Opportunistic Scheduling in Ferry-Based Networks

Shimin Guo, Majid Ghaderi, Aaditeshwar Seth, Srinivasan Keshav
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

{sguo,mghaderi,a3seth,keshavi@cs.uwaterloo.ca

ABSTRACT

Ferry-based networks provide a means of bringing extremely
low-cost Internet access to remote rural areas, where conven-
tional access technologies, e.g., dial-up, DSL and CDMA, are
currently economically infeasible. We present an architec-
ture for ferry-based networks and identify downlink schedul-
ing as a difficult open problem. We argue that opportunistic
scheduling policies that take ferry schedules into account are
more suitable for such networks than the non-opportunistic
policies such as round-robin. We then, for a simplified vari-
ant of the problem, propose an opportunistic scheduling al-
gorithm aimed at minimizing the end-to-end delay incurred
in the network. Through simulations, we show that the pro-
posed opportunistic scheduling algorithm outperforms the
non-opportunistic algorithms in reducing end-to-end delay
while achieving a larger stability region. In typical scenarios
we see a gain of up to 20% using our technique as compared
to a naive approach.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization|: Computer-
Communication Networks—Network Protocols

General Terms

Design, Performance

Keywords
Ferry-Based Networks, Opportunistic Scheduling, Perfor-
mance Analysis

1. INTRODUCTION

Ferry-based networks provide a means of bringing extremely
low-cost Internet access to remote rural areas, where con-
ventional access technologies such as DSL and CDMA are
currently economically infeasible. A ferry-based network is
depicted in Figure 1. A ferry-based network has four major
components: rural kiosks, buses, Internet gateways, and a
proxy server. Kiosks are where end users send and receive

data. Buses serve as a mechanical backhaul [11], ferrying
data between the kiosks and Internet gateways. Internet
gateways are usually located in nearby towns or cities and
forward data to the proxy, which is located somewhere on
the Internet, through persistent connections such as dial-up
or DSL. In the direction from the Internet to the kiosks, the
proxy hides legacy servers from the fact that the users are
actually disconnected. In the other direction, from kiosks
to the Internet, the proxy communicates on behalf of users
with legacy servers.

Internet

&8

1

Internet
Gateway

Figure 1: A ferry-based network.

In ferry-based networks, routing data between kiosks and
the proxy is a challenging problem due to the following is-
sues:

1. Time-dependent connection opportunities: Data is trans-

mitted only when buses are at gateways or at kiosks.

2. Unreliable routes: A bus carrying data can fail due to
mechanical (engine failure) or environmental (a closed
road) problems.

3. Bottleneck links: The links between the gateways and

the proxy have low capacity (compared to high-bandwidth

WiFi connection between buses and gateways/kiosks)
and can be easily congested, causing long delays at the
proxy. Upgrading the bottleneck links, even if techni-
cally possible, results in increased operation costs that
is undesirable for low-cost ferry-based networks. That
is, over-provisioning is simply not an option. In order
to reduce cost, it is imperative to fully utilize these
links in an efficient manner.

4. Variation in schedules: Bus schedules exhibit slight
variations that are not known either to the kiosks or
the proxy.

5. Distinction between buses and routes: The same bus
may run on different routes at different times of the
day or on different days. The assignment may not be
known to kiosks or the proxy.

6. Buses and kiosks have finite storage capacity.

In this paper, we focus on scheduling and ignore reliability,
assuming that all paths are fully reliable. We also assume
full knowledge of schedules. Therefore, sending data over a
single path is sufficient to ensure reliable delivery of data.
However, these paths have time-dependent delays. A path
that is considered the shortest path at a specific point in
time may become the longest path shortly thereafter. For
example, data sent to a gateway just before a bus depar-
ture will arrive at a kiosk much earlier than data sent a few
seconds after. Therefore, it is crucial to send data over the
right path at the right time. Although the network is de-
lay tolerant and the applications designed for such network,
e.g., email, are delay-tolerant in nature, it is still important
to minimize end-to-end delay [3]. Decisions on when and
where to send data are made by the scheduler residing at
the proxy. Our goal is to achieve better delay performance
by making more intelligent scheduling decisions at the proxy.
The idea is to take bus schedule into consideration in making
scheduling decisions.

The rest of the paper is organized as follows. Section 2 de-
scribes the system model and motivates the idea of oppor-
tunistic scheduling. In Section 3, we present our proposed
opportunistic scheduling policies aimed at minimizing end-
to-end delay in a ferry-base network. We show some sim-
ulation results in Section 4. Related work is summarized
in Section 5. Finally, Section 6 concludes the paper and
discusses some possible future research directions.

2. SYSTEM MODEL

A conceptual architecture of the ferry-based network is de-
picted in Figure 2. We now make a number of modelling
simplifications. These serve to bring out the essential as-
pects of the problem. We consider a single proxy that con-
nects the ferry-based network to the Internet through M
gateways. There are N kiosks and there is at least one path
from the proxy to each kiosk to ensure end-to-end connectiv-
ity. However, there may exist multiple paths from the proxy
to a kiosk, potentially through multiple gateways. At the
proxy, we assume there is an infinite buffer for each kiosk.
Gateways, buses and kiosks all are also assumed to have
infinite buffers.

A ferry-based network belongs to the family of delay-tolerant
networks (DTN) [2]. Keeping with the DTN bundle proto-
col [10], the unit of data in the ferry-based network is called
bundle. Let)\; denote the bundle arrival rate destined to
kiosk i at the proxy and p; denote the service rate of the
link from the proxy to gateway j where these rates are long-
term average rates. We assume that the proxy system is
stable, that is

Zz]'vzl Ai

p=Zumtli o

ij\il M

where p denotes the total load of the proxy. Note that this

Bus routes

[

Bottleneck links (e.g. DSL)

Kiosk
1

To Kiosk 1
—_—

To Kiosk N
—_—

Figure 2: Each kiosk can be reached through multi-
ple gateways.

is an overall stability criterion and poor scheduling deci-
sion may make one or more queues unstable. It is assumed
that bus contact times with gateways are sufficiently long
to upload/download all bundles between a bus and the cor-
responding gateway.

In the following two subsections, we describe the ferry-based
network operation. We briefly describe both uplink and
downlink data transmission with a focus on downlink op-
eration.

2.1 Uplink Data Transmission

There is no bottleneck and hence, no competition for band-
width among kiosks, in the uplink direction. Data trans-
mission, therefore, is solely a routing problem. A modified
version of the Dijksta’s algorithm [3] that takes into consid-
eration the time-dependent link delays can be used to find
the shortest path from a kiosk to the best gateway to reach
the proxy. However, this strategy may lead to unbalanced
distribution of traffic among gateways.

A simple solution is to flood data to multiple gateways and
apply a hand-shaking mechanism between gateways and the
proxy to avoid multiple copies of the same data being trans-
mitted to the proxy over the bottleneck links. That is, if
a bundle has already been received by the proxy through a
gateway, then no other gateway will send the same bundle
to the proxy. This ensures that bundles are always sent on
the shortest path yet the bottleneck resource is not wasted.
In the more general case, when buses are subject to failures,
this approach has the advantage of partially mitigating bus
failures as well.

2.2 Downlink Data Transmission

The direction from the proxy to kiosks is much more complex
because we cannot flood data on the bottleneck links. When
the data for kiosk ¢ arrives at the proxy, the proxy stores it
in the queue associated with kiosk ¢. We call this queue
i. Whenever a link from the proxy to a gateway becomes
available, the proxy chooses from the set of queues, whose
associated kiosks can be reached from that gateway by a
bus, a bundle to transmit over the link. A scheduling policy
dictates which queue to select for transmission.

Several candidates exist for the scheduling policy, such as
round-robin, FCFS, or any flavour of weighted fair queue-
ing. However, they all have one problem, that is, they are
all bus schedule-agnostic, which means they do not take the

bus schedules into account when making scheduling deci-
sions. This can lead to poor performance of the network
with respect to end-to-end delay®.

To Kiosk 1
—_—

A

To Kiosk 2
A

Figure 3: Downlink scheduling.

To illustrate this, consider the following elementary scenario.
Suppose we have one gateway, two buses, and two kiosks, as
illustrated in Figure 3. T'wo buses depart from the gateway,
each serving a different kiosk. The system is completely
symmetric with respect to the kiosks in that the two kiosks
have the same arrival rate and similar bus routes. Transit
time between the gateway and kiosks is R minutes in both
directions. However, whenever bus 1 arrives at the gateway
bus 2 is at kiosk 2 and vice versa. The link between the
proxy and the gateway serves a bundle every 1/2\ minutes,
i.e., p = 2\. In the following, we consider two deterministic
bundle arrival processes. As we will see shortly, these arrival
processes are two examples of extreme arrival processes for
the network in Figure 3.

e Process (i): Bundles arrive at the proxy every 1/A
minutes for both kiosks.

e Process (ii): Bundles arrive in batches of size 2R\
every round-trip-time, i.e., every 2R minutes. As soon
as bus 1 leaves kiosk 1 (bus 2 leaves the gateway), a
batch of bundles arrives at the proxy for kiosk 1 (for
kiosk 2).

First, consider a round-robin or any variation of fair queue-
ing scheduling in which the link capacity from the proxy
to the gateway is equally shared between the two kiosks.
Then, for Process (i), every time a bus arrives at the gate-
way it picks up all the bundles and hence, the corresponding
queue at the proxy will be empty immediately after the bus
leaves. However, for Process (ii), only RX bundles from the
current batch are picked up (plus RA bundles from the pre-
vious batch) by bus 1. The remaining RA bundles wait at
the gateway for the next arrival of the bus which will hap-
pen 2R minutes later. Therefore, for kiosk 1, RA bundles
experience extra 2R minutes of delay at every round.

Now, consider a different scheduling policy which gives prior-
ity to the kiosk whose bus will arrive at the gateway sooner.
We call this policy bus-schedule-aware policy. In this case,
each kiosk has the bottleneck link for R minutes that takes

"We define ‘end-to-end delay’ as the time from the arrival
of a bundle at the proxy until the bundle is received at its
destination kiosk.

the corresponding bus to arrive at the gateway from the
kiosk. Therefore, by the time the bus arrives at the gate-
way all 2R\ bundles are already at the gateway (note that
service rate is 2A). It means that no bundle will experience
extra delay under this scheduling policy regardless of the
traffic arrival process, i.e., Process (i) or Process (ii).

As mentioned before, this special example considers two
extreme arrival processes. Let Ny(i) denote the number
of bundles arrive at the proxy for kiosk ¢ when the corre-
sponding bus is in its forward route, i.e., from the gate-
way to the kiosk. Similarly, let N, (i) denote the number
of bundles arrive at the proxy for kiosk ¢ when the bus is
in its reverse route, i.e., from the kiosk to the gateway. In
general, if N,.(1) > Ny(1) and N,(2) < Ny(2), then the
bus-schedule-aware policy achieves shorter end-to-end de-
lay than round-robin like policies. It is straightforward to
construct other scenarios using these arrival processes. For
example, if one kiosk has arrival process (i) and the other
has arrival process (ii), again the bus-schedule-aware policy
achieves shorter end-to-end delay than round-robin policy.
However, the bus-schedule-aware policy is never worse than
round-robin. This simple example clearly shows that it is
possible to reduce the end-to-end delay of one kiosk without
increasing the delay of other kiosks.

We now present a more formal argument in favour of the
bus-schedule-aware scheduling policy. The end-to-end delay,
as we have define in this paper, consists of three parts: (1)
queueing delay at the proxy denoted by D, (2) waiting time
at the gateway for the bus to arrive denoted by W, and, (3)
transit time on the bus denoted by R. Let T denote the
end-to-end delay. Then

T'=D+W+R.

The goal of scheduling is to minimize the expected end-to-
end delay, that is to minimize E [T], where

E[T)=E[D+W + R =E[D|+E[W]+E[R] .

Since the proxy system is stable, E [D] is finite and constant.
Using appropriate queueing models, E [D] can be computed.
For the family of work-conserving policies we can model the
proxy as a single server queue with arrival rate 2\ and ser-
vice rate p > 2. For example if the arrival process is Pois-
son and bundles have fixed size, E [D] is the mean waiting
time in an M/D/1 queue. Therefore,

1 P
E[D]=— 1—|—7], p=2\/p<1.
= I { 2(1-p) /
Note that E[R] is the forward transit time and hence, is
constant, i.e., E[R] = R. Therefore, in order to minimize

E [T] we have to minimize E [W]. This is exactly the aim of
the bus-schedule-aware policy.

The key to the superiority of the bus-schedule-aware schedul-
ing policy is that it takes into account the path quality when
making decisions. The path quality in the above example
is the time to next bus departure. The bus-schedule-aware
policy belongs to the family of scheduling policies that are
commonly referred to as opportunistic scheduling. Oppor-
tunistic scheduling is well studied in the context of wire-
less networks, where the link qualities vary across users and
across time, in order to maximize system throughput under

Kiosk
Bus routes 1
To Kiosk 1 \ ,
0
0 0
Gatewa |
(] i]
0 0
[]
To Kiosk N
—_—
Bottleneck link (e.g. DSL)
Kiosk
N

Figure 4: Each kiosk can be reached only through a
single gateway.

some fairness constraints [7]. In particular, our problem is
similar to opportunistic scheduling over multiple interfaces
in the context of wireless networks [6, 8].

3. OPPORTUNISTIC SCHEDULING

The goal of the scheduling algorithm at the proxy is to min-
imize end-to-end delay while simultaneously achieving some
level of fairness among different kiosks. In the following two
subsections, we address the opportunistic scheduling prob-
lem for two cases. In the first case, the gateway placement
is such that each kiosk can be reached from the proxy only
through a single gateway. In the second case, each kiosk can
be reached through multiple gateways. We refer to these two
cases as single gateway and multiple gateways, respectively.

3.1 Opportunistic Scheduling: Single Gate-

way
Consider the network depicted in Figure 4. At each schedul-
ing point at time ¢, the scheduler chooses one of the queues
and schedules the head-of-line (HOL) bundle for transmis-
sion to the gateway. A scheduling point occurs whenever
the gateway becomes available?.

Consider the head-of-line bundle of queue i at scheduling
point t. Let D;(t) denote the queueing delay of the HOL
bundle of queue ¢ at the proxy. Also, let W;(t) denote the
time it takes the HOL bundle to reach kiosk ¢ from the
gateway at time ¢t. Note that W;(t) consists of the time it
takes for the appropriate bus to arrive at the gateway and
the transit time to the kiosk. To compute W;(t), we use
a modified version of Dijkstra’s shortest path algorithm [3].
Therefore, if there are multiple paths to the kiosk then W;(t)
is computed over the best path.

Let Q(t) = [Q:(t)] denote the scheduling policy, i.e., Q;(t) =
1 indicates that queue ¢ is scheduled for transmission over
the gateway. The Single Gateway Scheduling can be de-
scribed as the following optimization problem:

Zis 3 E [{D:t) + Wit) o 0=1] (1)

2That is, the link from the proxy to the gateway becomes
available.

where I is the indicator function define as follows,
1,
el

In analogy to channel quality in wireless opportunistic schedul-
ing algorithms, define the path quality «; (t), (0 < a;(t) < 1),
as follows

if £ = true
otherwise

R

ai(t) = W) (2)

where R; is the shortest transit time from the gateway to
kiosk 1, i.e.,

Ri = all pathsnéltnall times {Wl(t)} ’ (3)

a;(t) is 1 if, at this time, the ith kiosk achieves the delay
minimum, and is therefore the “best” kiosk.

The proposed opportunistic scheduling policy Q*(t) is de-
scribed as follows:

Q" (t) = arg max a;i(t). (4)

This policy chooses the kiosk that has the best path quality
at time ¢ among all the kiosks. This ensures that a kiosk
whose bus is the closest to the gateway, relative to its transit
time, gets higher priority. Since the proxy system is stable,
all queues will be finite and hence, fairness is achieved.

3.2 Opportunistic Scheduling: Multiple Gate-
ways

Consider the network depicted in Figure 2. Assume that all
links from the proxy to gateways have the same capacity,
i.e., iy = p,j =1,..., M and that at each scheduling point,
all M gateways are scheduled regardless of their availability.
This is equivalent to assuming that all gateways become
available within a short period equal to the transmission
time of a bundle. We refer to each period as a scheduling
round. A new scheduling round begins as soon as gateways
become available again.

Let g;(t) denote the number of bundles in queue i. Define
bi(t) as

bi(t) = min{q;(t), M} . ()

A little thought shows that it is possible to avoid head-of-
line blocking, if the scheduling algorithm considers first b;(t)
bundles at the head of queue i = 1,..., N. We call these
bundles ready bundles. Let B(t) denote the set of all ready
bundles. The scheduler at time ¢t computes an assignment
from b(t) = Zivzl bi(t) ready bundles to M gateways in order
to maximize the sum of scheduling gains.

Let Q(t) = [@r;(t)] denote the scheduling policy, i.e., Qr;(t) =
1 indicates that bundle r € B(t) is scheduled for transmis-
sion over gateway j. The Multiple Gateways Scheduling can
be described as the following optimization problem:

min > > E[{Du®)+Wo®}lo, 0] ()

reM(t) 1<j<M

Let a;5(t) denote the path quality of kiosk ¢ through gateway
j at time t. Then

R;
i () =) 7
where R; is the shortest possible delay expresses as
Ri = all paths, g;%gways, time {WZ] (t)} ’ (8)

What is different from the single-gateway case is that now
we need to decide for each kiosk queue which gateways we
would like to use to drain that queue. After that, if more
than one kiosk tries to use the same gateway, we need to
resolve the conflict. We call the first step gateway selection,
and the second conflict resolution.

Gateway selection is a tradeoff between “select the best”
and “select all that is out there”. In particular,

1. It may not be desirable to use all possible gateways
to drain a kiosk queue, although that would provide
the maximum instantaneous throughput. If a gate-
way is too far away from the destination kiosk, it may
be better off not to use this gateway at all even if that
means the kiosk cannot send any bundle in the current
round, because later a better gateway may be sched-
uled to this kiosk. The greater reduction in the transit
time from the gateway to the kiosk warrants a small
extra queueing delay at the proxy.

2. Only utilizing the best gateway for each kiosk queue is
also not desirable. The system may become unstable
if the aggregate traffic of some kiosks whose choice of
gateways frequently coincide exceeds the capacity of
the chosen gateway. It may also occur that the traffic
of a particular kiosk exceeds the capacity of any gate-
way. In that case, obviously using only one gateway is
not sufficient to keep the system stable.

Therefore, the gateway selection strategy must be adaptive
to the current load condition. For each kiosk i, we propose to
use a binary function ¢ («j;,g;) that takes the path quality
of a gateway j and the current queue length ¢; as input and
outputs 0 or 1 to indicate whether or not it accepts gateway
j. This function is of the following general form:

1, if(ai;(t),q(t)) >0
{§ Bple@a®)20

, otherwise

p(aiz(t), ¢i(1))

where 9 (aij, g:), like a5 (t), is a function whose range is be-
tween 0 and 1, indicating the relative “goodness” of gateway
j to kiosk i, and 0 is a threshold.

Intuitively, 6 is the lowest path quality acceptable from
kiosks perspective. That is, 0 is a cut-off threshold to choose
good paths. If 0 is close to 0 then the scheduling algorithm
is to more tolerant about available paths and hence, may
choose to send bundles over paths that are not good. On
the other hand, if 8 is close to 1 then the scheduling algo-
rithm is more selective and hence, may ignore some good
paths. Both overly-tolerant and overly-selective algorithms

will suffer from high end-to-end delays. Clearly, there is an
optimal value of € that achieves minimum delay. We will
study the impact of threshold € on end-to-end delay in Sec-
tion 4.

For the function ¥ («, q), we believe that the exact form is
not important as long as it satisfies the following properties:

0<¢(a,q) <1, @)
P(a>0,00) =1, (ii)
YP(l,q) =1, (iif)

Yo, q1) < (e, ga), if g < qo (iv)
Plat,q) < (a2, q), if on < (v)

Here is a description of what each property means:

(i) The value returned by % is a normalized quantity be-
tween 0 and 1, inclusive.

(ii) If the queue length is infinite then any possible path
is guaranteed to be selected. Having a > 0 indicates
that the gateway can be used to reach the kiosk. This
property ensures that all queues remain stable.

(iii) The best path is always selected, no matter what the
queue length is.

(iv) Function ¢ is monotonically increasing with respect to
the queue length gq.

(v) Function ¢ is monotonically increasing with respect to

the path quality a.

For our simulations, we implemented 1 (c;(t), ¢i(t)) as fol-
lows.
1. For each pair (au;(t),g:(t)) compute w;;(t) as

wij(t)y=1-— e i (e () (11)
2. Compute ¥ (cv;(t), gi(t)) as

Blau () a(t) = —21B (19

maxi<p<m Wik (t)

Now, for all ready bundles r € B(t) that belong to queue %,
define

For conflict resolution, we propose the following opportunis-
tic scheduling policy:

Q"(1) = Margmax{ o (1), (13)

where Marg max(.) is a weighted bipartite graph match-
7.3
ing. The nodes from one part of the graph represent ready

bundles and the nodes from another part represent the gate-
ways. There is an edge between bundle r and gateway j if
¢r;(t) = 1. The weight of this edge is specified by a.;(t).

Given that buffers at the proxy are infinite and the system
is stable, the long-term throughput of a kiosk will be always
equal to its arrival rate. Therefore, throughput fairness is
trivially achieved. We defer delay fairness to future work.

4. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our route se-
lection and scheduling algorithm using simulation. We de-
veloped a custom simulator which proceeds in steps, where
the proxy schedules bundles for transmission at the begin-
ning of each step. The number of bundles that arrive to
each kiosk is drawn from a Poisson distribution.

As a first step, we only simulate simple scenarios. That
can help us further understand the problem. Performance
evaluation for more complex scenarios is left as future work.
Throughout this section, we will consider scenarios with two
gateways and two kiosks. From each gateway, there is a
separate bus to each kiosk, so there are 4 buses in total. One
simulation step corresponds to approximately one minute in
reality. All bundles are assumed to have fixed size. The link
capacity of all proxy-to-gateway links is 1 bundle per step.
So if in reality the link capacity is 100 Kbps, it implies a
bundle size of approximately 750 KB. All data points are
obtained by running the same simulation ten times, each
time for a length of 1440 simulation steps (corresponding
to 24 hours). For each point, 95% confidence intervals are
shown on the plot (although most of them are too small to
see). As mentioned earlier, we use (12) as our ¢ (aj,q;)
function.

Scenario 1 (NNFF)

In this scenario, gateway ¢ is close to both kiosks and gate-
way g2 is far from both kiosks. We call this scenario Near-
Near-Far-Far (NNFF). In particular, bus b; 1 (that is, bus
leaving from gateway g1 serving kiosk k;) has round trip
time 60 steps, and bus b; 2 has round trip time 120 steps.
We also intentionally make bus b1 ; and b2 ; completely out
of phase (when bus by ; is at gateway g;, bus bz ; is farthest
away from g;, and vice versa), to see if we can reduce overall
delay by taking timing into account.

In this scenario, both kiosks should take advantage of gate-
way g1 as much as possible, and use gateway g2 only when:

1. bus b;2 is about to leave at gateway g2 and the time
before the next departure of bus b; ;1 from gateway g1
is long, or,

2. when a kiosk’s queue at the proxy tends to grow out
of bound.

Our simulation experiments show that the proposed oppor-
tunistic scheduling policy behaves exactly in this way.

We compare our bipartite weighted matching-based algo-
rithm (BWM) with a naive algorithm (RANDOM) that
randomly assign gateways to kiosk queues. different route

100

80 - B

60

40 - g

Average Delay (steps)

20 B

—O—

BWM
RANDOM
0 L L L L L L
0 0.2 0.4 0.6 0.8 1

“Threshold 8

Figure 5: INNFF Scenario: arrival rates to both
kiosks are 0.45 bundles per step.

120 T

100 |

80 -

60 —

a0 R

Average Delay (steps)

20 B

—o—

BWM
_ RANDOM

0 0.2 0.4 0.6 0.8 1
Threshold 8

Figure 6: NNFF Scenario: arrival rates to both
kiosks are 0.9 bundles per step.

selection and matching schemes schemes. We are also con-
cerned with how the choice of the threshold 6 in 9 will affect
the performance of our algorithm. Recall that a low 6 rep-
resents a gateway selection strategy that is more tolerant
whereas a high # embodies a more selective one. In par-
ticular, & = 0 corresponds to a “select-all” strategy that
tries to use all gateways from which the destination kiosk
is reachable, and § = 1 corresponds to a shortest-path-only
strategy.

We first set the mean arrival rates to both kiosks to be
0.45 bundles per step. With these arrival rates, one sin-
gle gateway is enough to serve both kiosks. Figure 5 shows
the performance of BWM with varying threshold values and
compared with RANDOM. We can see that BWM consis-
tently performs better than RANDOM. For our algorithm,
the best performance occurred when 6 = 1, indicating a
shortest-path-only strategy is most desired in this setting.
The average delay at this point is over one third less than
achieved by RANDOM with select-all, the most naive com-
bination. We also notice that our algorithm has almost con-
stant delay when 6 is in the range from 0.8 to 1.

100

80 B

SO,Q—HMA

40 - g

Average Delay (steps)

20 B

—C—

BWM
RANDOM
ol L L L L
0 0.2 0.4 0.6 0.8 1
Threshold 8

Figure 7: NFFN Scenario: arrival rates to both
kiosks are 0.7.

When compared at the same threshold value, BWM outper-
forms RANDOM considerably when the threshold is low.
For example, when 0 = 0, BWM is about 15% better than
RANDOM. However, the improvement becomes marginal
when 0 approaches 1. This is expected because when 6 is
small, the input bipartite graph to the conflict resolution
phase is a strongly connected one, leaving more room for
optimization, whereas when 6 is close to 1, there are very
few edges in the input bipartite graph to begin with, so any
algorithm will likely perform similarly.

Although # = 1 performs the best in the previous case, it
cannot adapt to changing load as it allows every kiosk to
compete for only one gateway each round. To illustrate, we
set the mean arrival rates for both kiosks to be 0.9 bundles
per step, so that both kiosks must try to utilize gateways
other than the best one to remain stable. The result is
shown in Figure 6. The sudden jump at the right end of the
plot clearly shows that the system becomes unstable when
0 = 1. When 0 < 1, BWM again consistently outperforms
RANDOM. BWM has almost constant delay across a wide
range of threshold values, only starting to increase when
0 = 0.91. This, combined with the result from Figure 5,
indicates that a threshold value between 0.8 to 0.9 may be
optimal for the ¢ function we use. In order to verify this
conclusion, we simulate our algorithm in a different scenario.

Scenario 2 (NFFN)

Now we consider a scenario where gateway gi is close to
kiosk k1 but far from kiosk k2 and gateway go is close to
kiosk ko but far from kiosk k1. We call this scenario Near-
Far-Far-Near (NFFN). In particular, the round-trip time of
bus b1,1 and bus by 2 is 60, and the round-trip time of bus
b1,2 and bus b271 is 120.

We first set the mean arrival rates to both kiosks to be 0.7
bundles per step. Note that with these arrival rates it is
possible for each kiosk to use only the gateway that is close
to it. Figure 7 shows the result. In Figure 8 we set the
arrival rate to kiosk k1 to be 0.5 bundles per step, and that
of k2 to be 1.2 bundles per step. This forces kiosk k2 to
use more than one gateway otherwise its queue will become

100 u

80 -

60 B

40 - g

Average Delay (steps)

20 B

BWM —o—

RANDOM

ol L L L L L

0 0.2 0.4 0.6 0.8 1
Threshold 8

Figure 8: NFFN Scenario: arrival rate to kiosk k; is
1.2 and to kiosk k> is 0.5.

unstable.

Once again, we see that BWM performs better than RAN-
DOM in both cases. The shortest-path-only strategy per-
forms the best in Figure 7, but is vulnerable to changing
load, as illustrated by the sudden jump at the right end of
Figure 8. In both cases, a threshold value between 0.8 and
0.9 allows our algorithm to achieve minimum delay.

Remarks

The simulation experiments show that our scheme with a
threshold value between 0.8 and 0.9 consistently achieves
the shortest delay. Shortest-path-only is effective in reduc-
ing delay when traffic load is light. However, it has limited
stability region. Select-all, on the other hand, has the max-
imum stability region, but increases delay unnecessarily by
sending bundles over longer paths. Our queue length de-
pendent gateway selection algorithm, when supplied with
an appropriate threshold (), has the same performance as
shortest-path-only when the load is light, yet has a stability
region as large as that of select-all. The bipartite weighted
matching algorithm for conflict resolution consistently out-
performs a naive random matching algorithm, especially
when 6 is small. However, when 6 is within the optimal
region, the improvement is only marginal. We attribute this
to the small scale of the simulated scenarios, where, when
0 is large, each kiosk will compete for only 1 gateway in
most cases, leaving very little room for optimization. We
believe that in larger-scale scenarios where each kiosk com-
petes for more gateways, our algorithm will exhibit more
improvement over naive algorithms.

With these encouraging initial results, we are fully aware of
the simplistic nature of this simulation study. We will in-
vestigate the performance of our algorithm in more complex
scenarios and under various traffic models in the future.

5. RELATED WORK

Opportunistic scheduling has been studied mostly in the
context of wireless data networks. In wireless networks, the
link quality fluctuates over time due to shadowing, fading,
user mobility, etc. It has been shown that fluctuations in

link quality can be exploited to maximize system through-
put [5]. Various fairness requirements have been studied
in conjunction with opportunistic scheduling. In CDMA
Ev-Do systems [1], for example, proportional fair sched-
uler [4] is applied to achieve proportional fairness among
users. References [6] and [8] propose more general frame-
works in which the scheduling problem is formulated as an
optimization problem where the objective function is the
system throughput and fairness requirements form the opti-
mization constraints. Various fairness requirements can be
expressed, including processor-sharing type of fairness.

6. CONCLUSION

In this paper, we addressed the downlink scheduling prob-
lem in ferry-based networks. We argued that by taking path
qualities into account, when making scheduling decisions,
the average end-to-end delay can be reduced. We then pro-
posed opportunistic scheduling algorithms aimed at mini-
mizing the end-to-end delay for single gateway and mul-
tiple gateway networks. Through simulations, we showed
that the proposed opportunistic scheduling algorithm out-
performs the non-opportunistic algorithms in reducing end-
to-end delay.

We plan to tackle the following problems in future work:

e To investigate the impact of imprecise bus schedules.
In practice, bus schedules can not been known pre-
cisely as assumed in this paper. Intuitively, if the de-
gree of impreciseness is low compared to round trip
times, we conjecture that the proposed heuristics should
work well.

e To investigate the optimality of the proposed schedul-

ing policies. The existing results on opportunistic schedul-

ing policies in wireless networks [6-8] are expected to
apply to our problem.

e To extend the simulation results to more realistic sce-
narios. We can easily simulate complicated ferry-based
networks with the simulator we have developed. It will
be interesting to model a real bus network in the sim-
ulator.

e To consider unreliable paths. In this case each bun-
dle may need to be transmitted over multiple paths in
order to ensure reliable delivery to its destination. It
is a challenging problem to optimally choose a set of
paths for each bundle to minimize delay and maximize
reliability [9].

e To consider fairness when buffers at the proxy are fi-

nite. Typically, there is an admission control mecha-
nism at the proxy that limits the number of admitted
bundles. In this case, establishing fairness among mul-
tiple kiosks is a challenging problem.

7. REFERENCES
[1] P. Bender, P. Black, M. Grob, R. Padovani,
N. Sindhushayana, and A. Viterbi. CDMA/HDR: A
bandwidth efficient high speed wireless data service
for nomadic users. IEEE Communications Magazine,
38(7):70-77, July 2000.

[2] K. Fall. A delay tolerant networking architecture for
challenged internets. In Proc. SIGCOMM’03, August
2003.

[3] S. Jain, K. Fall, and R. Patra. Routing in a delay
tolerant networking. In Proc. SIGCOMM’04, August
2004.

[4] F. Kelly. Charging and rate control for elastic traffic.
European Transactions on Telecommunications,
8:33-37, January 1997.

[5] R. Knopp and P. Humblet. Information capacity and
power control in single cell multiuser communications.
In Proc. IEEE ICC’95, Seattle, USA, June 1995.

[6] S. S. Kulkarni and C. Rosenberg. Opportunistic
scheduling for wireless systems with multiple
interfaces and multiple constraints. In Proc. ACM
Modeling Analysis and Simulation of Wireless and
Mobile Systems, pages 11-19, San Diego, USA, 2003.

[7] X. Liu, E. K. P. Chong, and N. B. Shroff. A framework
for opportunistic scheduling in wireless networks.
Computer Networks, 41(4):451-474, March 2003.

[8] Y. Liu and E. Knightly. Opportunistic fair scheduling
over multiple wireless channels. In Proc.
INFOCOM’03, San Francisco, USA, August 2003.

[9] P. Papadimitratos, Z. J. Haas, and E. G. Sirer. Path
set selection in mobile ad hoc networks. In Proc. ACM
Mobihoc, pages 1-11, Lausanne, Switzerland, 2002.

[10] K. Scott and S. Burleigh. Bundle protocol
specification. draft-irtf-dtnrg-bundle-spec-04.txt, May
2006.

[11] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and
S.Keshav. Low-cost communication for rural Internet
kiosks using mechanical backhauls. In Proc. ACM
Mobicom, Los Angeles, USA, September 2006.

