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ABSTRACT

The de facto service architecture of today’s communicatietx
works, in particular the Internet, is heterogeneous, cempad
hoc, and not particularly well understood. With layeringthe
only means for functional abstraction, and even this vemaby
middle-boxes, the diversity of current technologies carelyabe
expressed, let alone analyzed. As a first step to remedyisg th
problem, we present an axiomatic formulation of fundamiefiota
warding mechanisms in communication networks. This foamul
tion allows us to express precisely and abstractly the qusoef
namingand addressingand to specify a consistent set of control
patterns and operational primitives, from which a varietyom-
munication services can be composed. Importantly, thieéwmork
can be used to (1) formally analyze network protocols based o
structural properties, and also to (2) derive working prgpe im-
plementations of these protocols. The prototype is implegetas

a universal forwarding enginea general framework and runtime
environment based on the Click router.

Categories and Subject Descriptors

C.2.1 Network Architecture and Design]: Store and forward net-
works

General Terms
Design, Languages, Theory, Verification

Keywords
Concepts, Definitions, Naming, Addressing, Routing, Rrot®

1. INTRODUCTION

Traditionally, the Internet is modelled as a graph, wherehea
node implements a set of protocol layers and each edge porrds
to a physical communication link. Unfortunately, when carenl
with the actual Internet, this model falls short. In the ttiadal

using a transport layer to access IP, which is layered onateelohk

and physical layers. Packet forwarding decisions are madelyp
on the basis of IP ‘routing’ tables. Moreover, a protocoldawpt

any node only inspects packet headers associated withayet, |
obeying strict rules in dealing with other layers. In realit

e DHCP, anycast, multicast, NAT, mobile IP and others break
the static association between a node and its IP address.

e Nodes implement more layers, including IP or VLAN tun-
nels, overlays, and shims, such as MPLS.

e Forwarding decisions are made not only by IP routers, but
also by VLAN switches, MPLS routers, NAT boxes, fire-
walls, and wireless mesh routing nodes.

e Middleboxes and cross-layered nodes such as NATs, fire-
walls, and load balancers violate layering.

In face of these significant extensions to the classical inade
derstanding the topology of the Internet in terms of its amtivity
has become a daunting task. It has become difficult to define el
ementary concepts such as a neighbour and peer relatignstip
alone the more complex processes of forwarding and roukng-.
ther, there is not even a common and well-defined language for
fundamental networking concepts, with terms such as ‘nataé-
dress’, or ‘port’ being the subject of seemingly endlessatieb

Yet, surprisingly, the system still works! Most users, mafsthe
time, are able to use the Internet. What lies behind the soresble
effectiveness of the Internet? We postulate that all eidesdgo the
traditional model, no matter how ad hoc, obey a set of undegly
principles, which preserve connectivity. However, thesaqgiples
have rarely been systematically studied (with [5, 8] beiotahle
exceptions).

Our research goal is to axiomatically specify basic intemoek-
ing concepts that allow us to construct (a) a theoreticatiynsi
framework to express architectural invariants — such aslétiger-
ability of messages — even in the presence of network dymamis

model, nodes are addressed by one or more static IP addressedniddleboxes, and a variety of compositions of differenttpeols,

End systems implement a simple five-layer stack, with appiias

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

SIGCOMM’07,August 27-31, 2007, Kyoto, Japan.

Copyright 2007 ACM 978-1-59593-713-1/07/00085.00.

(b) an expressive meta-language in which to rapidly implenae
variety of packet forwarding schemes, and (c) an integratedel
that correctly describes packet progress across multilers of
communication protocols. The concepts and the meta-layggde-
rived from them serve not only to clarify the essential aetture
of the Internet, but also provide a bridge between formabfso
on node reachability using a particular forwarding schemeé a
practical implementation of that scheme. Our goals areiiedby
Hoare’s axiomatic basis for programming [10]. We belie\a the
conceptual clarity that arises from our work allows us tocilyi
sketch the essential aspects of any type of communicatiovonie



no matter how exotic, and apply concepts from one networ-tec
nology to another.

To keep the problem tractable, we propose to split overati-co
munication functionality into two broad areas: one areads-c
cerned withconnectivity i.e., naming, addressing, forwarding, and
routing. The second is the set of mechanisms to provideiaddit
functionality related to communication quality and penfiance.
This includes medium access control, reliability, flow acohtcon-
gestion control, security, among others, and is not yetieiipl
considered in this work. In particular, the framework presel
here is oblivious to time and cannot model loss and timeouts.

The paper is organized as follows. After presenting relateck
in Section 2, we introduce the axiomatic framework for mgssa
forwarding in Section 3 and add control considerations icti®a 4.
Section 5 demonstrates the generality of this frameworkrbyig-
ing uniform pseudo-code for some forwarding schemes. Seéi
explores the semantic foundations with a proof system stipgo
formal verification. Section 7 illustrates the practicgbahilities of
our approach by compactly describing seemingly diversevordt
ing techniques such as TCP over NAT, Hierarchical Mobileat®
I13. Section 8 outlines a prototype implementation based lack C
and the paper is concluded with a discussion in Section 9.

2. RELATED WORK

Our work draws from and is related to a handful of other attesmp
to bring clarity to Internet architecture. Clark’s semimaper [5]
succinctly lays out the design principles of the classioatinet,
but does not provide a basis for formal reasoning about dpqr
ties. Recently, Griffin and Sobrinho have used formal sercsitd
model routing [8] and Loo et al. have used a declarative agagrdo
describe routing protocols [16]. Our work differs in that ¥eeus
on the elementary notions of forwarding, naming, and adiings

Our work is directly related to past work in the area of naming
and addressing indirection. This has been considered bogh-i
isting technology standards, such as IP Multicast, IPvélobile
IP, as well as in recent research proposals [3, 9, 17, 21].i-Sim
lar to our work, these proposals blur the traditional distion be-
tween naming and addressing, and also consider innovadisleep
forwarding mechanisms. However, to our knowledge, thest pa
proposals are essentially ad hoc, without a consistentf setder-
lying formal principles. In contrast, we suggest an axidmédr-
mulation of communication principles and thereby presefitsh
attempt at building a complete formal basis for reasoninguab
communication systems. In earlier work, we have made amatte
at an axiomatic formulation of communication principle8]1The
present work is significantly more comprehensive, cleatbtes
the axiomatic basis, and the formalization is based on lagé
Hoare-style assertions, rather than low-level operatiseaantics.

Novel architectures for naming and addressing have been pro
posed for a new generation of ‘pocket-switched’ [20], ‘aeniti
[2] and ‘delay-tolerant’ [6] networks. These new architges are
in response to fundamentally different networking paratig We
believe that our formalizations are adequate to represesttnon-
traditional naming and forwarding architectures.

In the past, other authors have also attempted to genetalize
ternet concepts, recognizing the failure of the classicatleh to
adequately describe ground realities and conceptual igarsms.
The Multi-Domain Communication Model [24] is an example of
such a generalization. However, this, and similar gereatiins,
do not have an axiomatic foundation, and therefore tend tacbe
hoc. Ahlgren et al. [1] have previously suggested that theriret
architecture has been guided by some invariants. We agrige wi
their viewpoint: our contribution is to formalize these @miants.

TCP load
balancer

client

server

direct communication (neighbours)

Figure 1: Protocol Layers

In recent work, Zave [25] has used declarative semanticeto d
scribe and validate several alternative naming and binsithgmes,
especially as they relate to ‘returnability’ of a call setmpssage.
We believe that this approach is complementary to ours.

Finally, several research projects have come up with ‘maito
engines’ that can be used to rapidly implement complex proto
col architectures. These include the x-Kernel [11], miprotocol
composition [15], and Click [14] that we ourselves build npdl-
though these systems ease the code development procegheand
micro-protocol approach uses NuPrl to provide proofs ofedr
ness, they do not develop an axiomatic foundation. Moredhey
do not deal with multi-hop and multi-layer forwarding andmma
resolution.

3. AXIOMATIC FRAMEWORK

3.1 Definitions

Before presenting an axiomatic formulation of forwardininp
ciples, we define a few concepts.

e An abstract switching element (ASE)an object that par-
ticipates in network communication and relays messages. It
generalizes a simple switching element, such as the table-
based crossbar switch in Autonet [19], to an abstract object
that is more representative of a protocol layer in a general
communication network. That is, in addition to switching
messages, an ASE can carry out more complex actions, such
as swapping header labels and encapsulating a message into
another.

e An ASE has named input and output communication ports.
These correspond to physical network interface cardsgsr
ical ports Simplexdirect communicatiorfrom the output
port of an ASE to the input port of an adjacent ASE is accom-
plished by means of shared memory or a physical medium
such as cable, radio, or fibre. At ASE, the input port from
apredecessoASE A is denoted a8B and the output port to
a successoASE C is B®. We use a lower case superscript
such as'B or BX to express the previous or next ASE as vari-
ablex. Note that different logical ports may refer to the same
physical port. Referring to Figure 1, where each rectangle
represents an ASE, examples of direct communication are
between the TCP and IP ASEs on the same machine and two
Ethernet ASEs on the same shared medium.

e The unit of communication is enessagewhich is a string
of identifiers drawn from an arbitrary alphabet. In the Inter
net, a message corresponds to an application-level data uni
datagram, or MAC-frame. A messagethat exists at a port
X is denoted am@x.



o We denote wit?B the logical port that is equivalent tweat-
ing a message at ASEandB® the logical port thatonsumes
a message. Creation and consumption refer to a transforma-
tion of the message in or out of the realm of this theoretical
model. In Figure 1, the HTTP ASEs create and consume
application-level messages, and the TCP ASEs create and
consume acknowledgement messages.

An ASE maintains a private set of mappings, called its local
switching table The switching table at ASB is denoted
as S and contains mapping®A, p) — {(C,p’)} from a
ASE-and-string paifA, p) to asetof ASE-and-string pairs
(C,p'). For notational simplicity, we represent an ASE

in local mappings aX. The switching table can be queried
through an exact lookup operati@|[A, p]. If no exact map-
ping exists in the switching table, the message is discarded
Examples of a switching table are Ethernet or IP forwarding
tables withp’ = p (ignoring the TTL decrement operation,
for now).

3.2 The Axioms

The “leads-to” relation provides the central axiomaticnfioita-
tion of operations of store-and-forward netwofkdhe “leads-to”
relation is denoted as> and defined by the following four axioms:

LT1. (Direct Communication)
VA,B,m: 3AB AB <= m@AP — m@"B.

LT2. (Local Switching)
VA,B,C,m,p,p': 3*B,B% A (C,p) € S[A, p]

— pm@"B — p’m@EC.
(Transitivity)

vx,y,z,m ', m” : (m@x — m' @y) A (M @y — M’ @z)
= m@x — M’ @z

LT3.

LT4. (Reflexivity) Vm,x : m@x — m@x

Axiom LT1 describes direct communication between ASES.
and BA exist if and only ifA can directly communicate witB.
Axiom LT2 expresses the lookup and switching capability of a
ASE. Note that a messagenis logically split into a header prefix
p and the opaque rest of the messagduring each local switch-
ing step. LT2 also covers any form of multi-recipient fordimg,
such as multicast, sinc®[A, b] may have multiple elements. Ax-
iom LT3 splices individual forwarding steps together. Tdésree
axioms naturally capture the simplex forwarding process com-
munication network, where, potentially, at each forwagdétep, a
forwarding label is swapped. To simplify formal proofs ofrzén
reachability properties, reflexivity is axiom LT4.

To illustrate the applicability of this model, consider thpe-
cial case of LT2 wherg = p'. In this case, the “leads-to” relation
describes a single-layer forwarding system based on gldésti-
nation addresses, such as IP forwarding. As another speasal
consider the absence of prefixes altogether. Then, the axitan
scribe a forwarding model based on input and output ports) as
circuit switching. In general, as we demonstrate later, la@rcthat
the “leads-to” relation can describe arbitrarily compleultialayer
forwarding systems.

In a real network, network messages typically contain akstéc
protocol headers that carry different types of names, ssclad:
dresses’, ‘protocol humbers’, or other identifiers. Theatls-to”
relation as defined on an arbitrary message string is jusbsimaect

Litis inspired by Lamport’s “happened-before” relation.

representation of these forwarding mechanisms. Typicditydes-
tination identifiers (and sometimes the source identifisgrgach
respective protocol header constitute the prefixHowever, the
conceptual model works with an arbitrary subset of protbezider
fields. Some non-trivial examples are presented in Section 7

3.3 Communication Concepts

Based on the “leads-to” relationship, we can succinctlyraefi
and explain a number of well-known communication conceps,
ginning with a formal definition of a name:

Name If 3 ASEsA, B and prefixp # @ such that’m:
pM@*A — P'm@YB — m@BZ andp’ # @,

thenpis a name foB atA.

The name of an ASE is the prefix that is removed when the mes-
sage is transmitted to this ASE. Note thatan be a name & for
multiple ASEs. The conditiop’ # @ ensures thaB is indeed the
ASE where the prefix or any residual of it is removed. Any grin
that “leads to” a particular ASB from origin ASEA is considered
a name forB at A. By default, names are local and relative to the
ASE from which they originate. For example, a message header
could contain a stack of labels, each of which identifies &rding
state at subsequent ASEs (also knowrsaisrce routing along a
particular path from a source ASE to a destination ASE. The-co
plete stack of labels would then be a name for the destin#t&ia
relative to the source ASE.

There is no pre-existing formal and universally acceptefthde
tion for “name” in communication networks and the above defin
tion may not match everyone’s intuition. Our model at leasttdes
a formal yet intuitive definition in the first place, which shd add
some clarity to the debate.

Address If 3 ASEsA, B and prefixp # @ such thatym:
pm@*A — pm@YB — m@B?,
thenpis an address fdB atA.

We define an address as a special kind of name that does not
change along the path. In other words, if an ASE writes a name
into a message with the assumption that at least some othes AS
interpret the string to send it to the same destination,abhees an
address. Every address is also a hame, but the reverse imiot t
Note thatp can be an address for multiple ASEs.

Peer If 3 ASEsA, B and prefixeq, p’ such thatym:
pM@AX — p’m@YB andp’ # @ and
Salx, p] # @ andSg[y, p'] # &, thenA andB arepeers

Tunnel If 3 ASEsA, B and prefixe, p’ such thatym:
m@"A — pm@A* — pP'm@YB — m@BZ andp’ # 2,
thenA andB form atunnel

The difference between direct neighbours, peer, and tusrilel
lustrated in Figure 1. Peer ASEs operate on an identicaiquoaf
the header prefix, which typically corresponds to the sarntopol
header field(s). Note that tunnels are between two peersnaut
traverse additional peers. For example, an IP sender, l@mu
and an IP destination are peers, but not direct neighbowsuse
(a) they all operate on the same IP header, and maintain & loca
switching table indexed by the IP destination address faonride
IP header and (b) IP ASEs never directly communicate witth eac
other; they communicate through a link-layer ASE. The IPdsen
and IP destination form a tunnel, because the definition rfi¢l
is satisfied form = the IP payloadp = the IP header. A pair of
connected TCP endpoints also form a tunnel for similar neasa



pair of connected Ethernet NICs can be considered as bathtdir
neighbours and peers. Note that tunnels are similar to |S®pr
col interfaces, whereas direct communication occurs ogerice
interfaces.

Name ScopeThe scope of a namefor a set of ASES is denoted
asaop and defined as follows:
3B :V ASEsA : pis a name fo atAj = A € gp

Message Scopelhe scopepm of a messagen@Yx is defined as
the scope of the outermost destination name:
m@Yx = pl@xA 3y, p| = Pm = Op.

If a name scope encompasses only one ASE, we daltatl. A
set of names or addresses with the same scope is calfed space
or address spaceespectively.

3.4 Naming and Binding Revisited

We now take a detour to compare our framework and definitions
with Saltzer's seminal work on naming, addressing, and ibgnd
[18]. Saltzer's work did not consider communication in disited
systems; nevertheless, his insights are consistent vataxiomatic
framework resulting from the “leads-to” relation.

In Saltzer's model, mameis a string that is used to refer to an
object “in the system”. We precisely define the name of an ASE t
be the string that can be used to reach it. Moreover, the porafe
a name is extended to refer to a set of objects (to supportibass,
anycast, or multicast communication).

Saltzer uses the tertinding to refer to the establishment and
existence of a relation between a name and an object. |n amnefr
work, the existence of bcal binding(i.e. local switching state)
can be stated precisely &(A, p) — (B,p')) € Sa. In addition,
we introduce the additional concept distributed bindingthat is
established by the chain of local switching states, sudhatiname
“leads to” a set of objects that have a local binding for trame.
We can then defindistributed resolutioras forwarding a resolu-
tion request and getting back the appropriate responset i$ha
distributed resolution can be considered as forwardingsalugion
request message using the requested name as destinatressadd
The forwarding of resolution requests is similar to the débin of
closurein Saltzer’s work [18], which is defined as ‘the mechanism
that connects an object wishing to resolve a name to a pkaticu
context’.

Saltzer defines aontextas a set of bindings. A name is always
interpreted relative to some context. Both the local sviitghable
in an ASE, as well as the distributed context formed by a name
space can be regarded as instances of this notion.

In summary, we claim that our framework is a natural extemsio
of Saltzer's single-system definitions to a communicatietwork.

3.5 Forwarding Operations

In theory, the transformation frompto p’ in LT2 in Section 3.2
is unrestricted, but in practice it is eithepash pop, swap or nop
operation, as described next. In casepakh a new prefixq is
prepended an@’ = qp. In case ofpop, p is removed ang = @.
In case ofswap p is replaced byp’, which usually is of equal
length. Withnop, p remains unchanged armd = p. Given these
transformations, it is possible to identify correspondiagvarding
operations that cover a wide range of forwarding techniqueesl
in communication protocols.

Nop - Forwarding If no modification of the current name takes
place, the message is just forwarded. Ethernet bridging or
IP forwarding are prominent examples, but circuit switchin
also trivially falls in this category.

Push - Encapsulation The push operation stacks a new name “on
top” of the existing stack. This is used at tunnel ingress
points, but also as a general mechanism for protocol layer-
ing, e.g., placing the network addresses in front of thegrot
col number in front of the transport ports. A special case of
push-encapsulation isute recordingwhere the name of the
current node is added to the protocol header, as in Dynamic
Source Routing (DSR) [12].

Pop - Decapsulation The pop operation removes the “topmost”
name from the stack. It is used at tunnel egress gateways
and the receiving side of layered protocols, as well as when
forwarding a source-routed message.

Swap - Label Switching The swap operation replaces the current
name. This is used in virtual circuit networks such as MPLS
or ATM, but also when forwarding a packet from the exter-
nal to the internal network at a NAT box. We note that, by
introducing a new name, a swap operation typically changes
the message scope.

A special consideration applies to the pop operation. When a
message is processed at an ASE, the pop operation is cauted o
only if it is determined that the removed information is iedeno
longer needed to sufficiently identify the sender. Otheewibe in-
formation is logically removed (from the viewpoint of theedds-
to” relation), but physically stays with the message. Thia icon-
figuration arrangement between ASEs, such that an upstresin A
delays its pop operation depending on which downstream ASE a
message is forwarded to. For example, Ethernet sourceniafibon
of a packet carrying both an IP and Ethernet header can tijpica
be removed, since the IP source address is sufficient tar&idhe
sender, but IP source information of an IP packet carryingC® T
segment cannot be removed immediately, since it is needdd-to
multiplex between different TCP connections. We call tletayed
popand describe how it relates to the “completeness” of a name in
Section 4.1.

Using the concepts introduced so far, it is possible to descr
basic data path mechanisms of a communication network. ¥or e
ample, we can precisely represent a tunnel between two TE3AS
that is established by a three way handshake. Similarlyas tr
sient HTTP tunnel exists between a browser client and a wekise
for the duration of the TCP tunnel between them. An HTTP load
balancer that examines the HTTP header would be a peer of the
browser, and it would also be a peer to the web server. The load
balancer is a forwarding engine, just like an IP router.

We can also describe arbitrary static forwarding scenavibere
forwarding tables and topologies do not change over timel, an
thus static switching tables are sufficient to determinestieeessor
ASEs for forwarding. As an example, consider an IP networtk wi
pre-configured routing tables, running over Ethernet witiARP
lookups also pre-configured in the ARP cache, as in Figure 1.

3.6 Forwarding Primitives

The processing operations stated above can be translated in
set of forwarding primitives that can be used to abstraqgilgcey
ASE processing in pseudo-code. Each ASE supports the same se
of operational primitives and ASEs essentially differ omythe
implementation of these standard interfaces.

We first introduce the abstract data types that are necessary
describe the forwarding primitives. Theessageype abstractly
refers to the internal representation of a communicatiossage.

A string represents an arbitrary string that is taken from or placed
into a message. In an actual implementation, this would be re
placed by an ASE-specific data structure for efficiency. Rina



the asegeneric data type represents the ASEs in the system. Note
that we use multi-return specifications where applicabletp the
pseudo-code concise. The forwarding primitives below aegin
Section 5 to specify the abstract functionality of a netwelgment.

e send(ase, message)
The send operation implements sends a message to the give
ASE. Because the pseudo-code does not explicitly represent

ports, the ASE is passed as a parameter.

<ase, message> receive()

This primitive is used to receive messages and returns the
messages well asthe ASE from which the message has
been received.

message copy(message)

It is necessary to copy messages to implement LT2 for map-
pings in the local switching table that result a set of ASE-
and-string pairs.

push(message, string)

The push operation is ASE-specific and adds the given string
to the message header, according to the relevant protocol
specifications for this ASE. It is a specialization of the gen
eral p— p transformation in LT2.

string pop(message)

The pop primitive is also ASE-specific and removes and re-
turns the appropriate portion of the header prefix from the
message. It is also a specialization of the> p’ transforma-
tion in LT2.

{<ase, string>} lookup(ase, string)
The lookup primitive is used to query the local switching
table. It returns the set of exact mappings found.

The specification of the “leads-to” relation in Section 3 a
sumes that the switching table can only be queried througixact
lookup operation to keep the abstract specification sinmpleeal-
ity, the switching tables can be more efficiently implemenigth
better data structures. In particular, switching tabley mse an
aggregated information representation and longest-plefikups
or provide adefault mappingvhich is used for all those names that
do not have an explicit mapping in their switching state. Sehe
considerations are out of the scope of our work.

4. CONTROL MECHANISMS

With the model introduced so far, we can only describe basic
packet forwarding in a static network. However, as mentibe-
fore, each ASE’s local switching table needs to be populai¢ul
mappings in order to perform forwarding or distributed feson
at any meaningful scale. In addition, network dynamics ssitate
dynamic updates to switching tables. We first discuss rgusithe
basic mechanism to allow forwarding within a single namecepa

We then study how name spaces can be combined and use this to

model on-demand path setup mechanisms.

4.1 Combining Name Spaces

The heterogeneous nature of network environments reqults i
different network technologies with different assumpsipgoals,
and design strategies. This naturally results in a divesitap-
proaches for naming network elements. Different namingsts
are appropriate for different requirements. Due to the doatipn
of network technologies, a message may travel through mamen
spaces before reaching the destination.

Routingis the control process that creates and maintains con-
sistent forwardingvithin a name space in the presence of network

rJ‘Ieads-to”

dynamics. More formally, the goal of routing is to establisit
some set of ASEy, appropriate local switching table entries so
that each member gfhas a name for each other membeyaiith
scopey. Routing is thus defined based on a name scope, which
through the definition of name depends on the “leads-to'timia
Thus, a change in network topology results in a breakage ef th
relation at some ASEs, which invalidates namBy-
namic routing re-establishes the “leads-to” propertiesughouty.
By establishing consistent forwarding for a set of ASEs aauth@s,
routing effectively transforms all names into addresseserables
datagram forwarding Invariants of the routing process have been
studied elsewhere, for example in [16].

We now consider how to forward messages across name spaces,
using either th@verlayor thegatewaymodel.

Overlay In the overlay model, islands of an overlay name space
are connected with each other via tunnels across an underlay
name space. This corresponds to pushing underlay names on
the header stack that enable the transmission of a message
from the ingress tunnel endpoint to the egress. The underlay
network is oblivious to the overlay naming scheme and thus
provides a transparent service between tunnel endpoirg. Th
model uses the encapsulation and decapsulation mechanisms
presented in Section 3.5. Examples are TCP over IP, 13 over
IP, and MPLS over Ethernet.

Gateway In the gateway model, name spaces are connected by re-
placing the name from the sender name space with a name
that is valid in the receiver name space. This model uses
the label switching mechanism from Section 3.5. It requires
a path setup mechanism to set up name translation in each
sending direction. Examples are NAT, MPLS, or DNS/IP
translation.

In both models, names need to be mapped from one name space
to another. These mappings can be statically configuredser u
on-demand resolution (cf. Section 3.4), such as ARP or DNS, o
path setug{see below). In contrast to previous work, the “leads-to”
relation provides a single framework for both the Overlag dime
Gateway model and thus allows analysis of end-to-end corismun
cation paths and reachability in compound name spaces.

A communication message that traverses multiple name space
connected through the overlay model carries multiple soamd
destination names that characterize the past and futunegbdihe
message. It is desirable for the logical stack of destinatid-
dresses to be sufficient to reach the destination and at the sa
time, for the logical stack of source address to be suffidcentach
the source object. We can define this formally:

Deliverability A messaggom@*A is deliverable tdB, if and only
if pm@*A — m@YB.

Returnability A messagepm@*A is returnable tcC, if and only
if Ira(p) : ra(p)mM*A— m@YC wherera(p) is some suitable
transformation function op atA.

Returnability has been studied previously by Zave [25].

If an overlay peer's name has only local scope and is not suf-
ficient for returnability to that peer, we call it weakname. In
this case, it needs to be combined with an underlay ASE’s name
form a complete name. For example, a transport layer pat {e.
UDP or TCP) is only used for local demultiplexing and needs to
be combined with an IP address to completely identify thastra



port instancé. In case of a weak overlay name, the delayed pop
mechanism introduced in Section 3.5 needs to be used toamaint
returnability.

Note that returnability does not require path symmetry. rEve
if both the overlay and underlay name are complete, that does
guarantee that the return path towards the overlay peealacgoes
through the previous peer in the underlay. For example, Hth
and MAC addresses are complete, but it is not necessaryhbat t
return path to an IP sender uses the same previous MAC hog as th
forwarding path.

Also note that local mapping state at intermediate ASEswallo
a separation of concerns, in effect, late binding of dettinaad-
dresses to paths. Compared to a fully-qualified “path narime”,
stead of only naming the successor, each name is then arredere
to a path segment. This trade-off has been previously destri
using the terms ‘header state’ and ‘table state’ [4].

4.2 Path Setup

To allow path setup in a compound name space, a protocol heade
can carry gath labe| in addition to source and destination names.
This label, which is carried by an implicit or explicit corgi®n
setup message, allows an alternative specification ofrehuiity
(in addition to source addresses) and is used for path se¢gh-m
anisms needed for the gateway model of combining name spaces
An example is the MPLS path setup. The path label carried alla ¢
setup message must allow deliverability of its responseprae-
tice, the role of the path label is assumed either by a spfeidlin
a protocol header, for example in network control messagean
existing source identifier is re-used. The operatiswsapandnop
can be used to modify the path label and seem sufficient to mode
most existing path setup mechanisms.

Swap - Virtual Circuit In avirtual-circuit network, such as MPLS,
the path label is swapped at each forwarding object during
call setup. Each ASE provides the successor ASE with a la-
bel that is locally unique and creates corresponding switch

ing state, such that a response message from the successog

ASE carrying the label is forwarded towards the originat ini
tiator. A path setup may involve control messages or may be
implicit, for example when a NAT node processes a datagram
from the internal to the external network.

Nop - Bridging Self-learning Ethernet bridging and reverse path
forwarding are prominent examples of algorithms that do not
modify a path label during path setup. The source address of
an incoming frame is used as returnability information te up
date local switching state. Thus, each transmitted frame im
plicitly triggers a control operation without any modifigai
to the header stack.

It is important to note that a path setup mechanism reliefen t
availability of naming and forwardingiithouta pre-existing path.

In practical terms, this means that path setup requires estirgx
datagram forwarding mechanism and routing process, whéeh d
faults to direct communication.

The path setup mechanisms described above follow the unidi-
rectional receiver-initiated model for path setup where phhede-
cessor ASE assigns a label that the successor ASE can then us
for upstream communication. This is the simplest case ftin pa
setup, because it requires the fewest assumptions betveszs. p
The alternative, traditional sender-oriented path setlips on the

2strictly speaking, a protocol number is also a weak name, but
for convenience, many Internet protocol numbers are glplstén-
dardized.

additional assumption that both predecessor and succelsamr a
name scope, which in turn requires point-to-point commatign
between peers.

4.3 Control Primitives

Similar to the forwarding primitives in Section 3.6, we ioduce
control primitives that implement the functionality dissed in the
previous section. We augment the ASE definition, such therit
update its local switching table and/or create and sendlg negs-
sage carrying information from the local switching table.

e update(ase, string, ase, string)

The update operation is used to modify the mappings in the
local switching table. The first two arguments specify the in
dex and last two arguments the value. Since mappings con-
tain a set, more than one operation would typically be used
to manage it. However, we only specify a single primitive
that either adds an element to the set or clears the set, if the
value arguments are both empty.

string getlabel (message)
This operation reads and returns the path label, if appicab
to the ASE.

setlabel (message, string)
This operation sets the path label, if applicable.

message create(opcode)
This primitive creates a new message. A control message is
tagged with the appropriate opcode.

message response(message, opcode)

This ASE-specific operation creates a response message us-
ing the available response information (source names and/o
path label). In particular, the response primitive chooses
the appropriate returnability information from either s
names or the path label.

PROCESSING

It turns out that the fundamental elements for message gsoce
ing can be expressed as a small number of procegstigrns
using the primitives described in Sections 3.6 and 4.3. 8W&Es
that exchange explicit control messages tag such messaéiesbn
stractopcodeghat can be thought of as extra names in the protocol
header. We use patterns, primitives, and opcodes to abigtdze
scribe a basic ASE in pseudo-code. Actual ASEs are thenetteat
by refining the basic ASE, for example through inheritanclisT
abstract design forms the basis of our implementation tchire.

In the prototype, ASEs are implemented as Click elements [14

5.1 Abstract Processing

The pseudo-code in Figure 2 shows the main processing rou-
tine for an ASE. It forwards messages according to the “l¢atls
relation, but also invokes control operations when necgsSehe
ct1 () primitive returns the control opcode, if the message is a con
trol message. In reality, not all ASEs will require all fuitstality,
so the routine below is that of a conceptual “Super-ASE"nfro
which ASEs can be derived by specialization.
€ We logically partition the overall processing into severadcess-
ing patterns and discuss each one below. It is worth notiagthis
small code snippet is sufficient to model circuit switchirgtual
circuit switching, and packet forwarding, as well as pattugeand
name resolution. This hints at the power of our axiomationia
work. In a real implementation, each pattern would likelyiime
plemented as a separate subroutine.



process(ase prev, message msg) {
bool setup = (ctl(msg) == SETUP
|| prev in this->SETUP_ASE);
string lin, lout;
if (setup) lin = lout = getlabel(msg);
string n = pop(msg) ;
{<ase, string>} S = lookup(prev, n);
if (!S && this->RESOLVE_ASE) {
resolve(n); // wait for S update
S = lookup(prev, n);
}
for each <ase, string> s_i in S {
if (s_i.ase == this) { // local
if (ctl(msg) == RLOOKUP) {
respond(prev, msg, n, s_i.string);
} else if (ctl(msg) == RUPDATE) {
rupdate (msg) ;
} else {
// other local control activity
}
} else { // forward
message outmsg = copy(msg);
push(outmsg, s_i.string);
if (setup) {
if (VC) lin = local_name(prev, n);
update(s_i.ase, lin, prev, lout);
setlabel(outmsg, lin);
}
send(s_i.ase, outmsg);
}
}
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Figure 2: Main Processing Routine

5.2 Processing Patterns

TheForward pattern is used for regular forwarding of data mes-
sages and can be found in lines 6,7,12,22,23,2%otess (). In
Section 6.2, we give a proof in a formal logic that this codelien
ments the forwarding functionality described in Sectidf 3.

The Setup pattern is used for forwarding path setup requests. An
ASE may be configured, so th&&tup is the default action when
messages arrive from certain predecessor ASEs, which #ez-co
tively termed SETUPASE for that ASE. AlternativelySetup is
triggered by a special control message carrying the SETUP op
code. This is shown iprocess(), lines 2-5. In lines 24-28,
the boolearvc value is another configuration parameter and deter-
mines whether the setup operation will implement the Virtia-
cuit or Bridging version of path setup, as introduced in ®ect.2.

In the VC caselocal name(prev, n) either determines which
local name is currently used to replacprev, n>, or finds and
assigns a new available local name. This can be done withaa sep
rate table, or by indexing the value side of the local switghable.

The Resolve pattern initiates a remote resolution request, if nec-
essary, and swaps or pushes the resulting name into the gmessa

We mandate that a resolving ASE has a predefined successqr ASE

termed RESOLVEASE, to which it forwards resolution requests.
In the pseudo-code in lines 8-11, if a hame cannot be resolve
locally, distributed resolution is invoked. This is donangsthe
resolve() function, shown below, which creates an RLOOKUP
message, using the requested name as destination address.

resolve(string n) {
message outmsg = create(RLOOKUP) ;
push(outmsg, n);
send (this->RESOLVE_ASE, outmsg);
wait_for_rupdate(n);

}

We eliminate the asynchrony typically involved with dibtrted
resolution, by modellingesolve() as a synchronous procedure
that blocks until a name is resolved. This is expressed kg 3in
which waits on a condition for the particular name. The corre
sponding signal is sent hyupdate (see below).

The Response pattern is used when a remote lookup request ar-
rives, detected through the RLOOKUP opcode, and the reggiest
name is found in the local switching tableThe branch is shown in
process() inline 14 and 15. The actual response functionality is
shown in the helper functionespond () below. Theadd_data()
primitive models the reply part of the name resolution peotothe
details of which are currently outside the scope of our fraoré.

respond(ase next, message m, string nl, n2) {
message outmsg = response(m, RUPDATE);
add_data(outmsg, nl, n2);
send(next, outmsg);

}

The RUpdate pattern is invoked on receipt of a response to a
resolution request. The corresponding branch is showmesliL6
and 17 ofprocess (). The code forrupdate () is shown below.

a b wWwNPE

rupdate (message msg) {
string nl = get_data(msg);
string n2 = get_data(msg);
if (!'this->RESOLVE_SWAP) n2 = nl + n2;
update (*, nl, this->FORWARD_ASE, n2);
signal_to_resolve(nl, n2);

}

After a resolution reply has been received, its informai®ax-
tracted using thget_data() primitive (lines 2-3), which corre-
sponds to thedd_data() primitive introduced before. Depending
on the resolver type, the configuration parameter RESQBYRAP
determines whether a name is replaced after translatiorhether
the resolved name is prepended during forwarding (line 4)lan
cal switching state is updated accordingly (lines 5-6). plevious
ASE field is left unspecified and matches any later requestlfyj
the condition for this name is signalled (line 7), such thatolve
can resume its operation.

~No b~ wWNPE

6. FORMAL SEMANTICS

We present the formal semantics of the primitive operatioins
Sections 3.6 and 4.3 in an axiomatic style using logicalrtisss
[10]. This proof framework is paradigmatic in providing gerous
basis for verification and formal proofs of correctness aftpcols
and their implementations, and justifies calling our frarogw/ax-
iomatic”. This style allows us to specify and verify the beioar of
networksabstractlyby using properties specified in a logic, rather
than in terms of lower-levadperationaldescriptions usingbstract
machines Being a symbolic proof system that supports compo-
sitional reasoning, it is well suited for machine-assispedofs.

dWhile assertional style and temporal logic techniques Hazeen

used in reasoning about protocol designs and their conipo$i,

3We store both switching and translation mappings in thechivigy
table.



25], we are unaware of any previous work that has presentaedd-o
style axiomatic rules for reasoning about network conrégtiand
believe this to be a novel contribution.

Underlying mathematical domains. For reasoning about the be-

haviour of ASEs, we assume that we have a sound and complete

axiomatization of the underlying multi-sorted algebramguising:

e atypestring with concatenation operator.

e messages, of typmessagewith special operationsetlabel
and getlabelfor setting and extracting labels in messages.
These satisfy the equation
getlabe(setlabe{m,n)) = n for all messagen, string n.

e pairs of typeasex string, with pair-forming and projection
operationg._, ), -.aseand_.stringrespectively, with the stan-
dard equational properties.

e the type ofControl Opcodes

e switching tables with entries drawn from the above datagype
and with the operatioff [u — V] of augmentation ofl with
the entryv € T[u].

Assertion Language.Properties or assertions concerning elements

drawn from these data types are expressed in a subset of
order language with equality over expressions, includirgé with
variables, denoting objects from these data types. Letvagtdble
6 (possibly with subscripts and superscripts) range overdirder
formulas in this language. We assume familiarity with fiostler
logic, particularly with the notion of substituting an ergsione

for all free occurrences (i.e., those not bound by a quantifier) of a

variablex in a formulad, which we write afe/x.

In addition to this first-order language, we assume the difimi
of the “leads-to” relation given in Section 3.2. Behavidymaper-
ties concerning connectivity are expressed in a limite@mesibn of
the first-order language with this inductively defined poadie: Let
¢ be atypical formula in this language:

¢ =0 |m@y—m@z|$p1Ad2| 1V 2] 0D | VX1 |Ix1

Substitution is extended to formulas of the fogm

Note that we allow sub-formulas of the form@y — nv @z only
in positivepositions, i.e., those not under any explicit or implicit
negation. This is because the “leads-to” relation is inidebt
defined, and therefore requir@sonotonicityin its interpretation.
Note that all the concepts we have defined so far (delivetgbil
name for an ASE, address, scope, etc.) satisfy this conditio

6.1 A Hoare-style Logic with “Leads-To”

The axioms and inference rules are given in termsHofre
triples ¢1 {P} ¢2, whereP is a statement or program fragment,
and ¢1 and ¢, are called gore-conditionand post-conditionre-
spectively. The interpretation is that if preconditi¢a holds, and
P is executed to completion, then post-conditipnholds in the re-
sulting state. Note that in the case of communication netsydhe
notion of “state” has two component classes: (i) The intesteate
of local variables within each ASE, which affects and is etiéel by
the local program execution; this is abstractly capturedobyula
of the form 6. (ii) The network connectivity state, which is dis-
tributed by nature and affected by the contents of the switcta-
bles and by the communication primitiveend andreceive. The
programP is written usingstatements$n the language comprising
the primitives, enhanced with assignment, sequencingoraaif’
construct and conditional constructs.

The semantic framework is presented using inference riilibeo

form % where % is a single Hoare triple, called tlmnclusion

Assignment ICCREEDY ]
- p1{P}¢o 2 {Po} ¢3
Sequential $11PLP: T B3
Ab) {P, A—=b) {P,

IfThenElse (CC {:)Lf{ blihtn P(lcelse E}ﬁ ?

¢Ab) {P ¢A=-b) D
I
ForEach Glci/c] {P} ¢; foreachci €S

G {for each cin S{P}} /\4),

$p1{P}¢2 F¢1D¢1 +¢2D¢;
Consequence o7 1P} 6,

Figure 3: Hoare Logic Rules for a Simple Sequential Language

and &7 consists of 0 or more Hoare triples, calladsumptions

-a first The interpretation of the rules is thatafl assumptions hold, then

the conclusion also holds. Rules with no assumptions ateccal
axioms

Figure 3 lists the rules that we inherit or adapt from Hoagido
for traditional sequential imperative languages [10]. €fe that
the “Consequence” rule allows us to strengthen preconditand
weaken post-conditions, and is vital in that it connectsrtiezh-
anistic syntax-directed approach of manipulating forrauia the
mathematics of the underlying domain, and supports moitylar
and compositionality of the framework.

We focus on the rules particular to our primitives, which wege
as axioms in Hoare logic. The next set of rules formalize i
itives that operate locally on messages.

e n = pop(m);

m=pni A¢[ni/m, p/n] {n = pop(m);} ¢

e W = copy(m);

¢[m/w {w = copy(m); } ¢
¢[nm/m] {push(m,n)} ¢

The operationpop and copy have been embedded in an assign-
ment statement. The rule for the mutable operatiop employs
concatenation op to ' to decompose message

Primitiveslookup andupdate operate locally on the switching
table at an ASE, assumed to Aén the following rules.

e push(m,n)

e S = lookup(B,n);

¢[Sa[B,nl/S {S = lookup(B,n);} ¢

The set of table entries & [B, n] replace the set-valued vari-
ableSin the property to be shown.

e update(B,n,C, p)

¢[Sal(B,n) — (C, p)] {update(B,n,C,p)} ¢

If assertiong is to hold after the update @&, then in the
prior state, it should hold of a table that was equal to

Sal(B,m) — (C, p)].



The communication primitivesend and receive operate on
the “leads-to” relation. The following rules are assumedperate
at ASEA.

e (X,m) = receive();

@[ /m,B/X] {(X,m) = receive();} p AC

where¢ = mM@B* — m@*A. This rule implements LT1,
and otherwise resembles an assignment of values to vari-
ables.

send(C,m) #1 {send(C,M)] ¢

where¢p = 6 D m@x — Mm@y and ¢ = 6 > (M@x —
m'@yV (M @x — m@AC A m@AC — m’@y)). For conve-
nience, we assume thatis of the formé > m'@x — m’ @y.

This is not a serious limitation, since the formulas in which
we are interested can be converted via De Morgan laws and
other meaning-preserving logical transformations in a-log
cal combination of formulas of this form or of foré, which

can then be individually handled.

We “split” any m@x — m’ @y formula into two disjuncts, one

of which is merely a copy whereas in the other we interpose
m@AC. The idea is a symbolic realization of the fact that
either the original formula held irrespective of this send o
eration, or it is achieved because of this send operatiois Th
intuition is based on the algebra paths— there is a path
from x to y either if there is a direct path not going through
A, or else there is a path fromto A, and a path fronA toy.

The rules forgetlabel(m) and setlabel(m,n) are quite
standard.

¢lgetlabe(m)/I] {I = getlabel(m);} ¢

¢[setlabe(m,n)/m| {setlabel(m,n)} ¢

For lack of space, we omit the rules for the remaining priveii
such agtl, create andresponse. These are standard and do not
differ greatly in structure from the rules for the messagerafions.

6.2 An Example Proof: Correctness oforward

We illustrate the power of the formalization by presentinga-
notated proof of correctness of tRerward pattern of Section 5.2.
The code in Figure 4 is extracted from the pseudo-code of@est
by considering the program patrtition (or conditioned glidealing
with pure forwarding, and removing typing information. Bram
slicing and partitioning [23] are increasingly gaining currency as
pragmatic techniques used in the verification of large sarfitw

The desired post-condition is that if a messpg® is at the ASE
A’s input port fromB, then a transformed message is place at each
of A’s corresponding outgoing port for each entry {&; p) in A's
switching table, formally written as:

/\ o (PWD@BAH(s.string)nb@AsAase)
ses

By predicate transformation of the post-condition throtigg pro-
gram in the backward direction, using the axioms given apose
get averification conditiorthat

se Sfprev,p] O (pmy@BA — (s.string)my@AS2se
A (s.string)my@AS 358 — (s.string) my@AS29)

follows from the preconditionprev= BAm= pmy A 3BA This is
easy to establish from the definition of “leads-to” and by Lar®i

— —Pre :prev=BAm= pmp A IBA

se Sy[prev,p] O (pmy@BA — (s.string)my@ASase
A (s.5tring)My@AS 35— (s.string) my@AS 29

(6) n = pop(m);
se Sylprev,n] O (pmp@BA — (s.string) m@AS2ase
A (s.string)M@AS35€ — (s.string) my@AS359)
(7) S = lookup(prev,n);

s€S D (pmy@BA — (s.string)m@Asase
A (s.string)M@AS3S€ — (s.string) my@AS3%9)
(12) for each s in S{

s €S D (pmp@BA — (s .string) M@AS 25€
A (S.string) M@AS 3¢ — (5 .string)my@AS-258)
(22) outmsg = copy(m);
s €S D (pmp@BA — (s.string)outmsgAS-ase
A (S.string)outmsgAS-25€ — (s.string) my@AS-35€)
(23) push(outmsg, s.string);

5 €S D ((pm@PA — outmsgAS-ase
A OUtMSEDAS-35€ —; (5.string)My@AS 359 v ...)
(29) send(s.ase,outmsg);

S €S D (pm@BA — (s.String)my@AS 259
(31}
— —Post:Ages O (PM@BA — (s.string) my@AS259)

Figure 4: Correctness Proof ofForward

LT4. For readability, we have omitted the irrelevant disjuthat
arises fromsend.

6.3 Towards Verified Protocols

Similarly, we can verify the correctness of tBetup pattern, es-
tablish in terms of aeturnability property. This involves show-
ing that if a messag@m@*A is returnable taB, and if pm@*A
leads to a messagem@VYC that is returnable t@, then (provided
path setup is requested), by the action of Setup pattern onA’'s
switching table, the messagém@VYC is returnable tdB. The proof
relies on the existence of transformatiog-) which is construc-
tively demonstrated by the action 8&tup.

From the correctness &forward andSetup, it becomes possible
to show the implementations of/erlayandgatewaycompositions
of name spaces are correct. In the overlay case, the prooifrew
showing that tunnels between ASEs in the scope of the unyderla
name space induce tunnels between certain ASEs in the s€ope o
the overlay name space. A crucial lemma in verifying trafil
layered architectures is that the overlay and underlay repaees
are disjoint. Additional facts used in the proofs are thatcpss-
ing at each ASE divides a name space ifibitely manyclasses
(based on its neighbourhood connectivity); furthermore gwploit
the uniformity in how names in the same class are mapped in the
tables.

The correctness of the name space compositions provide-modu
larity results that can assist in the proofs of correctndsoo in-
stance, the NAT example of Section 7.1. Here we need to ésftabl
the correctness of e.g., the TCP-IP and IP-Ethernet o&ridne
NAT gateway composition, and that, e.g., adjacent Ethebjetcts
share a name space.

We intend to verify a large variety of communication protksco
using our techniques. Future work on the theoretical fotinda
includes a formal proof of soundness of the axiomatic seitgnt
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Table 1: NAT Example - Lookup Table (6 = proto num)
[ ASE | Index Namep Value Namep |
TCP | IPdst/src, TCPdst/src | |Pdst/src, TCPdst/src
1P IPdst IPgw, IPdsth
up IPdstP IPdst
NAT | IPdst/srch, TCPdst/src| IPdst/src’P, TCPdst/src’
up IPdst/srch, TCPdst/src| IPdst'/srch, TCPdst'/src

ARP | IPgw MACdst/0

up ctl opcode N/A (ctl response)
ETH | MACdst MACdst/src

up MACdst/0 (%]

with respect to operational semantics. While we have infdiyn
checked the soundness, such a result is best substantiiletthey
help of a formal machine-checked proof using a theorem prove
We also intend to explore the expressive power of the logid, a
investigate its relative completeness.

7. EXAMPLES
7.1 TCP over NAT

We outline a non-trivial example of TCP over IP over Ethernet
communication in the presence of a NAT network element along
the IP path. The setup of ASEs and direct communication i&sho
in Figure 5. TCPdi and TCPde refer to TCP demultiplexers, and

TCPi and TCPe are the actual TCP instances. Table 1 gives an

overview of the header fields that are used to index the |laziath-

ing tables and the values that are returned. If applicabke fitst
row for an ASE shows the used fields for messages arrivedghrou
connections leading to the ASE in downward direction andste
ond one for those in upward direction, as shown in Figure 5 Th
ASE entries of the switching table are omitted for brevity.

Table 2: NAT Example - ASE Configuration

[ ASE | Config Parameter| Value |
NAT class VC true
NATO/1 objects| SETUPASE IPn
ARP class RESOLVESWAP | false
ARPx objects | RESOLVEASE ETHXx

NAT module also performs a path setup following Setup pattern
from Section 5. The whole five-tuple of IP and transport naises
used as a path label, although only the source port is useddafi
free local name. Because outgoing packets need to be adstgme
proper IP source address, IP forwarding must happen befaie N
processing and it is easiest to model one NAT instance perrexdt
interface. On the return path, packets need to be proceyds4b
first, since they must have the internal destination addestsred,
before being forwarded by IP. In Table 2, we summarize theroth
necessary configuration values for this example.

7.2 Other Examples

We now sketch key some other scenarios that can be described
using our framework.

e DNS DNS conceptually permits two operations: (a) the in-
stallation of a translation and (b) the use of this transtati
for resolving DNS names to IP addresses. The manual regis-
tration of a DNS name is outside the scope of our work. Once
installed, this translation is reached BN S-name-basefdr-
warding of a resolve request to the appropriate ASE, which
elicits a response with the translation, causing the ilztah
of local state using thRUpdate pattern.

e Hierarchical Mobile IP The key concern of any host mo-
bility protocol is the registration of the mobile node aloag
hierarchy of anchor points and subsequent packet forward-
ing along anchors to the mobile host. This can modelled as
the bridging path setup pattern between mobility agents and
anchor points.

e |13 Using our framework, 13 [21] becomes a straightforward
implementation of “leads-to” with Chord [22] as the routing
process. When the outermost I3 identifier is exactly matched
in the local switching table, the message is potentiallyitep
cated. For each copy, the outermost identifier is replaced by
a stack of identifiers (which may be empty) and fed back into
the I3 ASE, or, if all I3 identifiers are removed then, the mes-
sage is forwarded to the IP ASE. If there is no match, the
message is forwarded according to Chord forwarding rules.

8. PROTOTYPE

Besides formally studying the axioms using Hoare logic, we
have implemented a prototypmiversal Forwarding Engine (UFE)
in the Click environment [14], a framework for building fléke,

Application ASEs are modelled as black boxes that create and configurable routers. A Click router configuration is spetifby
consume messages. Because TCP ports are weak names and aegedirected graph o€lick elementsvhere each element defines a

valid only in the context of IP addresses, a sending TCP AS& mu
include the IP addresses into the message header and tle rece
ing TCP demultiplexer also uses the IP addresses to demeultip
to individual TCP objects. For outgoing packets, IP preetig
gateway’s IP address to the packet, which is later resolyediRP

into the MAC destination address. ARP instances commumicat
with each other using RLOOKUP and RUPDATE to perform re-
mote ARP lookups. In addition to forwarding outgoing pasket

simple router function such as queueing, scheduling, oatipg

a field of a packet. Each ASE is implemented as a Click element.
However, unlike most traditional Click elements, an ASEreep
sents a more complex unit of processing, such as IP forwgydin
rather than just a simple function. Click elements are im@eted

in C++ and form the core of the Click runtime system. The gyste
is configured at runtime by interpreting a configuration fildaich
specifies how and which elements are connected to each other.
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We use a hybrid approach of inheritance and meta-compilatio
to produce the Click implementation and configuration. Toene
plete development process is shown in Figure 6. The coreeglem
of the UFE is amASE base classvhich provides implementations
for all processing patterns. For rapid prototyping, the A&Se
class provides templates for common data structures angpeth-
tional primitives. The base class also provides helpertfans that
are needed for practical protocol implementation. Whenhioed
with an ASE configuration file, our base class is sufficientéo-g
erate a C++ implementation of an ASE as a Click element. In ad-
dition, parts of the ASE base class can be refined using iiainee,
by providing protocol-specific implementations of dataistures
and primitives, or even patterns. This allows for a gradraaigfor-
mation of an initial functional protocol prototype, which simple
and analyzable, into a more realistic and efficient impletagon.

of yacc code, and the element meta-compiler is 158 lines of ya
code. Our Ethernet bridge, described in 21 lines of metgtlage
compiled to 91 lines of C++ in a Click element. When compiled
into the Click runtime, we were able to successfully briddbee-

net frames between two segments. We have also built, useng th
meta-language, an IP forwarder, and a NAT middle-box.

9. DISCUSSION AND CONCLUSION

Our work brings together three research threads that span th
networking and formal verification communities. The firstethd
is that of using formal notation to compactly and preciselydei
network communication, and, in particular, communicatiorthe
Internet. This allows us to derive elementary axiomaticatbund
forwarding and control operations. Second, we exploit dhath
techniques in formal verification to prove the correctneksad-
work protocols composed from these operations. Finallyymrk
builds on extensive past work in rapid protocol prototypiiée use
meta-compilation to translate from a protocol expressedrims of
elementary operations to a C++ implementation that can lredm
ded in the Click engine and incorporated into the Internet.

It is illuminating to compare our definition of names and ad-
dresses to that in common use. Commonly, the name of an dbject
a 'human-readable’ string, and the address is a 'machiadatade’
location. Names are meant to refer to entities, and addsemse
meant to get to them. This is, of course, incorrect when facigul
name-based forwarding and address masquerading. Byytighit
pling the act of communication with the concept of a name and

We summarize below the information and operations that need Precisely specifying the scope of a name, we not only aclgene

to be adapted to each ASE:

e Names and Statelt is necessary to specifyreame masknd
alabel masko describe which header fields are to be trans-
formed into the forwarding prefix and, if applicable, which
are used as the path setup label. Also,rdsponsedransfor-
mation must be documented for those ASEs that perform dis-
tributed resolution. Without further specialization, tieneric
switching table contains just mappings from a pair of ASE-
and-string to a pair of ASE-and-string. For efficiency, one
can refine the table format, along with tleekupandupdate
operations, and use specialized data structures.

e ASE Type Configuration VC and RESOLVE_SWAP specify
how an ASE type implements ti&stup or Resolve pattern,
respectively.

e ASE Object Configuration The variableSETUP_ASE con-
tains a list of ASEs for whicl®etup is the default action and
RESOLVE_ASE defines the successor ASE to which remote
resolution requests request are sent.

e Protocol Glue A protocol element needs to be configured

and/or refined to adhere to standardized protocol specifica-

ceptual clarity but also can resolve a host of conceptutalfst For
instance, an IP addreisan address in the public IP scope, but de-
volves to a name within a NAT gateway that bridges name scopes
Similarly, a “toll-free” numbeiis an address until it reaches a trans-
lation table, that then translates it amotheraddress in the same
scope. These distinctions are possible because of theisitypl
and clarity of our axiomatic framework.

Our axiomatic approach allows us to discover heretoforeldrid
isomorphisms. For instance, it is easy to see that NAT isntisdly
the same as RSVP-TE or ATM, in that it sets up a forwardingetabl
that translates between name spaces. These name spacks are t
public and private IP name spaces, which are, in principfeilar
to the VCI spaces in ATM. Even more interestingly, the sanmgar
ing of name spaces is accomplished in Mobile IP, IP multiaast
13. Therefore, the same protocol engine, with minor modifices,
can be used to implement these protocols! From a more pragmat
perspective, implementation optimizations for any of ehpsoto-
cols apply equally to all.

Another interesting consequence of our work is the potettdia
automatically build validated protocol implementatiop&rhaps
even in hardware. We can do so by expressing a protocol irsterm
of elementary operations, and then using a Hoare-logicrémeo
prover to prove its correctness. The same protocol can tleen b

tions and mechanisms. At the very least, the system needsmeta-compiled, perhaps to an FPGA. This would eliminatererr

to know how to add or remove a protocol header and what
the header looks like. In addition, we provide hooks for pre-
and post-forwarding operations to incorporate those proto

prone human coding of complex protocols.
Finally, we have confined our analysis to a system where the on
dynamic operations (other than message transfer itsaif)dsting

col mechanisms that we cannot yet express with our abstract tables within an ASE. It is possible to extend this in two ways

framework.

Our prototype system compiles meta-language programs com-

posed from the primitives in Sections 3.6 and 4.3 to Clickredats
in C++. We also compile from a configuration file to a corregpon
ing Click configuration file. Our meta-compilers were deyedd
using lex and yacc: the configuration meta-compiler is 15edi

First, we can consider the installation of a new ASE instandke

network. This would allow the network to update itself inpesse

to observed network behaviour. Second, we could allow nelZ AS

types to be defined and then installed in the network. Thisldvou

allow our framework to also be a basis for active networking.
Although we recognize the power of our axiomatic framework,

we also realize that it has several significant limitatiohs.gen-



eral

I, we do not yet include performance or quality in the nioale

previously mentioned in Section 1. In short, our approacaksdmwt
consider time, errors, and physical limits. We address eash

e First, our system is oblivious to time, other than to have a

resolution request block awaiting response. This prevants
from modelling timeouts, retransmissions, etc.

9]

[10]

[11]

e Second, we assume that all transmissions are error free. So,
we cannot model many interesting phenomena driven by packet

loss. We speculate that this can be addressed jplaa-
bilistic “leads-to” relation as a natural generalization of the
“leads-to” relation.

e Finally, we assume that a message that arrives at a port will

[12]

always find room in a buffer and that the translation table is [13]

infinite. Of course, in reality these are limited and the tini
can affect protocol correctness.

Other examples of real-world artifacts not covered by tlefe-
work are parallel links, normally used for performance diatail-

ity,

or the IP TTL mechanism, which is used to mitigate theetff

of routing problems.
Due to these limitations, we are unable to express issuat rel

ing

to network performance, such as packet loss, networgesn

tion, routing oscillations and packet retransmission. Vekaenly
aware of these limitations and hope to address them in fwiark.

10
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