheduler is the better choice to begin
with. Note that the only eligible bundles are retrans-
mitted, so this does not affect fairness.

6. EVALUATION
In this section, we evaluate the performance of our

proposed scheme using simulation. We show that our
scheme does ensure fair allocation of bandwidth and
compare our scheme with EDLQ in terms of delay.

6.1 Simulator and Simulation Setup
We developed a custom simulator which implements

the model described in Section 2. Source code for the
simulator can be found at [1]. Each simulation step cor-
responds to roughly one minute in reality. Each proxy-
gateway link is capable of transmitting one bundle per
step. For TB regulators, we use a generous bucket depth
of 500. The maximum size of each pre-bucket queue is
200. For computing urgency, we use a discount rate of
γ = 0.5%. Each simulation is run for 43200 steps, or
30 days of real time. Each data point is obtained from
running the simulation five times, and 95% confidence
intervals are included. We use Ui(x) = −x as the utility
function for our algorithm. In all simulations involving
EDLQ, TB regulators are used with EDLQ to ensure
fair comparisons.

We use batched Poisson processes with a geometric
batch size distribution as our traffic model . Such a
process is characterized by mean inter-arrival time 1/λ
and mean batch size b. The mean arrival rate can be
computed as bλ. In all simulations we use a mean inter-
arrival time of 20 steps and vary b to achieve desired
arrival rates.

6.2 Microbenchmarks
The purpose of the microbenchmarks is to test the

performance of our scheme in various scenarios that
span as wide an area as possible in the input parameter
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Load Frequency Transit Delay Phase Difference
0.45 12 60 180◦

Table 1: Parameters for the base case of Sce-
nario 1. The first three columns apply to both
kiosks.

space. These scenarios are not meant to be realistic.
While it is quite hard to parameterize the input space
due to the enormous degrees of freedom with which bus
schedules could vary, we identify four dimensions of the
input space: load, phase difference between bus sched-
ules, transit delay, and bus frequency. Load is the mean
bundle arrival rate of a kiosk in number of bundles per
step. The remaining three dimensions are about bus
schedules. We consider a special class of bus schedules
where for every gateway-kiosk pair 〈gj , ki〉, a bus leaves
gateway gj for kiosk ki every fi,j steps, and each trip
from gateway gj to kiosk ki takes qi,j steps. 1440/fi,j
is the number of buses going from gateway gj to kiosk
ki in a day (recall that one simulation step corresponds
to one minute in reality), which we call frequency. qi,j
is the transit delay. If f1,j = f2,j , then the phase differ-
ence between these two schedules is defined as the dif-
ference of the departure time of a bus going to k1 and
the departure time of the next bus going to k2 relative
to f1,j . A 180◦ phase difference means the difference in
departure time is 1

2f1,j .

6.2.1 Single Gateway
In the first set of simulations we consider a simple

scenario with one gateway, g1, and two kiosks, k1 and
k2. Since there is only one gateway, the gateway selec-
tion aspect of scheduling decisions is not tested in this
scenario. Only the effect of service order is examined.

The parameters for the base case is shown in Table
1. We use a filling rate of 0.5 token per step for the TB
regulator for both kiosks.

In subsequent simulations, we vary the scenario from
the base case along one of the four dimensions. Fig-
ure 6 shows the mean delay of the two kiosks when the
load of kiosk k2 varies from 0.1 to 2 using our scheme.
As can be seen from the graph, after the load of kiosk
k2 exceeds its allocated rate, the delay of kiosk k1 re-
mains almost constant while the delay of kiosk k2 in-
creases significantly. Our simulation results also show
that kiosk k2 experiences no bundles loss while kiosk k2

suffers from severe loss. The delay of kiosk k2 finally
levels off because the bundle dropping mechanism en-
sures the system is stable. This graph shows that the
token bucket mechanism does ensure fair allocation of
bandwidth and protect well-behaving kiosks from being
negatively impacted by ill-behaving kiosks.

Figure 7 shows the the percentage of reduction in
delay using our scheme compared to EDLQ when the

 0

 100

 200

 300

 400

 500

 600

 700

 0  0.5  1  1.5  2

M
ea

n 
De

la
y

Load of Kiosk 2

Kiosk 1
Kiosk 2

Figure 6: Delay using our scheme vs. load of
kiosk k2 in a single-gateway scenario
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Figure 7: Reduction in delay vs. phase differ-
ence in a single-gateway scenario

phase difference changes from 0 to 180◦. When the
phase difference is between 0 and 120◦, one kiosk ex-
periences slightly reduced delay and the other slightly
increased delay, but overall the delay is reduced. when
the phase difference is between 120◦ and 180◦, both
kiosks experience slightly reduced delay.

Figure 8 shows the effect of transit delay. We vary the
transit delay of kiosk k2 so that q2,1/q1,1 changes from
1 to 10. The reduction is not significant in this case,
especially for kiosk k2, whose delay become dominated
by the large transit delay, which cannot be reduced by
scheduling.

Finally, Figure 9 shows the effect of bus frequency.
We reduce the frequency for kiosk k2 so that the ratio
of frequency between the two kiosks changes from 1 to
12. As the ratio increases, kiosk k1 is able to enjoy
more and more reduction in delay while kiosk k2 enjoys
less. This is because when a kiosk has infrequent buses,
it is less likely to miss one so our scheduler can often
schedule other kiosks that would otherwise miss their
buses.

6.2.2 Multiple Gateways
Now let’s consider scenarios with two gateways, g1
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Figure 8: Reduction in delay vs. ratio of transit
delay in a single-gateway scenario
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Figure 9: Reduction in delay vs. ratio of fre-
quency in a single-gateway scenario

and g2, and two kiosks, k1 and k2. With two gateways,
the gateway selection strategy will now play a role in
determining delay. The token bucket filling rate is set
to 1 token per step for both kiosks.

Let’s first consider a scenario where gateway g1 is
near to kiosk k1 but far from kiosk k2 and gateway g2
is near to kiosk k2 but far from kiosk k1. The informa-
tion about the bus schedules is shown in Table 2. Note
that this is a favourable scenario for EDLQ because it
is seldom necessary for any kiosk to use a secondary
gateway.

We fix the load of kiosk k1 at 0.9 bundle per step,
and vary the load of kiosk k2 from 0.1 to 2 bundles per
step. The results are shown in Figure 10 and Figure
11. Again, we can see that kiosk k1 is not affected by

Frequency Transit Delay
g1 → k1, g2 → k2 10 60
g1 → k2, g2 → k1 4 150

Table 2: Bus schedule information. Each kiosk
prefers a different gateway.
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Figure 10: Delay using our scheme vs. load of
kiosk k2 in a scenario where each kiosk prefers a
different gateway.
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Figure 11: Reduction in delay vs. load of kiosk
k2 in a scenario where each kiosk prefers a dif-
ferent gateway

kiosk k2 when the latter is ill-behaving. Also we can
see that our scheme is still slightly better than EDLQ
even though this is a favourable scenario for EDLQ.

Next we consider a scenario where both kiosks pre-
fer gateway g1. The bus schedule information is shown
in Table 3. This is a scenario where EDLQ tends to
perform poorly because it only uses gateway g2 when
the queue for gateway g1 grows too large, which may
already be too late. Again, we fix the load of kiosk k1

at 0.9 bundle per step, and vary the load of kiosk k2

from 0.1 to 2 bundles per step. The results are shown
in Figure 12 and Figure 13. As expected, our scheme
offers more improvement over EDLQ than in the previ-

Frequency Transit Delay
g1 → k1, g1 → k2 10 60
g2 → k1, g2 → k2 4 150

Table 3: Bus schedule information. Both kiosks
prefer the same gateway.
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Figure 12: Delay using our scheme vs. load of
kiosk k2 in a scenario where both kiosks prefer
the same gateway
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Figure 13: Reduction in delay vs. load of kiosk
k2 in a scenario where both kiosks prefer the
same gateway

ous scenario. When the load of both kiosks is 0.9, both
kiosks see a reduction in delay of about 25%.

6.3 A More Realistic Scenario
We now consider a more realistic scenario. Figure

14 shows part of the public transportation system in
the Greater Toronto Area (GTA). While the GTA, be-
ing a modernized metropolitan area, is certainly not in
need of a data ferrying network to access the Internet,
the bus routes connecting Toronto and its surrounding
towns may resemble those found in developing regions.
We select four locations in the city of Toronto to place
our (imaginary) gateway nodes at, and serve six (imag-
inary) kiosks in surrounding towns. The information
about bus schedules is taken from the website of the
Greater Toronto Transit Authority5. The detailed in-
formation about departure and arrival times is omitted
due to space constraints, but can be found in [8].

We set the token bucket filling rate to 0.65 bundle

5http://www.gotransit.com/

Figure 14: Selected part of the public trans-
portation system of the Greater Toronto Area.
Information about bus routes is taken from
the published schedules of the Greater Toronto
Transit Authority.

-10

0

10

20

30

40

50

OKV BRT NMK MLT OSW MKM

R
e
d
u
c
ti
o
n
 i
n
 D

e
la

y
 (
%

)

Figure 15: Reduction in delay in the GTA sce-
nario
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per step for all six kiosks. All kiosks have a load of
0.6 bundle per step. The results about reduction in
delay using our scheme compared to EDLQ are shown
in Figure 15. We can see that the kiosk that benefits
the most from our scheme enjoys a reduction in delay
of about 40%. Four of the six kiosks see a reduction
of over 20% and none of the kiosks experiences longer
delay in a statistically significant sense. Compared to
the simple scenarios in microbenchmarks, we see more
improvement in this more complex scenario. We believe
that our scheme offers more advantage in scenarios with
complex topologies where there is more opportunity for
optimization.

6.4 Impact of Imprecise Schedules
We are aware that in reality buses never follow their

schedules precisely. We did simulations where the ac-
tual timing of bus trips is randomly perturbed from
their schedules and have some preliminary results about
the impact of imprecise schedules on our algorithm.
Due to space constraints we can only show some sample
results here. More detail can be found in [8].

In Figure 16, scheme names that end with “-IMP”
represent schemes that are fed with the original sched-
ules, and those that end with “-PREC” represent schemes
that are fed with the actual timing of bus trips. For
comparison, we also included a random scheme, which
pulls a bundle from a randomly chosen per-kiosk queue
whenever a proxy-gateway link becomes free, provided
the chosen bundle can be delivered via the gateway
in question. Note that the random scheme is work-
conserving. Unsurprisingly, the gap between MCF-PREC
and MCF-IMP widens as the degree of perturbation
increases. However, it remain almost constant at the
right end of the graph. This observation is consistent
across all our other simulation results. It suggests that
the impact of imprecise schedules on our algorithm is
bounded.

7. RELATED WORK
Fair sharing of bandwidth in packet-switching net-

works has been well studied in the context of tradi-
tional networks. The well known max-min fairness cri-
terion, is closely approximated by a number of packe-
tized scheduling algorithms [20]. A fair scheduling algo-
rithm that operates on multiple links [5] has also been
recently proposed. Our work is different in two main
aspects. First, our notion of fairness is defined on a
longer time scale. While classical scheduling disciplines
try to achieve max-min allocation of bandwidth at time
intervals as short as possible, we focus on long-term fair-
ness which is exactly what token bucket regulator can
provide. We are willing to allocate a disproportionately
large portion of bandwidth to some users at one time
and compensate for other users at another, provided

the bandwidth is allocated fairly in the long run. We
do not lose anything by giving up short-term fairness
because bundles sent to the gateways early will have to
wait for their buses to come anyway. Second, besides
ensuring fair allocation of bandwidth, our scheme also
tries to minimize end-to-end delay. The addition of this
second objective makes it a much harder problem if the
scheduler has to fulfill both objectives.

Opportunistic scheduling has been studied in the con-
text of wireless data networks, where base stations can
exploit temporal fluctuation of link quality to maximize
aggregate throughput [12] [14] [15]. What is common
in our and their work is that we both trade strict ad-
herence to max-min fairness for improvement in other
performance metrics. However, delay minimization and
throughput maximization require fundamentally differ-
ent approaches. Therefore techniques developed in their
area cannot be applied in our system.

Our work on utility modeling is inspired by research
in Time/Utility Function (TUF) based scheduling [13]
[17] [19] [7] in the area of real time scheduling. TUFs
are a generalization of the hard real time constraints.
Instead of specifying a hard deadline for each job, a
TUF specifies the utility resulting from the completion
of a job as a function of arbitrary shape of its completion
time. In our system, the utility resulting from sending a
bundle is determined by the time at which it is sent and
the gateway to which it is sent. Other work considers
a richer set of objectives than just utility maximiza-
tion, such as providing bounds on the probability with
which jobs are completed before their critical times [7],
and additional constraints, such as interdependencies
between jobs and mutually exclusive accesses to non-
CPU resources [13].

Other projects that use ferries to physically transport
data in challenged environments include Message Fer-
rying (MF) [22] and DieselNet [6]. MF deploys a set of
mobile nodes called message ferries which move along
certain routes and can be used to deliver messages in
a store-carry-forward fashion. The controlling of the
trajectory of mobile nodes is a major concern in the
MF scheme [21] [23]. DieselNet is a large-scale testbed
of delay-tolerant networking consisting of 40 buses in
Amherst, Massachusetts. They study problems includ-
ing routing [6] [3], security, and power management [4].
The main differences between our work and theirs are
1) while traffic is between peers in their systems, it is
always either uplink or downlink in our system; and 2)
we assume that the bus schedules are known to us so
routing inside the data ferrying network is a relatively
easy problem.

8. CONCLUSIONS
We study the downlink scheduling problem in data-

ferrying networks where the goals are fair allocation
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of bandwidth and end-to-end delay minimization. We
show that EDLQ is inadequate because it does not pro-
vide bandwidth control, is greedy, and does not allow
bundle reordering. We use token buckets for bandwidth
control, decoupling the rate allocation and delay mini-
mization optimization criteria. We achieve delay min-
imization with a utlity-maximizing scheduler that also
allows us to overcome the problems faced by EDLQ.
We show how to reduce the problem size, and then
use urgency-based schedule selection to design an even
better solution. Finally, by carefully balancing work-
conserving and non-work-conserving aspects in our de-
sign, we are able to get the best of both worlds. We be-
lieve that the use of use of utility maximizing schedulers,
and retransmission buffers to combine work- and non-
work-conserving scheduling are both novel, and readily
applicable to other systems. Simulation results show
that, compared to EDLQ, our scheme reduces overall
delay, and, most of the time, reduces delay for all users.
The amount of reduction in delay for a single user can
be sometimes up to 40%.
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