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ABSTRACT
The de facto service architecture of today’s communicationnet-
works, in particular the Internet, is heterogeneous, complex, ad
hoc, and not particularly well understood. With layering asthe
only means for functional abstraction, and even this violated by
middle-boxes, the diversity of current technologies can barely be
expressed, let alone analyzed. As a first step to remedying this
problem, we present an axiomatic formulation of fundamental for-
warding mechanisms in communication networks. This formula-
tion allows us to express precisely and abstractly the concepts of
namingandaddressingand to specify a consistent set of control
patterns and operational primitives, from which a variety of com-
munication services can be composed. Importantly, this framework
can be used to (1) formally analyze network protocols based on
structural properties, and also to (2) derive working prototype im-
plementations of these protocols. The prototype is implemented as
a universal forwarding engine, a general framework and runtime
environment based on the Click router.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Store and forward net-
works

General Terms
Design, Languages, Theory, Verification

Keywords
Concepts, Definitions, Naming, Addressing, Routing, Protocols

1. INTRODUCTION
Traditionally, the Internet is modelled as a graph, where each

node implements a set of protocol layers and each edge corresponds
to a physical communication link. Unfortunately, when compared
with the actual Internet, this model falls short. In the traditional
model, nodes are addressed by one or more static IP addresses.
End systems implement a simple five-layer stack, with applications
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using a transport layer to access IP, which is layered on the data link
and physical layers. Packet forwarding decisions are made purely
on the basis of IP ‘routing’ tables. Moreover, a protocol layer at
any node only inspects packet headers associated with that layer,
obeying strict rules in dealing with other layers. In reality:

• DHCP, anycast, multicast, NAT, mobile IP and others break
the static association between a node and its IP address.

• Nodes implement more layers, including IP or VLAN tun-
nels, overlays, and shims, such as MPLS.

• Forwarding decisions are made not only by IP routers, but
also by VLAN switches, MPLS routers, NAT boxes, fire-
walls, and wireless mesh routing nodes.

• Middleboxes and cross-layered nodes such as NATs, fire-
walls, and load balancers violate layering.

In face of these significant extensions to the classical model, un-
derstanding the topology of the Internet in terms of its connectivity
has become a daunting task. It has become difficult to define el-
ementary concepts such as a neighbour and peer relationships, let
alone the more complex processes of forwarding and routing.Fur-
ther, there is not even a common and well-defined language for
fundamental networking concepts, with terms such as ‘name’, ‘ad-
dress’, or ‘port’ being the subject of seemingly endless debate.

Yet, surprisingly, the system still works! Most users, mostof the
time, are able to use the Internet. What lies behind the unreasonable
effectiveness of the Internet? We postulate that all extensions to the
traditional model, no matter how ad hoc, obey a set of underlying
principles, which preserve connectivity. However, these principles
have rarely been systematically studied (with [5, 8] being notable
exceptions).

Our research goal is to axiomatically specify basic internetwork-
ing concepts that allow us to construct (a) a theoretically sound
framework to express architectural invariants – such as thedeliver-
ability of messages – even in the presence of network dynamism,
middleboxes, and a variety of compositions of different protocols,
(b) an expressive meta-language in which to rapidly implement a
variety of packet forwarding schemes, and (c) an integratedmodel
that correctly describes packet progress across multiple layers of
communication protocols. The concepts and the meta-language de-
rived from them serve not only to clarify the essential architecture
of the Internet, but also provide a bridge between formal proofs
on node reachability using a particular forwarding scheme and a
practical implementation of that scheme. Our goals are inspired by
Hoare’s axiomatic basis for programming [10]. We believe that the
conceptual clarity that arises from our work allows us to quickly
sketch the essential aspects of any type of communication network,



no matter how exotic, and apply concepts from one network tech-
nology to another.

To keep the problem tractable, we propose to split overall com-
munication functionality into two broad areas: one area is con-
cerned withconnectivity, i.e., naming, addressing, forwarding, and
routing. The second is the set of mechanisms to provide additional
functionality related to communication quality and performance.
This includes medium access control, reliability, flow control, con-
gestion control, security, among others, and is not yet explicitly
considered in this work. In particular, the framework presented
here is oblivious to time and cannot model loss and timeouts.

The paper is organized as follows. After presenting relatedwork
in Section 2, we introduce the axiomatic framework for message
forwarding in Section 3 and add control considerations in Section 4.
Section 5 demonstrates the generality of this framework by provid-
ing uniform pseudo-code for some forwarding schemes. Section 6
explores the semantic foundations with a proof system supporting
formal verification. Section 7 illustrates the practical capabilities of
our approach by compactly describing seemingly diverse network-
ing techniques such as TCP over NAT, Hierarchical Mobile IP,and
I3. Section 8 outlines a prototype implementation based on Click
and the paper is concluded with a discussion in Section 9.

2. RELATED WORK
Our work draws from and is related to a handful of other attempts

to bring clarity to Internet architecture. Clark’s seminalpaper [5]
succinctly lays out the design principles of the classical Internet,
but does not provide a basis for formal reasoning about its proper-
ties. Recently, Griffin and Sobrinho have used formal semantics to
model routing [8] and Loo et al. have used a declarative approach to
describe routing protocols [16]. Our work differs in that wefocus
on the elementary notions of forwarding, naming, and addressing.

Our work is directly related to past work in the area of naming
and addressing indirection. This has been considered both in ex-
isting technology standards, such as IP Multicast, IPv6, orMobile
IP, as well as in recent research proposals [3, 9, 17, 21]. Simi-
lar to our work, these proposals blur the traditional distinction be-
tween naming and addressing, and also consider innovative packet
forwarding mechanisms. However, to our knowledge, these past
proposals are essentially ad hoc, without a consistent set of under-
lying formal principles. In contrast, we suggest an axiomatic for-
mulation of communication principles and thereby present afirst
attempt at building a complete formal basis for reasoning about
communication systems. In earlier work, we have made an attempt
at an axiomatic formulation of communication principles [13]. The
present work is significantly more comprehensive, clearly states
the axiomatic basis, and the formalization is based on high-level
Hoare-style assertions, rather than low-level operational semantics.

Novel architectures for naming and addressing have been pro-
posed for a new generation of ‘pocket-switched’ [20], ‘ambient’
[2] and ‘delay-tolerant’ [6] networks. These new architectures are
in response to fundamentally different networking paradigms. We
believe that our formalizations are adequate to represent these non-
traditional naming and forwarding architectures.

In the past, other authors have also attempted to generalizeIn-
ternet concepts, recognizing the failure of the classical model to
adequately describe ground realities and conceptual isomorphisms.
The Multi-Domain Communication Model [24] is an example of
such a generalization. However, this, and similar generalizations,
do not have an axiomatic foundation, and therefore tend to bead
hoc. Ahlgren et al. [1] have previously suggested that the Internet
architecture has been guided by some invariants. We agree with
their viewpoint: our contribution is to formalize these invariants.
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Figure 1: Protocol Layers

In recent work, Zave [25] has used declarative semantics to de-
scribe and validate several alternative naming and bindingschemes,
especially as they relate to ‘returnability’ of a call setupmessage.
We believe that this approach is complementary to ours.

Finally, several research projects have come up with ‘protocol
engines’ that can be used to rapidly implement complex proto-
col architectures. These include the x-Kernel [11], micro-protocol
composition [15], and Click [14] that we ourselves build upon. Al-
though these systems ease the code development process, andthe
micro-protocol approach uses NuPrl to provide proofs of correct-
ness, they do not develop an axiomatic foundation. Moreover, they
do not deal with multi-hop and multi-layer forwarding and name
resolution.

3. AXIOMATIC FRAMEWORK

3.1 Definitions
Before presenting an axiomatic formulation of forwarding prin-

ciples, we define a few concepts.

• An abstract switching element (ASE)is an object that par-
ticipates in network communication and relays messages. It
generalizes a simple switching element, such as the table-
based crossbar switch in Autonet [19], to an abstract object
that is more representative of a protocol layer in a general
communication network. That is, in addition to switching
messages, an ASE can carry out more complex actions, such
as swapping header labels and encapsulating a message into
another.

• An ASE has named input and output communication ports.
These correspond to physical network interface cards orlog-
ical ports. Simplexdirect communicationfrom the output
port of an ASE to the input port of an adjacent ASE is accom-
plished by means of shared memory or a physical medium
such as cable, radio, or fibre. At ASEB, the input port from
a predecessorASEA is denoted asAB and the output port to
a successorASE C is BC. We use a lower case superscript
such asxB or Bx to express the previous or next ASE as vari-
ablex. Note that different logical ports may refer to the same
physical port. Referring to Figure 1, where each rectangle
represents an ASE, examples of direct communication are
between the TCP and IP ASEs on the same machine and two
Ethernet ASEs on the same shared medium.

• The unit of communication is amessage, which is a string
of identifiers drawn from an arbitrary alphabet. In the Inter-
net, a message corresponds to an application-level data unit,
datagram, or MAC-frame. A messagem that exists at a port
x is denoted asm@x.



• We denote with0B the logical port that is equivalent tocreat-
ing a message at ASEBandB0 the logical port thatconsumes
a message. Creation and consumption refer to a transforma-
tion of the message in or out of the realm of this theoretical
model. In Figure 1, the HTTP ASEs create and consume
application-level messages, and the TCP ASEs create and
consume acknowledgement messages.

• An ASE maintains a private set of mappings, called its local
switching table. The switching table at ASEB is denoted
as SB and contains mappings〈A, p〉 7→ {〈C, p′〉} from a
ASE-and-string pair〈A, p〉 to a set of ASE-and-string pairs
〈C, p′〉. For notational simplicity, we represent an ASEX
in local mappings asX. The switching table can be queried
through an exact lookup operationSB[A, p]. If no exact map-
ping exists in the switching table, the message is discarded.
Examples of a switching table are Ethernet or IP forwarding
tables withp′ = p (ignoring the TTL decrement operation,
for now).

3.2 The Axioms
The “leads-to” relation provides the central axiomatic formula-

tion of operations of store-and-forward networks.1 The “leads-to”
relation is denoted as→ and defined by the following four axioms:

LT1. (Direct Communication)
∀A,B,m : ∃AB,AB⇐⇒ m@AB → m@AB.

LT2. (Local Switching)
∀A,B,C,m, p, p′ : ∃AB,BC∧〈C, p′〉 ∈ SB[A, p]
=⇒ pm@AB→ p′m@BC.

LT3. (Transitivity)
∀x,y,z,m,m′,m′′ : (m@x→ m′@y)∧ (m′@y→ m′′@z)
=⇒ m@x→ m′′@z.

LT4. (Reflexivity)∀m,x : m@x→ m@x

Axiom LT1 describes direct communication between ASEs.AB

and BA exist if and only if A can directly communicate withB.
Axiom LT2 expresses the lookup and switching capability of an
ASE. Note that a messagepm is logically split into a header prefix
p and the opaque rest of the messagem during each local switch-
ing step. LT2 also covers any form of multi-recipient forwarding,
such as multicast, sinceSB[A,b] may have multiple elements. Ax-
iom LT3 splices individual forwarding steps together. These three
axioms naturally capture the simplex forwarding process ina com-
munication network, where, potentially, at each forwarding step, a
forwarding label is swapped. To simplify formal proofs of certain
reachability properties, reflexivity is axiom LT4.

To illustrate the applicability of this model, consider thespe-
cial case of LT2 wherep = p′. In this case, the “leads-to” relation
describes a single-layer forwarding system based on globaldesti-
nation addresses, such as IP forwarding. As another specialcase,
consider the absence of prefixes altogether. Then, the axioms de-
scribe a forwarding model based on input and output ports, such as
circuit switching. In general, as we demonstrate later, we claim that
the “leads-to” relation can describe arbitrarily complex multi-layer
forwarding systems.

In a real network, network messages typically contain a stack of
protocol headers that carry different types of names, such as ‘ad-
dresses’, ‘protocol numbers’, or other identifiers. The “leads-to”
relation as defined on an arbitrary message string is just an abstract

1It is inspired by Lamport’s “happened-before” relation.

representation of these forwarding mechanisms. Typically, the des-
tination identifiers (and sometimes the source identifiers)in each
respective protocol header constitute the prefixp. However, the
conceptual model works with an arbitrary subset of protocolheader
fields. Some non-trivial examples are presented in Section 7.

3.3 Communication Concepts
Based on the “leads-to” relationship, we can succinctly define

and explain a number of well-known communication concepts,be-
ginning with a formal definition of a name:

Name If ∃ ASEsA,B and prefixp 6= ∅ such that∀m :
pm@xA→ p′m@yB→ m@Bz andp′ 6= ∅,
thenp is a name forB at A.

The name of an ASE is the prefix that is removed when the mes-
sage is transmitted to this ASE. Note thatp can be a name atA for
multiple ASEs. The conditionp′ 6= ∅ ensures thatB is indeed the
ASE where the prefix or any residual of it is removed. Any string
that “leads to” a particular ASEB from origin ASEA is considered
a name forB at A. By default, names are local and relative to the
ASE from which they originate. For example, a message header
could contain a stack of labels, each of which identifies forwarding
state at subsequent ASEs (also known assource routing) along a
particular path from a source ASE to a destination ASE. The com-
plete stack of labels would then be a name for the destinationASE
relative to the source ASE.

There is no pre-existing formal and universally accepted defini-
tion for “name” in communication networks and the above defini-
tion may not match everyone’s intuition. Our model at least enables
a formal yet intuitive definition in the first place, which should add
some clarity to the debate.

Address If ∃ ASEsA,B and prefixp 6= ∅ such that∀m :
pm@xA→ pm@yB→ m@Bz,
thenp is an address forB atA.

We define an address as a special kind of name that does not
change along the path. In other words, if an ASE writes a name
into a message with the assumption that at least some other ASEs
interpret the string to send it to the same destination, it becomes an
address. Every address is also a name, but the reverse is not true.
Note thatp can be an address for multiple ASEs.

Peer If ∃ ASEsA,B and prefixesp, p′ such that∀m :
pm@Ax → p′m@yB andp′ 6= ∅ and
SA[x, p] 6= ∅ andSB[y, p′] 6= ∅, thenA andB arepeers.

Tunnel If ∃ ASEsA,B and prefixesp, p′ such that∀m :
m@wA→ pm@Ax → p′m@yB→ m@Bz andp′ 6= ∅,
thenA andB form a tunnel.

The difference between direct neighbours, peer, and tunnelis il-
lustrated in Figure 1. Peer ASEs operate on an identical portion of
the header prefix, which typically corresponds to the same protocol
header field(s). Note that tunnels are between two peers, butmay
traverse additional peers. For example, an IP sender, IP routers,
and an IP destination are peers, but not direct neighbours because
(a) they all operate on the same IP header, and maintain a local
switching table indexed by the IP destination address foundin the
IP header and (b) IP ASEs never directly communicate with each
other; they communicate through a link-layer ASE. The IP sender
and IP destination form a tunnel, because the definition of tunnel
is satisfied form = the IP payload,p = the IP header. A pair of
connected TCP endpoints also form a tunnel for similar reasons. A



pair of connected Ethernet NICs can be considered as both direct
neighbours and peers. Note that tunnels are similar to ISO proto-
col interfaces, whereas direct communication occurs over service
interfaces.

Name ScopeThe scope of a namep for a set of ASEsβ is denoted
asσp and defined as follows:
∃β : ∀ ASEsAi : p is a name forβ at Ai =⇒ Ai ∈ σp

Message ScopeThe scopeρm of a messagem@yx is defined as
the scope of the outermost destination name:
m@yx = pl@yx∧∃Sx[y, p] =⇒ ρm = σp.

If a name scope encompasses only one ASE, we call itlocal. A
set of names or addresses with the same scope is calledname space
or address spacerespectively.

3.4 Naming and Binding Revisited
We now take a detour to compare our framework and definitions

with Saltzer’s seminal work on naming, addressing, and binding
[18]. Saltzer’s work did not consider communication in distributed
systems; nevertheless, his insights are consistent with the axiomatic
framework resulting from the “leads-to” relation.

In Saltzer’s model, anameis a string that is used to refer to an
object “in the system”. We precisely define the name of an ASE to
be the string that can be used to reach it. Moreover, the concept of
a name is extended to refer to a set of objects (to support broadcast,
anycast, or multicast communication).

Saltzer uses the termbinding to refer to the establishment and
existence of a relation between a name and an object. In our frame-
work, the existence of alocal binding (i.e. local switching state)
can be stated precisely as∃(〈A, p〉 7→ 〈B, p′〉) ∈ SA. In addition,
we introduce the additional concept ofdistributed bindingthat is
established by the chain of local switching states, such that a name
“leads to” a set of objects that have a local binding for this name.
We can then definedistributed resolutionas forwarding a resolu-
tion request and getting back the appropriate response. That is,
distributed resolution can be considered as forwarding a resolution
request message using the requested name as destination address.
The forwarding of resolution requests is similar to the definition of
closurein Saltzer’s work [18], which is defined as ‘the mechanism
that connects an object wishing to resolve a name to a particular
context’.

Saltzer defines acontextas a set of bindings. A name is always
interpreted relative to some context. Both the local switching table
in an ASE, as well as the distributed context formed by a name
space can be regarded as instances of this notion.

In summary, we claim that our framework is a natural extension
of Saltzer’s single-system definitions to a communication network.

3.5 Forwarding Operations
In theory, the transformation fromp to p′ in LT2 in Section 3.2

is unrestricted, but in practice it is either apush, pop, swap, or nop
operation, as described next. In case ofpush, a new prefixq is
prepended andp′ = qp. In case ofpop, p is removed andp′ = ∅.
In case ofswap, p is replaced byp′, which usually is of equal
length. Withnop, p remains unchanged andp′ = p. Given these
transformations, it is possible to identify correspondingforwarding
operations that cover a wide range of forwarding techniquesused
in communication protocols.

Nop - Forwarding If no modification of the current name takes
place, the message is just forwarded. Ethernet bridging or
IP forwarding are prominent examples, but circuit switching
also trivially falls in this category.

Push - Encapsulation The push operation stacks a new name “on
top” of the existing stack. This is used at tunnel ingress
points, but also as a general mechanism for protocol layer-
ing, e.g., placing the network addresses in front of the proto-
col number in front of the transport ports. A special case of
push-encapsulation isroute recordingwhere the name of the
current node is added to the protocol header, as in Dynamic
Source Routing (DSR) [12].

Pop - DecapsulationThe pop operation removes the “topmost”
name from the stack. It is used at tunnel egress gateways
and the receiving side of layered protocols, as well as when
forwarding a source-routed message.

Swap - Label Switching The swap operation replaces the current
name. This is used in virtual circuit networks such as MPLS
or ATM, but also when forwarding a packet from the exter-
nal to the internal network at a NAT box. We note that, by
introducing a new name, a swap operation typically changes
the message scope.

A special consideration applies to the pop operation. When a
message is processed at an ASE, the pop operation is carried out
only if it is determined that the removed information is indeed no
longer needed to sufficiently identify the sender. Otherwise, the in-
formation is logically removed (from the viewpoint of the “leads-
to” relation), but physically stays with the message. This is a con-
figuration arrangement between ASEs, such that an upstream ASE
delays its pop operation depending on which downstream ASE a
message is forwarded to. For example, Ethernet source information
of a packet carrying both an IP and Ethernet header can typically
be removed, since the IP source address is sufficient to return to the
sender, but IP source information of an IP packet carrying a TCP
segment cannot be removed immediately, since it is needed tode-
multiplex between different TCP connections. We call thisdelayed
popand describe how it relates to the “completeness” of a name in
Section 4.1.

Using the concepts introduced so far, it is possible to describe
basic data path mechanisms of a communication network. For ex-
ample, we can precisely represent a tunnel between two TCP ASEs
that is established by a three way handshake. Similarly, a tran-
sient HTTP tunnel exists between a browser client and a web server
for the duration of the TCP tunnel between them. An HTTP load
balancer that examines the HTTP header would be a peer of the
browser, and it would also be a peer to the web server. The load
balancer is a forwarding engine, just like an IP router.

We can also describe arbitrary static forwarding scenarios, where
forwarding tables and topologies do not change over time, and
thus static switching tables are sufficient to determine thesuccessor
ASEs for forwarding. As an example, consider an IP network with
pre-configured routing tables, running over Ethernet with all ARP
lookups also pre-configured in the ARP cache, as in Figure 1.

3.6 Forwarding Primitives
The processing operations stated above can be translated into a

set of forwarding primitives that can be used to abstractly specify
ASE processing in pseudo-code. Each ASE supports the same set
of operational primitives and ASEs essentially differ onlyin the
implementation of these standard interfaces.

We first introduce the abstract data types that are necessaryto
describe the forwarding primitives. Themessagetype abstractly
refers to the internal representation of a communication message.
A string represents an arbitrary string that is taken from or placed
into a message. In an actual implementation, this would be re-
placed by an ASE-specific data structure for efficiency. Finally,



theasegeneric data type represents the ASEs in the system. Note
that we use multi-return specifications where applicable tokeep the
pseudo-code concise. The forwarding primitives below are used in
Section 5 to specify the abstract functionality of a networkelement.

• send(ase, message)

The send operation implements sends a message to the given
ASE. Because the pseudo-code does not explicitly represent
ports, the ASE is passed as a parameter.

• <ase, message> receive()

This primitive is used to receive messages and returns the
messageas well asthe ASE from which the message has
been received.

• message copy(message)

It is necessary to copy messages to implement LT2 for map-
pings in the local switching table that result a set of ASE-
and-string pairs.

• push(message, string)

The push operation is ASE-specific and adds the given string
to the message header, according to the relevant protocol
specifications for this ASE. It is a specialization of the gen-
eral p→ p′ transformation in LT2.

• string pop(message)

The pop primitive is also ASE-specific and removes and re-
turns the appropriate portion of the header prefix from the
message. It is also a specialization of thep→ p′ transforma-
tion in LT2.

• {<ase, string>} lookup(ase, string)

The lookup primitive is used to query the local switching
table. It returns the set of exact mappings found.

The specification of the “leads-to” relation in Section 3.2 as-
sumes that the switching table can only be queried through anexact
lookup operation to keep the abstract specification simple.In real-
ity, the switching tables can be more efficiently implemented with
better data structures. In particular, switching tables may use an
aggregated information representation and longest-prefixlookups
or provide adefault mappingwhich is used for all those names that
do not have an explicit mapping in their switching state. These
considerations are out of the scope of our work.

4. CONTROL MECHANISMS
With the model introduced so far, we can only describe basic

packet forwarding in a static network. However, as mentioned be-
fore, each ASE’s local switching table needs to be populatedwith
mappings in order to perform forwarding or distributed resolution
at any meaningful scale. In addition, network dynamics necessitate
dynamic updates to switching tables. We first discuss routing as the
basic mechanism to allow forwarding within a single name space.
We then study how name spaces can be combined and use this to
model on-demand path setup mechanisms.

4.1 Combining Name Spaces
The heterogeneous nature of network environments results in

different network technologies with different assumptions, goals,
and design strategies. This naturally results in a diversity of ap-
proaches for naming network elements. Different naming schemes
are appropriate for different requirements. Due to the combination
of network technologies, a message may travel through many name
spaces before reaching the destination.

Routing is the control process that creates and maintains con-
sistent forwardingwithin a name space in the presence of network

dynamics. More formally, the goal of routing is to establish, at
some set of ASEsγ , appropriate local switching table entries so
that each member ofγ has a name for each other member ofγ with
scopeγ . Routing is thus defined based on a name scope, which
through the definition of name depends on the “leads-to” relation.
Thus, a change in network topology results in a breakage of the
“leads-to” relation at some ASEs, which invalidates names.Dy-
namic routing re-establishes the “leads-to” properties throughoutγ .
By establishing consistent forwarding for a set of ASEs and names,
routing effectively transforms all names into addresses and enables
datagram forwarding. Invariants of the routing process have been
studied elsewhere, for example in [16].

We now consider how to forward messages across name spaces,
using either theoverlayor thegatewaymodel.

Overlay In the overlay model, islands of an overlay name space
are connected with each other via tunnels across an underlay
name space. This corresponds to pushing underlay names on
the header stack that enable the transmission of a message
from the ingress tunnel endpoint to the egress. The underlay
network is oblivious to the overlay naming scheme and thus
provides a transparent service between tunnel endpoint. This
model uses the encapsulation and decapsulation mechanisms
presented in Section 3.5. Examples are TCP over IP, I3 over
IP, and MPLS over Ethernet.

Gateway In the gateway model, name spaces are connected by re-
placing the name from the sender name space with a name
that is valid in the receiver name space. This model uses
the label switching mechanism from Section 3.5. It requires
a path setup mechanism to set up name translation in each
sending direction. Examples are NAT, MPLS, or DNS/IP
translation.

In both models, names need to be mapped from one name space
to another. These mappings can be statically configured, or use
on-demand resolution (cf. Section 3.4), such as ARP or DNS, or
path setup(see below). In contrast to previous work, the “leads-to”
relation provides a single framework for both the Overlay and the
Gateway model and thus allows analysis of end-to-end communi-
cation paths and reachability in compound name spaces.

A communication message that traverses multiple name spaces
connected through the overlay model carries multiple source and
destination names that characterize the past and future path of the
message. It is desirable for the logical stack of destination ad-
dresses to be sufficient to reach the destination and at the same
time, for the logical stack of source address to be sufficientto reach
the source object. We can define this formally:

Deliverability A messagepm@xA is deliverable toB, if and only
if pm@xA→ m@yB.

Returnability A messagepm@xA is returnable toC, if and only
if ∃rA(p) : rA(p)mxA→m@yC whererA(p) is some suitable
transformation function ofp atA.

Returnability has been studied previously by Zave [25].
If an overlay peer’s name has only local scope and is not suf-

ficient for returnability to that peer, we call it aweakname. In
this case, it needs to be combined with an underlay ASE’s nameto
form a complete name. For example, a transport layer port (e.g. in
UDP or TCP) is only used for local demultiplexing and needs to
be combined with an IP address to completely identify the trans-



port instance.2 In case of a weak overlay name, the delayed pop
mechanism introduced in Section 3.5 needs to be used to maintain
returnability.

Note that returnability does not require path symmetry. Even
if both the overlay and underlay name are complete, that doesnot
guarantee that the return path towards the overlay peer actually goes
through the previous peer in the underlay. For example, bothIP
and MAC addresses are complete, but it is not necessary that the
return path to an IP sender uses the same previous MAC hop as the
forwarding path.

Also note that local mapping state at intermediate ASEs allows
a separation of concerns, in effect, late binding of destination ad-
dresses to paths. Compared to a fully-qualified “path name”,in-
stead of only naming the successor, each name is then a reference
to a path segment. This trade-off has been previously described
using the terms ‘header state’ and ‘table state’ [4].

4.2 Path Setup
To allow path setup in a compound name space, a protocol header

can carry apath label, in addition to source and destination names.
This label, which is carried by an implicit or explicit connection
setup message, allows an alternative specification of returnability
(in addition to source addresses) and is used for path setup mech-
anisms needed for the gateway model of combining name spaces.
An example is the MPLS path setup. The path label carried in a call
setup message must allow deliverability of its response. Inprac-
tice, the role of the path label is assumed either by a specialfield in
a protocol header, for example in network control messages,or an
existing source identifier is re-used. The operationsswapandnop
can be used to modify the path label and seem sufficient to model
most existing path setup mechanisms.

Swap - Virtual Circuit In a virtual-circuit network, such as MPLS,
the path label is swapped at each forwarding object during
call setup. Each ASE provides the successor ASE with a la-
bel that is locally unique and creates corresponding switch-
ing state, such that a response message from the successor
ASE carrying the label is forwarded towards the original ini-
tiator. A path setup may involve control messages or may be
implicit, for example when a NAT node processes a datagram
from the internal to the external network.

Nop - Bridging Self-learning Ethernet bridging and reverse path
forwarding are prominent examples of algorithms that do not
modify a path label during path setup. The source address of
an incoming frame is used as returnability information to up-
date local switching state. Thus, each transmitted frame im-
plicitly triggers a control operation without any modification
to the header stack.

It is important to note that a path setup mechanism relies on the
availability of naming and forwardingwithouta pre-existing path.
In practical terms, this means that path setup requires an existing
datagram forwarding mechanism and routing process, which de-
faults to direct communication.

The path setup mechanisms described above follow the unidi-
rectional receiver-initiated model for path setup where the prede-
cessor ASE assigns a label that the successor ASE can then use
for upstream communication. This is the simplest case for path
setup, because it requires the fewest assumptions between peers.
The alternative, traditional sender-oriented path setup relies on the
2Strictly speaking, a protocol number is also a weak name, but
for convenience, many Internet protocol numbers are globally stan-
dardized.

additional assumption that both predecessor and successorshare a
name scope, which in turn requires point-to-point communication
between peers.

4.3 Control Primitives
Similar to the forwarding primitives in Section 3.6, we introduce

control primitives that implement the functionality discussed in the
previous section. We augment the ASE definition, such that itcan
update its local switching table and/or create and send a reply mes-
sage carrying information from the local switching table.

• update(ase, string, ase, string)

The update operation is used to modify the mappings in the
local switching table. The first two arguments specify the in-
dex and last two arguments the value. Since mappings con-
tain a set, more than one operation would typically be used
to manage it. However, we only specify a single primitive
that either adds an element to the set or clears the set, if the
value arguments are both empty.

• string getlabel(message)

This operation reads and returns the path label, if applicable
to the ASE.

• setlabel(message, string)

This operation sets the path label, if applicable.

• message create(opcode)

This primitive creates a new message. A control message is
tagged with the appropriate opcode.

• message response(message, opcode)

This ASE-specific operation creates a response message us-
ing the available response information (source names and/or
path label). In particular, the response primitive chooses
the appropriate returnability information from either source
names or the path label.

5. PROCESSING
It turns out that the fundamental elements for message process-

ing can be expressed as a small number of processingpatterns,
using the primitives described in Sections 3.6 and 4.3. Those ASEs
that exchange explicit control messages tag such messages with ab-
stractopcodesthat can be thought of as extra names in the protocol
header. We use patterns, primitives, and opcodes to abstractly de-
scribe a basic ASE in pseudo-code. Actual ASEs are then created
by refining the basic ASE, for example through inheritance. This
abstract design forms the basis of our implementation architecture.
In the prototype, ASEs are implemented as Click elements [14].

5.1 Abstract Processing
The pseudo-code in Figure 2 shows the main processing rou-

tine for an ASE. It forwards messages according to the “leads-to”
relation, but also invokes control operations when necessary. The
ctl() primitive returns the control opcode, if the message is a con-
trol message. In reality, not all ASEs will require all functionality,
so the routine below is that of a conceptual “Super-ASE”, from
which ASEs can be derived by specialization.

We logically partition the overall processing into severalprocess-
ing patterns and discuss each one below. It is worth noting that this
small code snippet is sufficient to model circuit switching,virtual
circuit switching, and packet forwarding, as well as path setup and
name resolution. This hints at the power of our axiomatic frame-
work. In a real implementation, each pattern would likely beim-
plemented as a separate subroutine.



1 process(ase prev, message msg) {

2 bool setup = (ctl(msg) == SETUP

3 || prev in this->SETUP_ASE);

4 string lin, lout;

5 if (setup) lin = lout = getlabel(msg);

6 string n = pop(msg);

7 {<ase, string>} S = lookup(prev, n);

8 if (!S && this->RESOLVE_ASE) {

9 resolve(n); // wait for S update

10 S = lookup(prev, n);

11 }

12 for each <ase, string> s_i in S {

13 if (s_i.ase == this) { // local

14 if (ctl(msg) == RLOOKUP) {

15 respond(prev, msg, n, s_i.string);

16 } else if (ctl(msg) == RUPDATE) {

17 rupdate(msg);

18 } else {

19 // other local control activity

20 }

21 } else { // forward

22 message outmsg = copy(msg);

23 push(outmsg, s_i.string);

24 if (setup) {

25 if (VC) lin = local_name(prev, n);

26 update(s_i.ase, lin, prev, lout);

27 setlabel(outmsg, lin);

28 }

29 send(s_i.ase, outmsg);

30 }

31 }

32 }

Figure 2: Main Processing Routine

5.2 Processing Patterns
TheForward pattern is used for regular forwarding of data mes-

sages and can be found in lines 6,7,12,22,23,29 ofprocess(). In
Section 6.2, we give a proof in a formal logic that this code imple-
ments the forwarding functionality described in Section 3.5.

TheSetup pattern is used for forwarding path setup requests. An
ASE may be configured, so thatSetup is the default action when
messages arrive from certain predecessor ASEs, which are collec-
tively termed SETUPASE for that ASE. Alternatively,Setup is
triggered by a special control message carrying the SETUP op-
code. This is shown inprocess(), lines 2-5. In lines 24-28,
the booleanVC value is another configuration parameter and deter-
mines whether the setup operation will implement the Virtual Cir-
cuit or Bridging version of path setup, as introduced in Section 4.2.
In the VC case,local name(prev, n) either determines which
local name is currently used to replace<prev, n>, or finds and
assigns a new available local name. This can be done with a sepa-
rate table, or by indexing the value side of the local switching table.

TheResolve pattern initiates a remote resolution request, if nec-
essary, and swaps or pushes the resulting name into the message.
We mandate that a resolving ASE has a predefined successor ASE,
termed RESOLVEASE, to which it forwards resolution requests.
In the pseudo-code in lines 8-11, if a name cannot be resolved
locally, distributed resolution is invoked. This is done using the
resolve() function, shown below, which creates an RLOOKUP
message, using the requested name as destination address.

1 resolve(string n) {

2 message outmsg = create(RLOOKUP);

3 push(outmsg, n);

4 send(this->RESOLVE_ASE, outmsg);

5 wait_for_rupdate(n);

6 }

We eliminate the asynchrony typically involved with distributed
resolution, by modellingresolve() as a synchronous procedure
that blocks until a name is resolved. This is expressed by line 5,
which waits on a condition for the particular name. The corre-
sponding signal is sent byrupdate (see below).

TheResponse pattern is used when a remote lookup request ar-
rives, detected through the RLOOKUP opcode, and the requested
name is found in the local switching table.3 The branch is shown in
process() in line 14 and 15. The actual response functionality is
shown in the helper functionrespond() below. Theadd data()

primitive models the reply part of the name resolution protocol, the
details of which are currently outside the scope of our framework.

1 respond(ase next, message m, string n1, n2) {

2 message outmsg = response(m, RUPDATE);

3 add_data(outmsg, n1, n2);

4 send(next, outmsg);

5 }

The RUpdate pattern is invoked on receipt of a response to a
resolution request. The corresponding branch is shown in lines 16
and 17 ofprocess(). The code forrupdate() is shown below.

1 rupdate(message msg) {

2 string n1 = get_data(msg);

3 string n2 = get_data(msg);

4 if (!this->RESOLVE_SWAP) n2 = n1 + n2;

5 update(*, n1, this->FORWARD_ASE, n2);

6 signal_to_resolve(n1, n2);

7 }

After a resolution reply has been received, its informationis ex-
tracted using theget data() primitive (lines 2-3), which corre-
sponds to theadd data() primitive introduced before. Depending
on the resolver type, the configuration parameter RESOLVESWAP
determines whether a name is replaced after translation or whether
the resolved name is prepended during forwarding (line 4) and lo-
cal switching state is updated accordingly (lines 5-6). Theprevious
ASE field is left unspecified and matches any later request. Finally,
the condition for this name is signalled (line 7), such thatresolve

can resume its operation.

6. FORMAL SEMANTICS
We present the formal semantics of the primitive operationsof

Sections 3.6 and 4.3 in an axiomatic style using logical assertions
[10]. This proof framework is paradigmatic in providing a rigorous
basis for verification and formal proofs of correctness of protocols
and their implementations, and justifies calling our framework “ax-
iomatic”. This style allows us to specify and verify the behaviour of
networksabstractlyby using properties specified in a logic, rather
than in terms of lower-leveloperationaldescriptions usingabstract
machines. Being a symbolic proof system that supports compo-
sitional reasoning, it is well suited for machine-assistedproofs.
While assertional style and temporal logic techniques havebeen
used in reasoning about protocol designs and their composition [7,

3We store both switching and translation mappings in the switching
table.



25], we are unaware of any previous work that has presented Hoare-
style axiomatic rules for reasoning about network connectivity, and
believe this to be a novel contribution.
Underlying mathematical domains. For reasoning about the be-
haviour of ASEs, we assume that we have a sound and complete
axiomatization of the underlying multi-sorted algebra, comprising:

• a typestringwith concatenation operator.

• messages, of typemessage, with special operationssetlabel
and getlabel for setting and extracting labels in messages.
These satisfy the equation
getlabel(setlabel(m,n)) = n for all messagem, stringn.

• pairs of typease× string, with pair-forming and projection
operations〈 , 〉, .aseand .stringrespectively, with the stan-
dard equational properties.

• the type ofControl Opcodes.

• switching tables with entries drawn from the above data types,
and with the operationT[u 7→ v] of augmentation ofT with
the entryv∈ T [u].

Assertion Language.Properties or assertions concerning elements
drawn from these data types are expressed in a subset of a first-
order language with equality over expressions, including those with
variables, denoting objects from these data types. Let metavariable
θ (possibly with subscripts and superscripts) range over first-order
formulas in this language. We assume familiarity with first-order
logic, particularly with the notion of substituting an expressione
for all freeoccurrences (i.e., those not bound by a quantifier) of a
variablex in a formulaθ , which we write asθ [e/x].

In addition to this first-order language, we assume the definition
of the “leads-to” relation given in Section 3.2. Behavioural proper-
ties concerning connectivity are expressed in a limited extension of
the first-order language with this inductively defined predicate: Let
ϕ be a typical formula in this language:

ϕ ::= θ | m@y→ m′@z | ϕ1∧ϕ2 | ϕ1∨ϕ2 | θ ⊃ ϕ | ∀x.ϕ1 | ∃x.ϕ1

Substitution is extended to formulas of the formϕ.
Note that we allow sub-formulas of the formm@y→m′@zonly

in positivepositions, i.e., those not under any explicit or implicit
negation. This is because the “leads-to” relation is inductively
defined, and therefore requiresmonotonicityin its interpretation.
Note that all the concepts we have defined so far (deliverability,
name for an ASE, address, scope, etc.) satisfy this condition.

6.1 A Hoare-style Logic with “Leads-To”
The axioms and inference rules are given in terms ofHoare

triples ϕ1 {P} ϕ2, whereP is a statement or program fragment,
and ϕ1 and ϕ2 are called apre-conditionand post-conditionre-
spectively. The interpretation is that if preconditionϕ1 holds, and
P is executed to completion, then post-conditionϕ2 holds in the re-
sulting state. Note that in the case of communication networks, the
notion of “state” has two component classes: (i) The internal state
of local variables within each ASE, which affects and is affected by
the local program execution; this is abstractly captured byformula
of the formθ . (ii) The network connectivity state, which is dis-
tributed by nature and affected by the contents of the switching ta-
bles and by the communication primitivessend andreceive. The
programP is written usingstatementsin the language comprising
the primitives, enhanced with assignment, sequencing, a “for all”
construct and conditional constructs.

The semantic framework is presented using inference rules of the

form A
B

, whereB is a single Hoare triple, called theconclusion,

Assignment ϕ[e/x] {x = e} ϕ

Sequential ϕ1 {P1;} ϕ2 ϕ2 {P2;} ϕ3
ϕ1 {P1;P2;} ϕ3

IfThenElse (ς ∧b) {P1} ϕ (ς ∧¬b) {P2} ϕ
ς {if b then P1 else P2} ϕ

IfThen (ς ∧b) {P1} ϕ (ς ∧¬b) ⊃ ϕ
ς {if b then P1} ϕ

ForEach ς [ci/c] {P} ϕi for eachci ∈ S
ς {for each c in S{P}}

∧

i

ϕi

Consequence
ϕ1 {P} ϕ2 ⊢ ϕ ′

1 ⊃ ϕ1 ⊢ ϕ2 ⊃ ϕ ′
2

ϕ ′
1 {P} ϕ ′

2

Figure 3: Hoare Logic Rules for a Simple Sequential Language

and A consists of 0 or more Hoare triples, calledassumptions.
The interpretation of the rules is that ifall assumptions hold, then
the conclusion also holds. Rules with no assumptions are called
axioms.

Figure 3 lists the rules that we inherit or adapt from Hoare logic
for traditional sequential imperative languages [10]. Observe that
the “Consequence” rule allows us to strengthen preconditions and
weaken post-conditions, and is vital in that it connects themech-
anistic syntax-directed approach of manipulating formulas to the
mathematics of the underlying domain, and supports modularity
and compositionality of the framework.

We focus on the rules particular to our primitives, which we state
as axioms in Hoare logic. The next set of rules formalize the prim-
itives that operate locally on messages.

• n = pop(m);

m= pm′ ∧ϕ[m′/m, p/n] {n = pop(m);} ϕ

• w = copy(m); ϕ[m/w] {w = copy(m);} ϕ

• push(m,n) ϕ[nm/m] {push(m,n)} ϕ

The operationspop andcopy have been embedded in an assign-
ment statement. The rule for the mutable operationpop employs
concatenation ofp to m′ to decompose messagem.

Primitiveslookup andupdate operate locally on the switching
table at an ASE, assumed to beA in the following rules.

• S = lookup(B,n);

ϕ[SA[B,n]/S] {S = lookup(B,n);} ϕ

The set of table entries inSA[B,n] replace the set-valued vari-
ableS in the property to be shown.

• update(B,n,C, p)

ϕ[SA[〈B,n〉 7→ 〈C, p〉] {update(B,n,C, p)} ϕ

If assertionϕ is to hold after the update ofSA, then in the
prior state, it should hold of a table that was equal to
SA[〈B,n〉 7→ 〈C, p〉].



The communication primitivessend and receive operate on
the “leads-to” relation. The following rules are assumed tooperate
at ASEA.

• (X,m) = receive();

ϕ[m′/m,B/X] {(X,m) = receive();} ϕ ∧ ς

whereς = m′@BA → m@XA. This rule implements LT1,
and otherwise resembles an assignment of values to vari-
ables.

• send(C,m) ϕ1 {send(C,m)} ϕ
whereϕ = θ ⊃ m′@x → m′′@y and ϕ1 = θ ⊃ (m′@x →
m′′@y∨ (m′@x→ m@AC∧m@AC → m′′@y)). For conve-
nience, we assume thatϕ is of the formθ ⊃m′@x→m′′@y.
This is not a serious limitation, since the formulas in which
we are interested can be converted via De Morgan laws and
other meaning-preserving logical transformations in a logi-
cal combination of formulas of this form or of formθ , which
can then be individually handled.

We “split” anym@x→m′@y formula into two disjuncts, one
of which is merely a copy whereas in the other we interpose
m@AC. The idea is a symbolic realization of the fact that
either the original formula held irrespective of this send op-
eration, or it is achieved because of this send operation. This
intuition is based on the algebra ofpaths— there is a path
from x to y either if there is a direct path not going through
A, or else there is a path fromx to A, and a path fromA to y.

• The rules forgetlabel(m) and setlabel(m,n) are quite
standard.

ϕ[getlabel(m)/l ] {l = getlabel(m);} ϕ

ϕ[setlabel(m,n)/m] {setlabel(m,n)} ϕ

For lack of space, we omit the rules for the remaining primitives
such asctl, create andresponse. These are standard and do not
differ greatly in structure from the rules for the message operations.

6.2 An Example Proof: Correctness ofForward

We illustrate the power of the formalization by presenting an an-
notated proof of correctness of theForward pattern of Section 5.2.
The code in Figure 4 is extracted from the pseudo-code of Section 5
by considering the program partition (or conditioned slice) dealing
with pure forwarding, and removing typing information. Program
slicing and partitioning [23] are increasingly gaining currency as
pragmatic techniques used in the verification of large software.

The desired post-condition is that if a messagepm0 is at the ASE
A’s input port fromB, then a transformed message is place at each
of A’s corresponding outgoing port for each entry for〈B, p〉 in A’s
switching table, formally written as:

∧

si∈S

⊃ (pm0@BA→ (si .string)m0@Asi .ase)

By predicate transformation of the post-condition throughthe pro-
gram in the backward direction, using the axioms given above, we
get averification conditionthat

s∈ SA[prev, p] ⊃ (pm0@BA→ (s.string)m0@As.ase

∧ (s.string)m0@As.ase→ (s.string)m0@As.ase)

follows from the preconditionsprev= B∧m= pm0∧∃BA This is
easy to establish from the definition of “leads-to” and by LT2and

−−Pre :prev= B∧m= pm0∧∃BA

s∈ SA[prev, p] ⊃ (pm0@BA→ (s.string)m0@As.ase

∧ (s.string)m0@As.ase→ (s.string)m0@As.ase)

(6) n = pop(m);

s∈ SA[prev,n] ⊃ (pm0@BA→ (s.string)m@As.ase

∧ (s.string)m@As.ase→ (s.string)m0@As.ase)
(7) S = lookup(prev,n);

s∈ S ⊃ (pm0@BA→ (s.string)m@As.ase

∧ (s.string)m@As.ase→ (s.string)m0@As.ase)
(12) for each s in S{

si ∈ S ⊃ (pm0@BA→ (si .string)m@Asi .ase

∧ (si .string)m@Asi .ase→ (si .string)m0@Asi .ase)
(22) outmsg = copy(m);

si ∈ S ⊃ (pm0@BA→ (si .string)outmsg@Asi.ase

∧ (si .string)outmsg@Asi .ase→ (si .string)m0@Asi .ase)
(23) push(outmsg,s.string);

si ∈ S ⊃ ((pm0@BA→ outmsg@Asi.ase

∧outmsg@Asi.ase→ (si .string)m0@Asi.ase)∨ ...)
(29) send(s.ase,outmsg);

si ∈ S ⊃ (pm0@BA→ (si .string)m0@Asi .ase)
(31) }

−−Post :
∧

si∈S ⊃ (pm0@BA→ (si .string)m0@Asi .ase)

Figure 4: Correctness Proof ofForward

LT4. For readability, we have omitted the irrelevant disjunct that
arises fromsend.

6.3 Towards Verified Protocols
Similarly, we can verify the correctness of theSetup pattern, es-

tablish in terms of areturnability property. This involves show-
ing that if a messagepm@xA is returnable toB, and if pm@xA
leads to a messagep′m@yC that is returnable toA, then (provided
path setup is requested), by the action of theSetup pattern onA’s
switching table, the messagep′m@yC is returnable toB. The proof
relies on the existence of transformationrA( ) which is construc-
tively demonstrated by the action ofSetup.

From the correctness ofForward andSetup, it becomes possible
to show the implementations ofoverlayandgatewaycompositions
of name spaces are correct. In the overlay case, the proof involves
showing that tunnels between ASEs in the scope of the underlay
name space induce tunnels between certain ASEs in the scope of
the overlay name space. A crucial lemma in verifying traditional
layered architectures is that the overlay and underlay namespaces
are disjoint. Additional facts used in the proofs are that process-
ing at each ASE divides a name space intofinitely manyclasses
(based on its neighbourhood connectivity); furthermore, we exploit
the uniformity in how names in the same class are mapped in the
tables.

The correctness of the name space compositions provide modu-
larity results that can assist in the proofs of correctness of, for in-
stance, the NAT example of Section 7.1. Here we need to establish
the correctness of e.g., the TCP-IP and IP-Ethernet overlays, the
NAT gateway composition, and that, e.g., adjacent Ethernetobjects
share a name space.

We intend to verify a large variety of communication protocols
using our techniques. Future work on the theoretical foundations
includes a formal proof of soundness of the axiomatic semantics
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Table 1: NAT Example - Lookup Table (θ = proto num)
ASE Index Namep Value Namep′

TCP IPdst/src, TCPdst/src IPdst/src, TCPdst/src
IP IPdst IPgw, IPdst/θ
up IPdst/θ IPdst
NAT IPdst/src/θ , TCPdst/src IPdst/src’/θ , TCPdst/src’
up IPdst/src/θ , TCPdst/src IPdst’/src/θ , TCPdst’/src
ARP IPgw MACdst/θ
up ctl opcode N/A (ctl response)
ETH MACdst MACdst/src
up MACdst/θ ∅

with respect to operational semantics. While we have informally
checked the soundness, such a result is best substantiated with the
help of a formal machine-checked proof using a theorem prover.
We also intend to explore the expressive power of the logic, and
investigate its relative completeness.

7. EXAMPLES

7.1 TCP over NAT
We outline a non-trivial example of TCP over IP over Ethernet

communication in the presence of a NAT network element along
the IP path. The setup of ASEs and direct communication is shown
in Figure 5. TCPdi and TCPde refer to TCP demultiplexers, and
TCPi and TCPe are the actual TCP instances. Table 1 gives an
overview of the header fields that are used to index the local switch-
ing tables and the values that are returned. If applicable, the first
row for an ASE shows the used fields for messages arrived through
connections leading to the ASE in downward direction and thesec-
ond one for those in upward direction, as shown in Figure 5. The
ASE entries of the switching table are omitted for brevity.

Application ASEs are modelled as black boxes that create and
consume messages. Because TCP ports are weak names and are
valid only in the context of IP addresses, a sending TCP ASE must
include the IP addresses into the message header and the receiv-
ing TCP demultiplexer also uses the IP addresses to demultiplex
to individual TCP objects. For outgoing packets, IP prepends the
gateway’s IP address to the packet, which is later resolved by ARP
into the MAC destination address. ARP instances communicate
with each other using RLOOKUP and RUPDATE to perform re-
mote ARP lookups. In addition to forwarding outgoing packets, a

Table 2: NAT Example - ASE Configuration
ASE Config Parameter Value

NAT class VC true
NAT0/1 objects SETUPASE IPn
ARP class RESOLVESWAP false
ARPx objects RESOLVEASE ETHx

NAT module also performs a path setup following theSetup pattern
from Section 5. The whole five-tuple of IP and transport namesis
used as a path label, although only the source port is used to find a
free local name. Because outgoing packets need to be assigned the
proper IP source address, IP forwarding must happen before NAT
processing and it is easiest to model one NAT instance per external
interface. On the return path, packets need to be processed by NAT
first, since they must have the internal destination addressrestored,
before being forwarded by IP. In Table 2, we summarize the other
necessary configuration values for this example.

7.2 Other Examples
We now sketch key some other scenarios that can be described

using our framework.

• DNS DNS conceptually permits two operations: (a) the in-
stallation of a translation and (b) the use of this translation
for resolving DNS names to IP addresses. The manual regis-
tration of a DNS name is outside the scope of our work. Once
installed, this translation is reached byDNS-name-basedfor-
warding of a resolve request to the appropriate ASE, which
elicits a response with the translation, causing the installation
of local state using theRUpdate pattern.

• Hierarchical Mobile IP The key concern of any host mo-
bility protocol is the registration of the mobile node alonga
hierarchy of anchor points and subsequent packet forward-
ing along anchors to the mobile host. This can modelled as
the bridging path setup pattern between mobility agents and
anchor points.

• I3 Using our framework, I3 [21] becomes a straightforward
implementation of “leads-to” with Chord [22] as the routing
process. When the outermost I3 identifier is exactly matched
in the local switching table, the message is potentially repli-
cated. For each copy, the outermost identifier is replaced by
a stack of identifiers (which may be empty) and fed back into
the I3 ASE, or, if all I3 identifiers are removed then, the mes-
sage is forwarded to the IP ASE. If there is no match, the
message is forwarded according to Chord forwarding rules.

8. PROTOTYPE
Besides formally studying the axioms using Hoare logic, we

have implemented a prototypeUniversal Forwarding Engine (UFE)
in the Click environment [14], a framework for building flexible,
configurable routers. A Click router configuration is specified by
a directed graph ofClick elementswhere each element defines a
simple router function such as queueing, scheduling, or updating
a field of a packet. Each ASE is implemented as a Click element.
However, unlike most traditional Click elements, an ASE repre-
sents a more complex unit of processing, such as IP forwarding,
rather than just a simple function. Click elements are implemented
in C++ and form the core of the Click runtime system. The system
is configured at runtime by interpreting a configuration file,which
specifies how and which elements are connected to each other.
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We use a hybrid approach of inheritance and meta-compilation
to produce the Click implementation and configuration. The com-
plete development process is shown in Figure 6. The core element
of the UFE is anASE base class, which provides implementations
for all processing patterns. For rapid prototyping, the ASEbase
class provides templates for common data structures and allopera-
tional primitives. The base class also provides helper functions that
are needed for practical protocol implementation. When combined
with an ASE configuration file, our base class is sufficient to gen-
erate a C++ implementation of an ASE as a Click element. In ad-
dition, parts of the ASE base class can be refined using inheritance,
by providing protocol-specific implementations of data structures
and primitives, or even patterns. This allows for a gradual transfor-
mation of an initial functional protocol prototype, which is simple
and analyzable, into a more realistic and efficient implementation.

We summarize below the information and operations that need
to be adapted to each ASE:

• Names and StateIt is necessary to specify aname maskand
a label maskto describe which header fields are to be trans-
formed into the forwarding prefix and, if applicable, which
are used as the path setup label. Also, theresponsetransfor-
mation must be documented for those ASEs that perform dis-
tributed resolution. Without further specialization, thegeneric
switching table contains just mappings from a pair of ASE-
and-string to a pair of ASE-and-string. For efficiency, one
can refine the table format, along with thelookupandupdate
operations, and use specialized data structures.

• ASE Type Configuration VC and RESOLVE SWAP specify
how an ASE type implements theSetup or Resolve pattern,
respectively.

• ASE Object Configuration The variableSETUP ASE con-
tains a list of ASEs for whichSetup is the default action and
RESOLVE ASE defines the successor ASE to which remote
resolution requests request are sent.

• Protocol Glue A protocol element needs to be configured
and/or refined to adhere to standardized protocol specifica-
tions and mechanisms. At the very least, the system needs
to know how to add or remove a protocol header and what
the header looks like. In addition, we provide hooks for pre-
and post-forwarding operations to incorporate those proto-
col mechanisms that we cannot yet express with our abstract
framework.

Our prototype system compiles meta-language programs com-
posed from the primitives in Sections 3.6 and 4.3 to Click elements
in C++. We also compile from a configuration file to a correspond-
ing Click configuration file. Our meta-compilers were developed
using lex and yacc: the configuration meta-compiler is 150 lines

of yacc code, and the element meta-compiler is 158 lines of yacc
code. Our Ethernet bridge, described in 21 lines of meta-language
compiled to 91 lines of C++ in a Click element. When compiled
into the Click runtime, we were able to successfully bridge Ether-
net frames between two segments. We have also built, using the
meta-language, an IP forwarder, and a NAT middle-box.

9. DISCUSSION AND CONCLUSION
Our work brings together three research threads that span the

networking and formal verification communities. The first thread
is that of using formal notation to compactly and precisely model
network communication, and, in particular, communicationin the
Internet. This allows us to derive elementary axiomatically-sound
forwarding and control operations. Second, we exploit standard
techniques in formal verification to prove the correctness of net-
work protocols composed from these operations. Finally, our work
builds on extensive past work in rapid protocol prototyping. We use
meta-compilation to translate from a protocol expressed interms of
elementary operations to a C++ implementation that can be embed-
ded in the Click engine and incorporated into the Internet.

It is illuminating to compare our definition of names and ad-
dresses to that in common use. Commonly, the name of an objectis
a ’human-readable’ string, and the address is a ’machine-readable’
location. Names are meant to refer to entities, and addresses are
meant to get to them. This is, of course, incorrect when facedwith
name-based forwarding and address masquerading. By tightly cou-
pling the act of communication with the concept of a name and
precisely specifying the scope of a name, we not only achievecon-
ceptual clarity but also can resolve a host of conceptual pitfalls. For
instance, an IP addressis an address in the public IP scope, but de-
volves to a name within a NAT gateway that bridges name scopes.
Similarly, a “toll-free” numberis an address until it reaches a trans-
lation table, that then translates it toanotheraddress in the same
scope. These distinctions are possible because of the simplicity
and clarity of our axiomatic framework.

Our axiomatic approach allows us to discover heretofore hidden
isomorphisms. For instance, it is easy to see that NAT is essentially
the same as RSVP-TE or ATM, in that it sets up a forwarding table
that translates between name spaces. These name spaces are the
public and private IP name spaces, which are, in principle, similar
to the VCI spaces in ATM. Even more interestingly, the same bridg-
ing of name spaces is accomplished in Mobile IP, IP multicastand
I3. Therefore, the same protocol engine, with minor modifications,
can be used to implement these protocols! From a more pragmatic
perspective, implementation optimizations for any of these proto-
cols apply equally to all.

Another interesting consequence of our work is the potential to
automatically build validated protocol implementations,perhaps
even in hardware. We can do so by expressing a protocol in terms
of elementary operations, and then using a Hoare-logic theorem
prover to prove its correctness. The same protocol can then be
meta-compiled, perhaps to an FPGA. This would eliminate error-
prone human coding of complex protocols.

Finally, we have confined our analysis to a system where the only
dynamic operations (other than message transfer itself) isupdating
tables within an ASE. It is possible to extend this in two ways.
First, we can consider the installation of a new ASE instancein the
network. This would allow the network to update itself in response
to observed network behaviour. Second, we could allow new ASE
types to be defined and then installed in the network. This would
allow our framework to also be a basis for active networking.

Although we recognize the power of our axiomatic framework,
we also realize that it has several significant limitations.In gen-



eral, we do not yet include performance or quality in the model, as
previously mentioned in Section 1. In short, our approach does not
consider time, errors, and physical limits. We address eachnext.

• First, our system is oblivious to time, other than to have a
resolution request block awaiting response. This preventsus
from modelling timeouts, retransmissions, etc.

• Second, we assume that all transmissions are error free. So,
we cannot model many interesting phenomena driven by packet
loss. We speculate that this can be addressed by aproba-
bilistic “leads-to” relation as a natural generalization of the
“leads-to” relation.

• Finally, we assume that a message that arrives at a port will
always find room in a buffer and that the translation table is
infinite. Of course, in reality these are limited and the limits
can affect protocol correctness.

Other examples of real-world artifacts not covered by the frame-
work are parallel links, normally used for performance or reliabil-
ity, or the IP TTL mechanism, which is used to mitigate the effect
of routing problems.

Due to these limitations, we are unable to express issues relat-
ing to network performance, such as packet loss, network conges-
tion, routing oscillations and packet retransmission. We are keenly
aware of these limitations and hope to address them in futurework.
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