
  

 
SUMMARY 
 
We present GAB, a search algorithm for hybrid P2P networks, that is, networks that search using both flooding 
and a DHT. GAB uses a gossip-style algorithm to collect global statistics about document popularity to allow 
each peer to make intelligent decisions about which search style to use for a given query. Moreover, GAB 
automatically adapts to changes in the operating environment. Synthetic and trace-driven simulations show that 
compared to a simple hybrid approach that always floods first, trying a DHT if too few results are found, GAB 
reduces the response time by 25-50% and the average query bandwidth cost by 45%, with no loss in recall. GAB 
scales well, with only a 7% degradation in performance despite a tripling in system size.  
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1. INTRODUCTION 

A hybrid peer-to-peer search network combines an unstructured flooding network with a structured 
Distributed Hash Table (DHT)-based global index [1,2]. In such networks, partial keyword queries 
can either be flooded to all peers, or the set of peers storing documents corresponding to each 
keyword can be looked up in the DHT with the results intersected in-network [3] or at the initiator. 
Which search method should a query use? Flooding is efficient for popular (i.e well-replicated) 
documents but inefficient for rare documents. Therefore, a reasonable solution is to first flood a 
query to a limited depth, and, if this returns no results, suggesting that the document is rare, submit 
the query to the DHT [1,2]. This allows cheap and fast searches for popular documents and 
simultaneously reduces the flooding cost for rare documents. However, this comes at the expense of 
an increase in the response time for rare documents and wasted bandwidth due to unfruitful floods.  

As an alternative, we present GAB (Gossip Adaptive HyBrid), a gossip-based approach to 
collect global statistics that allows peers to predict the best search technique for a query. GAB 
dynamically adapts to changes in the operating environment, making it relatively insensitive to 
tuning parameters. Its design does not depend on the choice of the DHT or of the unstructured 
flooding network: any of the solutions described in the literarture [4], for example, are adequate.  

Compared to a non-adaptive hybrid approach [1,2], GAB achieves a 25-50% smaller response 
time, and reduces mean query bandwidth usage by 45%. GAB scales well, with only a 7% 
degradation in performance despite a threefold increase in system size. 

Section 2 presents GAB and Section 3 evaluates it using simulations. We describe related work 
in Section 4 and conclude in Section 5. 

2. ADAPTIVE SEARCH ALGORITHM SELECTION 

This section outlines our search algorithm. Section 2.1 is an overview of hybrid search systems 
and Section 2.2 highlights the search-selection problem in such networks. Section 2.3 shows how 
we collect global statistics, and Section 2.4 how we use these statistics. Finally, Section 2.5 presents 
an algorithm to self-tune the flooding threshold control parameter. 
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2.1 Hybrid peer-to-peer systems 

A hybrid search network [1,2] has four classes of nodes: end nodes, local index nodes, global 
index nodes, and bootstrap nodes (Figure 1). An end node has a set of documents that it shares with 
other end nodes. It publishes its title list to one or more local index nodes that are assigned to it by a 
bootstrap node.  

 
Figure 1. Hybrid P2P search network. 

 
Local index nodes, also called ultrapeers, store the lists of documents present at a certain 

number (typically 30-100) of end nodes and execute search queries on their behalf. Every local 
index node participates in an unstructured flooding network. It can also forward queries to a DHT 
maintained at global index nodes. A small fraction of nodes with good connectivity and long 
uptimes are promoted to global index nodes by the bootstrap nodes, forming a DHT that maps each 
keyword to a list of local index nodes that index documents with that keyword [3]. Having several 
node classes leverages heterogeneous peer capabilities: measurements indicate that although most 
peers have low bandwidth connectivity and small connection durations, some have “server-like” 
characteristics and can be used as local or global index nodes, or even bootstrap nodes. For instance, 
recent work shows that 6% of Napster users and 7% of Gnutella users reported bandwidths of T1 or 
greater, and that about 10% of sessions last more than 5 hours each [12]. Such nodes would be 
ideally suited for promotion [14]. 

2.2 The search algorithm selection problem 

        An ideal search algorithm should return no more than some desired number of results, Rmax, 
while minimizing both the query response time and the mean bandwidth cost per query. In a hybrid 
search network, these criteria are met if a peer can, by looking at the query keywords, decide if 
these keywords match a widely replicated document or not, using this information to either flood 
the query or look up the keywords in a DHT. In past work, observations of result size history, 
keyword frequency, keyword pair frequency, or sampling of neighboring nodes have been used to 
determine document rarity to reduce publishing costs [2]. However, this only uses local or neighbor 
information. Instead, GAB collects global statistics about document availability and keyword 
popularity using gossip to make the search selection decision. 
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We describe GAB in the context of a Gnutella-like network where ultrapeers index content 
stored at end nodes [5]. With GAB, an ultrapeer uses histograms of (a) the number of other 
ultrapeer nodes whose indices contain a given keyword and (b) the fraction of ultrapeer nodes that 
index a copy of a given document to predict the search technique that is best for a given query. It 
then compares this prediction to an actual measurement of search effectiveness, and uses the error 
to adapt future predictions. We describe collection of global statistics in Section 2.3, use of these 
statistics in Section 2.4, and adaptation in Section 2.5. 

2.3 Gathering global statistics 

GAB combines two algorithmic techniques: gossip-based computation and probabilistic 
counting. We first describe gossip-style algorithms and the challenge in using gossip for computing 
statistics. We then describe duplicate-insensitive probabilistic counting. Finally, we combine these 
two ideas and describe GAB’s operation in detail. Note that a gossip-based approach to collecting 
global statistics is ideally suited to P2P networks because it is decentralized, robust, and results in 
every peer learning of the global state. 

GAB is a gossip-based algorithm. A typical gossip algorithm proceeds in rounds, where a 
round has two phases. In the first phase, each participating node, in parallel, chooses a random other 
node and sends it some information. Then, in the second phase, each node combines the information 
it receives (from zero or more other nodes) with information it already has. Each node propagates 
this combined information in the next round.  

The main challenge in using a gossip-based algorithm to collect global statistics is that 
information propagates in random node order during a gossip. Therefore, the algorithm must work 
correctly independent of communication order, and even if a node participates in a gossip multiple 
times. For example, if one wanted to count the number of nodes in an ensemble, simply gossiping a 
count is insufficient, because of the potential for double-counting. Instead, we use the order and 
duplicate-insensitive probabilistic counting technique for multisets pioneered by Flajolet and Martin 
[9].  

The intuition behind probabilistic counting is that if a random event, such as a series of coin 
tosses, is carried out by many nodes in parallel, the probability that some node tosses a long 
sequence of consecutive heads (or tails) increases. Hence, if we find the largest number of 
consecutive heads (or tails) tossed by an ensemble of nodes, we can estimate the size of the 
ensemble. The maximum value in an ensemble is order and duplicate-insensitive, allowing the use 
of gossip amongst the ultrapeers to compute the maximum count value. 

Our goal is to estimate the popularity of a particular document. Therefore, each ultrapeer 
conducts a coin-tossing experiment for each distinct document that it indexes: the greater the 
number of the ultrapeers that index a particular document, the larger the maximum count of 
consecutive heads (or tails) that we can expect in the set of coin toss experiments corresponding to 
that document.  

 More precisely, when an ultrapeer sees a document title it hasn’t indexed already, it tosses a 
coin up to k times and counts the number of heads it sees before the first tail. It saves this result in a 
variable called CT. The ultrapeer then gossips its CT values for all titles it indexes with the other 
ultrapeers. During gossip, for each title, each ultrapeer computes the maximum value of CT, i.e. 
maxCT. If a document is widely replicated, its expected maxCT value will be larger than the 
expected maxCT value for a rare document. Moreover, the number of ultrapeers with the document 
is roughly 2maxCT. Using this intuition, each ultrapeer can get an approximate count of the number of 
other ultrapeers that have that document title, which it maintains in a histogram.  

We now state our algorithm in more depth. GAB consists of three distinct components (1) a 
synopsis structure that approximates the true histogram of document and keyword popularity (this 



  

generalizes an approach proposed by Nath et al [6]) (2) a synopsis fusion algorithm to merge 
synopses, and (3) a randomized gossip algorithm to disseminate synopses among ultrapeers [7, 8]. 

The synopsis generation algorithm uses a duplicate-insensitive counting technique for multisets 
[9]. Consider the synopsis corresponding to a histogram of document (or, more precisely, document 
title) popularity. To create this synopsis, each ultrapeer, for each unique title in its index, does a 
coin tossing experiment that returns a value CT(title, k), defined as: for the given title, toss a fair 
coin up to k times, and return either the index of the first time ‘tails’ occurs or k, whichever is 
smaller1. We require k >1.5 logN, where N is the maximum expected number of ultrapeers. The 
result of a coin toss experiment is represented by a bit vector (abbreviated ‘bitvec’) of length k with 
the CT(title, k)th bit set. The theory of probabilistic counting tells us that if the first 0 bit counting 
from the left in max(CT(title,k)), where the maximum is computed over the matching titles at all 
ultrapeers, is at position i, then the count associated with that bitvec is, with high probability, 

! 
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/0.77351: the ‘magic number’ in the denominator comes from the mathematical principles 
described in [9]2.  

A GAB synopsis actually has three parts: a document title synopsis, a keyword synopsis, and a 
node count synopsis. The title synopsis is a set of tuples {(title, bitvec)}, where title is a list of 
keywords that describe a document, and bitvec is a bit vector representing a coin tossing 
experiment. The keyword synopsis is similar. Finally, the node count synopsis is a bit vector 
counter that counts the number of nodes represented by that complete synopsis. The complete 
synopsis therefore is of the form {node_count_bitvec, {(title, bitvec),…, (title, bitvec)}, {(keyword, 
bitvec),…, (keyword, bitvec)}}. 

The synopsis fusion algorithm is: (a) If two tuples in the combined title or keyword synopses 
have the same title or keyword, then take the bitwise-OR of the two corresponding bitvecs. This has 
the effect of computing the max of the two bitvecs in an order-insensitive manner. (b) Update the 
node count synopsis using the local value of the node_count bitvec. (c) To keep a synopsis from 
growing too large, if the size of the fused synopsis exceeds a desired limit L, discard tuples in order 
of increasing bitvec value (treating the bitvec as a k-bit integer) until the limit is reached. Note that 
at start time, synopsis counts are small, and it is possible that a popular document (with a small 
bitvec count) may be accidentally pruned. To compensate, a ultrapeer can skip the pruning step if 
the value of the node counter in the union of the synopses is smaller than some predefined 
threshold.  

During initialization, each ultrapeer generates a synopsis of its own document titles and 
keywords and labels it as its ‘best’ synopsis. In each round of gossip, it chooses a random neighbor 
and sends the neighbor its best synopsis. When a node receives a synopsis, it fuses this synopsis 
with its best synopsis and labels the merged synopsis as its best synopsis. As with any other gossip 
algorithm, this results in every ultrapeer, with high probability, getting the global statistics after (log 
N) rounds of gossip.  

Note that the gossip adds a bandwidth overhead to the system, which is the price to pay for 
getting global statistics. However, this cost is paid rarely since global statistics change rarely. So, 
running the gossip protocol as little as once a day is likely to be adequate in practice: this frequency 
can be tuned to be as low as necessary to control the overhead. Moreover, the cost is amortized over 
all the queries in the system, so, as the search load increases, the amortized cost for gossip actually 
decreases. 

                                                
1 k  limits the size of the bit vector. If k=32, generation of such a vector is fast, requiring only one multiplication 

and addition operation for linear congruential random number generation [10], followed by the x86 Bit Scan Forward 
instruction and a lookup in a 32-element pre-computed bit vector array. 

2 Note that a synopsis is approximate: the number of documents can be estimated only to the closest power of 2, so 
the estimate may have an error of up to 50%. 

 



  

2.4 Search selection using global statistics 

Given a synopsis and a set of query keywords, an ultrapeer first determines if it has sufficient local 
matches. If so, it is done. If not, it computes the expected number of results for that set of keywords 
as follows: it adds the approximate counts for the titles in its ‘best’ synopsis that contain all the 
query keywords. We denote by r the sum of these approximate counts divided by the approximate 
number of ultrapeers N. For a given query, r represents the expected number of matching titles at 
any ultrapeer. The greater the number of titles in the P2P network that match a particular set of 
keywords, the larger the value of r. If r exceeds a threshold t, many matches are expected, so the 
ultrapeer floods the query. If the flood returns no results after a conservative timeout, it uses the 
DHT to search for each keyword, requesting an in-network join, if that is possible. 

If r < t and any keyword in the query is not in the common keyword synopsis, the ultrapeer 
uses the DHT because a join is cheap if it is initiated using this keyword [3]. Otherwise, the 
document is both rare and has common keywords, so the only option is to flood the query. This is 
done, if possible, with an indication that this query has low priority. The idea is that flooding will 
need a large flood depth. The low priority ensures that the request is handled only if there is 
adequate search capacity.  

2.5 Adaptation of flood threshold 

An important parameter in our system is the flooding threshold, t, expressed in terms of the 
expected number of matching titles at any ultrapeer. If t is too small, that is, we flood even when r is 
‘small’ then too many queries will be flooded and vice versa. In either case, the system will be 
inefficient.  

Unfortunately, it is hard for a system administrator to choose a threshold value that is optimal 
for all operating environments. Worse, the optimal threshold can change over time depending, 
among other things, on the number of end nodes, the number of documents they store, the search 
load, and the available bandwidth to each ultrapeer. Therefore, GAB adjusts t over time, instead of 
using a fixed value. Adaptive thresholding also makes GAB more robust: in case of failure of the 
DHT, all queries would eventually be flooded because t would rapidly decrease. 

Intuitively, an ultrapeer should choose a search algorithm that maximizes a search’s utility. For 
widely-replicated documents, where the expected number of results per node is large, flooding 
provides more utility than DHT search, and for unpopular ones, DHT search provides more utility. 
GAB adapts the flooding threshold by computing the utility of both flooding and DHT search for a 
randomly chosen set of queries. If the current threshold is correct, then when GAB chooses to flood, 
the utility from flooding that query should be greater than the utility of using a DHT and vice versa. 
Otherwise, the threshold should be modified so that future queries make the right choice. 

Adapting the threshold therefore requires us to define a utility function quantitatively. We base 
our measure of utility on four considerations. First, getting at least one result is a lot better than 
getting none. So, the first term represents the benefit from this. Second, because there is little use in 
finding thousands of results if a user is just searching for one particular document, the marginal 
utility per extra result should decrease sharply beyond some point. We approximate this by 
assuming that users require no more than some maximum number of results, Rmax, beyond which 
each further result contributes zero utility. Therefore, the utility of receiving R results is 
proportional to min (R, Rmax). Third, since only the first Rmax results are useful to the user, the 
utility should be proportional to the response time T of the min(R, Rmax)’th result, which we call the 
last response time. Finally, the cost of a query should include its bandwidth cost B. Assuming 
linearity, we denote the utility function U: 

  
U = (R>0 ? 1 : 0) + w1*min(R, Rmax) – w2*T – w3*B, 



  

 
where w1, w2, and w3 are normalized weights (with respect to the first term) chosen by a user. We 
choose to add and subtract the components of utility instead of multiplying or dividing them to 
prevent large fluctuations when one of the numbers is very small or very large. Note that R, Rmax, T 
and B can be computed for each search if a partial bandwidth cost is carried with each search 
request and returned in the reply. 

The optimal value for t is the point of indifference, where flooding and DHT search provide 
equal utility. This motivates the following technique for adapting t: we compute the utility from 
both flooding and using the DHT for a certain number of queries (doing it for all queries would be 
too expensive). We then compare the two values. If the current value of r is less than the threshold 
(suggesting that we use the DHT), but flooding turned out to have more utility, then t is too large, so 
we need to make it smaller. Symmetrically, if r exceeds the threshold, but the utility from the DHT 
exceeds that from flooding, then the threshold has to be made larger. In making these adjustments, 
we do not want to be sensitive to the results from a single query. Therefore, we average the 
adjustments from a set of queries as follows: 

 
1. For each query, compute r, the expected number of results per ultrapeer. Recall that t is the 

threshold, in terms of expected number of matching titles at any ultrapeer, beyond which we opt 
to flood instead of using the DHT. Because we expect variations in t to be small, we obtain 
more measurements around the current value of the threshold by choosing p, the probability that 
this query will be used for adaptation, to be a linear function of |r – t|. 

2. With probability p, use both flooding and DHT for the query and carry out steps 3 and 4. 
3. Compute the utilities of each type of search. 
4. Each query results in the computation of two points (r, uf) and (r, ud), where uf is the utility from 

flooding, and ud is the utility from a DHT search (refer to Figure 2). If r > t, we expect uf > ud, 
otherwise, uf < ud. 

 
Figure 2: Adapting the flood threshold. 

 
5. After Q queries, we need to update t. To first order, we approximate the utility from flooding 

and from a DHT as lines, so that their intersection is a reasonable estimator for t. Exponential 
averaging of this estimate allows us to deal with noisy estimates. Thus, for every two pairs of 
points {(r1, uf

1), (r1, ud
1)} and {(r2, uf

2), (r2, ud
2)} such that r1 < t < r2 let x be the abscissa of the 

intersection of the line passing through (r1, uf
1) and (r2, uf

2) and (r1, ud
1) and (r2, ud

2). We set the 
new estimate of t to be the median x value from these pairs and use this to update t using an 
exponential averager with a forgetting factor of 0.05. In other words t ← 0.95 * t + 0.05 * 
median_abscissa_of_intersections. 

6. Optionally, the value of t computed at each ultrapeer can be gossiped so that every node is 
aware of the average value of t and uses this in its prediction. 



  

3. EVALUATION 

3.1 Simulator 

We wrote a custom simulation system in Java to compare GAB with other well-known search 
techniques [11]. It accurately models end-node lifetimes and link capacities using empirically 
observed distributions [12,13], as well as a flooding network and a Chord-like DHT. To save time 
and because DHT performance is well-studied, we do not simulate interaction between DHT nodes. 
Instead, we set the delay for DHT searches to b logn, where b is a constant and n is the number of 
DHT nodes. However, we do account for the bandwidth cost and delay in querying each ultrapeer in 
the result set returned by the DHT.  

When an end node leaves, we model the deletion of its index both from ultrapeers as well as 
from the DHT. By modeling end-node churn, which is an important factor in real peer-to-peer 
systems, we capture the costs of DHT and ultrapeer updates both on node arrival and on departure. 
Because node lifetimes are chosen from a fixed distribution, we can increase the number of 
documents in the system, the total node population, as well as the number of simultaneously active 
nodes simply by modifying the node arrival rate. 

We outline three optimizations that make our current simulator several orders of magnitude 
more efficient than the original implementation: 
 
• Fast I/O routines. To our surprise, we found that logging an event may take longer than 

simulating it, because Java creates temporary objects during string concatenation. Using a 
custom, large StringBuffer for string concatenation greatly improves performance.  

• Batch database uploads. Even prepared statements turn out to be much less efficient in updating 
the results database than importing a table into it from a tab-separated text file. 

• Avoiding keyword search for exact queries. If we know a query to be exact, we match queries 
using an index on document IDs. This makes the simulator about 10 times faster on synthetic 
runs. This technique can also be used to simulate inexact queries if we were to pre-calculate the 
set of document ID’s matching each subset of keywords.  

3.2 Parameters 

New end nodes join the system at a rate of one every 0.7 seconds, each bringing an average of 20 
documents into the system, randomly chosen from a dataset of 20,000 unique documents, when they 
register with an ultrapeer. These documents are then are indexed by the DHT. The node lifetime 
distribution is from measurements of Gnutella in the literature [12] with a mean lifetime of 1.9 
hours. End nodes emit queries on average once every 240 seconds, requesting at most 25 results 
(Rmax). Documents and keywords are assumed to have a Zipfian popularity distribution with a Zipf 
parameter of 1.0.  

We simulated about 1.9 million queries over a 22 hour period. We observed that a stable online 
population of about 10,000 active end nodes and 500 ultrapeers was achieved after about 20,000 
simulated seconds (~6 hours) (Figure 3). Therefore, results are presented only for the queries made 
between 40,000 and 80,000 seconds.   

 



  

 
Figure 3: Active population size vs. time (s). 

 
With these parameters, the total population over the simulation lifetime was about 114,000 end 

nodes. Although these numbers are still about an order of magnitude smaller than a real system, we 
believe that it is large enough for us to get meaningful comparisons between various search 
approaches. In a realistic system, the bandwidth costs will be about ten times larger. However, we 
expect the relative costs and benefits to be roughly the same as in our simulations.  

Queries and document/keyword sets were generated in two different ways: (a) random exact 
search requests3 according to the fetch-at-most-once model [13] (for results in 3.A-3.C) ; (b) by 
playing back partial keyword searches from the Gnutella data set [2] (for results in 3.D).  

We compared GAB with the algorithms presented in Table I below. 
 

Pure DHT All queries are looked up in a DHT with in-network adaptive joins [3]. 

Simple Hybrid Models the hybrid search algorithm [2]. Queries are first flooded to low 
depth then looked up in a DHT if fewer than 25 results are received from 
the flood after 2s. We studied both depth 2 and depth 3 floods and found 
that depth 3 outperformed depth 2. All comparisons are, therefore, with 
respect to a depth 3 flood. 

Central Server An ideal central server with zero request service time. 
 

Table I: Algorithms evaluated in our simulations 
 
To implement GAB itself, we used the gossip algorithm described in this paper to select 

between flooding and using a DHT search. For the flooding algorithm, we used one of two 
techniques. With GAB-Dynamic, when flooding is selected, the ultrapeer floods a query to a depth 
of 2, and, if insufficient results are found, floods to depth 4. This is the flooding technique used in 
P2P search networks such as Gnutella. GAB-Adaptive is a new flooding technique that limits the 
flood depth without requiring any re-flooding [11]. In adaptive flooding, a node receiving a flooded 
query estimates the number of results likely to have been already found by the other nodes in the 
flood as a function of its depth in the flood DAG, the mean fan out of the DAG, and the mean 
number of results found at each node of the DAG. If this number exceeds the number of desired 
results, the node does not flood the query any further. Otherwise, it propagates the query, passing on 

                                                
3 We only generated exact queries, since it is difficult to generate realistic partial queries 



  

the depth, fan-out, and result cardinality values to its neighbors on a stack carried as part of the 
flooded search request message [11].  

We compared the results for each approach using metrics in Table II. 
 

Recall Percentage of queries that found a matching document, given that there existed at 
least one matching document at some peer when the query was issued. 

FRT Mean first response time for successful queries. 
LRT Mean last response time, i.e response time for Rmaxth query, for successful queries. 
BWC Bandwidth cost in kilobytes per query; the cost of publishing and gossiping is also 

included in this cost. 
 

Table II: Metrics used to compare the algorithms 
 
To save space, we only report means. Also, for ease of comparison, we present normalized 

results for FRT, LRT, and BWC, where the value with respect to which normalization is being 
performed is shown in bold font. Standard deviations, which are all well under 5% of the mean 
value, are reported in an extended version of this paper [11]. 

3.3 Search approaches compared 

System Recall FRT LRT BWC 
Pure DHT 99.9% 1.18 0.62 1.63 
Simple Hybrid  99.9% 1.00 1.00 1.00 
GAB-Adaptive 99.9% 0.70 0.57 0.51 
GAB-Dynamic 99.9% 0.89 0.52 0.47 
Central Server 100.0% 0.41 0.21 0.22 

 
Table III: Performance comparison of the algorithms 

 
The search approaches are compared in Table III. The pure DHT approach has poor (and almost 
identical, though this is not apparent from the table) first and last response times because it cannot 
exploit document popularity to reduce response times. It also has the highest bandwidth cost. The 
simple hybrid approach [1,2] when compared to a pure DHT, reduces the first response time by 
about 20%. It also uses far less bandwidth because it avoids DHT lookups for popular documents. 
Unfortunately, it has a higher average last response time because rare documents must be both 
flooded and looked up.  

Both GAB variants performs much better than Simple Hybrid. Their first and last response 
times are both lower than Simple Hybrid (and Pure DHT) because queries for known rare 
documents are sent directly to the DHT rather than being “tested” using a flood. Moreover, 
bandwidth costs are approximately halved because GAB saves doing a flood for queries that are 
sent directly to the DHT. This validates the gain in performance by the use of global statistics.  

GAB-Dynamic has a much higher FRT than GAB-Adaptive, though it has a slightly smaller 
LRT. To understand this, we first compared adaptive and dynamic flooding in the absence of GAB. 
We found that adaptive flooding reduces the first response time by 21%, and the last response time 
by 34% [11]. This is because when an ultrapeer selects dynamic flooding, but finds no results at 
depth 2, then the subsequent depth-4 flood incurs a much higher FRT than an adaptive flood. Given 
this, we would expect GAB-Adaptive to have both a lower FRT and a lower LRT. However, when 
we introduced GAB, we found that the adaptive thresholding algorithm, in the steady state, directed 
nearly 50% of queries to the DHT with GAB-Dynamic, instead of only about 30% with GAB-



  

Adaptive. This is because when a query for a rare document is flooded using dynamic flooding, it is 
very likely to incur a high cost of a depth-4 flood. This causes a GAB-Dynamic ultrapeer to select 
the DHT more often than with Adaptive flooding, which has lower flood costs. Thus, GAB-
Dynamic uses the DHT more often (which is high-delay),  and when it uses flooding, may pay the 
cost of a depth-2 flood in addition to a depth-4 flood. Together, these effects substantially increase 
the FRT. However, the increased use of the DHT tends to pull in the cost of finding a rare 
document, which reduces the LRT slightly. This explains why the FRT with GAB-Dynamic is 
much higher than GAB-Adaptive, but the LRT is slightly lower. 

A central server has perfect recall, 55% lower FRT and 70% lower LRT than even GAB. 
Moreover, the bandwidth cost is also 57% lower. We conclude that the price to pay for 
decentralization is roughly a doubling of every performance metric.  

3.4 Adaptive thresholding 

Figure 4 shows the times series of flooding threshold at two ultrapeers for a particular simulation 
run. For this environment, the optimal value of t is around 1.0E-4. The two ultrapeers being 
observed chose initial values of 1.0E-3 and 1.0E-5. Over time, both independently adapted the 
threshold and converged to the optimal value, illustrating GAB’s adaptive behavior. The 
convergence time is about two hours, which is smaller than the lifetime of a typical ultrapeer. In 
practice, we expect t to be a rather slowly changing function of time, and a node could be given a 
hint about the current value of t by other ultrapeers when it is promoted to being an ultrapeer. This 
would greatly reduce the convergence time.  
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Figure 4: Threshold value t (results/node) vs. time (s) for nodes with different initial values. 

3.5 Scalability 

Intuitively, GAB should scale well with increases in end node population because DHT and 
gossip costs increase logarithmically with system size, and flooding costs, for a fixed flood depth 
and node degree, are constant. We validated this intuition by choosing three different values for the 
mean end node inter-arrival time: 1.0s, 0.4s, and 0.3s. As described earlier, this changes the mean 
number of end nodes in the system. The approximate stable active populations were, respectively, 
7000 end nodes, 17,500 end nodes, and 23,300 end nodes, corresponding to total end node 
populations of roughly ten times this size. The normalized results are shown in Table IV. 

 
Active Population FRT LRT BWC 

7000  1.00 1.00 1.00 



  

17,500 1.00 0.85 1.06 
23,300 1.03 0.80 1.07 

 
Table IV: Evaluation of scalability 

 
We observe that as the population more than triples, the first response times increase by 3% 

due to the need to consult larger DHT indices for rare items. However, the DHT is used only about 
20% of the time, so its effect on the overall average is negligible. Note that LRT actually decreases 
slightly with increase in population size because, with more nodes, sufficient numbers of results are 
found with shallower floods. Bandwidth costs increase by about 7%, again mostly due to larger 
DHTs but also because as the number of users increases while keeping node degree and flood depth 
constant, the fraction of non-back edges increases and a flood is more widely propagated. 

3.6 Trace-based simulations 

To validate the conclusions from synthetic-workload based simulation, we also ran our 
experiments on a trace-based workload. The traces use the Planetlab-based monitoring 
infrastructure [2], and were obtained by simultaneously monitoring the queries and the results of 
these queries at 50 ultrapeers for 3 hours on Sunday October 12, 2003. This represents 230,966 
distinct queries, 199,516 distinct keywords and 672,295 distinct documents. Newly joining nodes 
select a random subset of these documents to add to the system and emit queries randomly selected 
from the list of queries. Note that the traces do not allow us to model the effect of node churn. The 
results from this evaluation are show in Table V. 
 

System Recall  FRT LRT BWC 
Simple 
Hybrid  

87.0% 1.00 1.00 1.00 

GAB 87.3% 0.59 0.45 0.67 
 

Table V: Results from a trace-based simulation 
 
 

For this more realistic trace-based workload, our results show that GAB has a 41% lower FRT 
than a simple hybrid peer-to-peer search network (compared to 30% lower with a synthetic 
workload); 55% lower LRT (43% with a synthetic workload), and 33% lower bandwidth cost (49% 
with a synthetic workload). Both systems have a lower recall than in synthetic-workload 
simulations.  

Although differences in the workload make an apples-to-apples comparison between trace-
based and synthetic-workload simulations impossible, we believe that the discrepancy in the 
reductions in FRT and LRT between these workloads is because trace-based queries are partial-
keyword queries compared to the full-keyword queries in the synthetic workload. GAB’s reduction 
in FRT and LRT compared to a simple hybrid is due to lower delays in finding rare documents, and 
the proportional gain for these documents can be expressed as (Flood delay)/(Flood delay + DHT 
lookup delay), a decreasing function of the number of DHT lookups. So, with fewer keywords, the 
trace-based workload shows higher proportional gains.  

The recall is lower with the trace-based workload than in the synthetic workload because the 
trace has many more distinct documents, but in our simulation, each newly joining peer still selects 
only 20 of these documents to host. This results in fewer documents being stored per peer, 
increasing the probability that a document correctly located by the DHT becomes unavailable due to 
peer departure, and therefore decreasing effective recall. 



  

4. RELATED WORK 

Numerous DHT-based search systems have been proposed in the literature [4], including hybrid 
systems that combine DHT and flooding networks [1,2].  Extensions to DHTs to allow searches 
using only a subset of document title’s keywords are also well-known [3, 14]. GAB builds on and 
extends this work by proposing gossip-based algorithms for search selection.  

Gossip systems have been widely described in the literature, where they are also called 
epidemic algorithms [7, 8, 15]. We refer interested readers to [16] for an overview and survey of 
recent work in this area.  

5. CONCLUSIONS AND FUTURE WORK 

Our work makes two main contributions. First, we show how gossip-based computation of global 
statistics improves search efficiency, reducing both response time and bandwidth costs. Second, we 
show how to adapt a critical tuning parameter, the flood threshold, to changes in the operating 
environment. The use of a decentralized gossip-style state computation, combined with a DHT 
removes all centralized elements from our system, which permits good scalability. The adaptation 
process uses user utilities, and this allows system behavior to be controlled by intuitive ‘control 
knobs’. We believe that the use of gossip to compute global state and the explicit use of utility 
functions to modify system behavior, are applicable to any large-scale distributed system. 

We quantified gains from GAB using simulation on both synthetic and trace-based workloads. 
We found that, compared to a simple hybrid approach, our search algorithm can roughly halve the 
last response time and bandwidth use, with no loss in recall. Our algorithm scales well, with only a 
7% degradation in performance with a threefold increase in system size.  

We have implemented our system by modifying the Phex Gnutella client to use the OpenDHT 
framework. In current and future work, we plan to quantify the benefits from our algorithms for 
more realistic workloads. 
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