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Abstract. In this paper, we propose a routing protocol for disconnected ad hoc
networks where most nodes tend to move about in groups. To the best of our
knowledge, no routing protocol for disconnected ad hoc networks has been de-
signed earlier keeping in mind possible group patterns formed by the movement
of nodes. Our protocol works by identifying groups using an efficient distributed
group membership protocol, and then routing at the group level, rather than at
the node level. The protocol is designed so that existing concepts of routing in
disconnected ad hoc networks can be extended to work at the group level. Initial
simulations across a broad spectrum of parameters suggest that our protocol per-
forms better in terms of delivery ratio and latency over traditional approaches like
AODV [1], and also over disconnected routing approaches like the 2-Hop routing
protocol [2].

1 Introduction

The existence of an end-to-end path is not guaranteed in many kinds of ad hoc networks
because of various reasons, such as nodes switching off their radios or reducing their
transmission range to conserve energy, node mobility, and application specific deploy-
ment. In such situations, traditional routing protocols for ad hoc networks such as [1,
3, 4] will fail in sending packets to destination nodes to which no path exists. An ap-
proach to solve this problem is to exploit the buffering capacities and mobility of the
nodes participating in the network. If the nodes have sufficient mobility, then instead of
waiting for a path to the destination, messages can be forwarded to intermediate nodes,
which in turn would buffer these packets for some period of time and then forward them
to other nodes. This process can be continued until some intermediate node eventually
comes in contact with the destination node and delivers the message to it. Since such
routing intrinsically relies on waiting for intermittently available paths, there are high
latencies involved in message delivery. Applications which are able to tolerate such
levels of latencies are referred to as delay tolerant.

Many of the delay tolerant routing protocols for disconnected networks do not as-
sume any specific movement and location patterns of the nodes, and hence are unable to
exploit any opportunity that these patterns may present. Several routing protocols have
been proposed for disconnected ad hoc networks. The epidemic protocol [5] blindly



floods each message to as many nodes as possible until the message reaches its destina-
tion. It is therefore very resource hungry with respect to energy consumption and buffer
capacity. The 2-Hop protocol [2] showed that mobility can be used to keep through-
put independent of the size of the network. However, it provides poor performance in
terms of delivery ratios within practical time limits. Sushant Jain et. al. [6] formulate
the general problem of routing in delay tolerant networks, and consider different lev-
els of information availability in choosing a protocol. There has recently been research
into protocols which use aggregated past information to predict future behavior ([7–9]),
and thereby hope to make better routing decisions. The message ferrying approaches in
[10] consider situations where dedicated ferry nodes are available to move around fixed
routes, collect and relay packets.

An interesting class of applications within the delay tolerant disconnected ad hoc
networking framework has to do with those in which nodes tend to move about in
groups. This clustering of nodes leads to the formation of multiple groups of nodes (see
[11–13]). Nodes are free to move about in their own groups, and also to occasionally
relocate to another group. The nodes within each group will usually form a connected
subnetwork, but the groups themselves would usually be in and out of communica-
tion range of each other. Further, the groups also have the ability to move about in the
network, often mixing and merging with the other groups in the network and splitting
into smaller groups. Some applications which work in such group environments include
sensor networks deployed in wildlife [14], vehicular networks [15], and relief and mili-
tary networks. None of the traditional routing protocols for disconnected environments
mentioned earlier exploit the underlying group structure present in such applications.

By recognizing the presence of formation of such groups in the network, it becomes
possible to combine the best ideas of both traditional ad hoc routing protocols as well
as the ideas of routing in disconnected environments. For example, if members of a
group are connected and if each node maintains routes to other members, it becomes
possible to use traditional ad hoc routing to deliver messages and exchange routing
information with nodes belonging to the same group quickly. Such a scheme would
not be possible in any of the routing protocols proposed for disconnected networks.
Moreover, if we treat each group as an entity in itself, much like an individual node in
a normal disconnected network, then it becomes possible to apply concepts of routing
for disconnected ad hoc networks to transfer messages across groups.

Our main contribution in this paper is a routing protocol for the above type of in-
termittently connected ad hoc networks, which is able to exploit the underlying group
structure formed by node locations to provide better delivery ratios at lower latencies.

The rest of this paper is organized as follows. Section 2 gives details of the proposed
routing protocol. Section 3 discusses some implementation details. In Section 4 we
demonstrate, via initial simulations across many parameters, that the proposed group
based protocol works better than existing routing protocols in many real life scenarios.

2 Protocol Overview

We define a group to be a set of connected nodes which maintain their connectivity
for a sufficiently large period of time. The proposed protocol attempts to recognize and



exploit such group structures found in many disconnected ad hoc networks, in order to
provide better delivery ratios and lower latencies. The main design goals of the protocol
can be classified as follows:

1. Recognize groups and maintain group identities in a decentralized and efficient
manner.

2. Leverage principles of existing ad hoc routing for intra-group communication.
3. Adapt concepts of routing in disconnected environments for inter-group routing.
4. Reduce possible complexities in inter-group communication by using group lead-

ers.

The first part of our design goal is achieved by a distributed group membership
protocol. Our focus is to develop an efficient protocol, and hence we do not place the
requirement that all group members have consistent views of each other at all times.
However, the algorithm is expected to converge to a consistent view for all group mem-
bers given sufficient amount of time. In Section 2.1 we discuss the first two of our
design goals. The third and fourth design goals are described in Section 2.2.

2.1 Group Membership

Let
���

denote a globally unique and comparable identifier of a node. Nodes belonging to
the same group are tagged with a common identifier called the 	 �
� . Groups are created
and maintained so that the 	 �
� of a group is equal to the value of the lowest

���
of any

member in the group. Initially, each node belongs to its own group. As time progresses,
nodes that remain together perform merge operations and form larger groups.

Within each group, a proactive routing algorithm is run. This algorithm not only
maintains up to date paths to other group members, but it also helps in timely detection
of unannounced disconnections. In this paper, we use the DSDV [3] protocol, although
any other proactive routing protocol can be used. Each update message that is sent
by DSDV now contains one additional field - 	 �
� . It’s value is set to the 	 ��� of the
node sending the update packet. This helps nodes in discarding update packets sent
by members of other groups. Nodes maintain paths only to other group members, and
hence each node can easily find out who the other group members are by looking at its
routing table.

As time progresses, nodes of other groups may come within the communication
range of one or more members of a group, or some existing members may move out of
range from the group. The protocol should be able to adapt to these changing scenarios
quickly. Our protocol handles the first case by an explicit merge operation. It handles
the second case by implicitly removing the disconnected members from the original
group, and by an explicit split operation on the nodes that have left the original group.
The following two subsections describe how the proposed protocol handles these two
scenarios (joining and leaving).

Group Merge A group merge is triggered explicitly by a node if it detects that one
or more nodes belonging to another group have come within its communication range
for a sufficiently long period of time, called the minimum group merge wait time �
� .



This minimum wait time ensures that groups are not merged accidentally when they
come in contact only for a very short time in the course of their movements. Each node
periodically sends beacon packets advertising its 	 ��� . A node receiving a beacon packet
from another group registers a hit corresponding to the group from which the beacon
was received. If a node stops receiving beacons from the other group for more than
some time duration ��� , it resets the hit counter for that group. Once a node receives
beacons from another group for a time period greater than � � , a MergeRequest packet
is sent to the node which sent the last beacon. The merge request contains the

���
, 	 ��� ,

and the DSDV routing table of the node. On receiving the merge request, a node takes a
local decision to accept or reject the request. If it accepts the request, then it updates its
	 ��� to the lower value of both the 	 ��� ’s, and also adds the nodes in the routing table of
the other group to its own routing table. It then propagates this information in the form
of a new DSDV update packet to the other members of its group. The other members
of the group, on receiving this update packet from a group member, lower their 	 ��� if
the new 	 ��� has a smaller value, and update their routing tables. They also propagate a
new DSDV update packet immediately since new nodes have been added to the group
(as a result of the merge). This process continues till all the nodes of the group have
added the new nodes to their routing tables. The node receiving the merge request also
sends a MergeReply packet to the sender of the request. The reply packet contains the�
�

, 	 �
� , ����������� (accept or reject), and the routing table of the node. Similar actions as
above happen on receipt of the reply packet to update the 	 �
� if needed and the routing
table of nodes in the other group. At the end of the merge operation, a new group with
a common 	 ��� is formed.

It is possible that multiple nodes of the same group may decide to merge with dif-
ferent nodes of another group at about the same time. In such a case, pairs of nodes
(one node from each group) merge initially. The 	 ��� of each node in the pair will finally
be the lower of the 	 ��� of the two groups. Each node in a pair will also initiate a fresh
round of DSDV updates within its original group. Thus, the number of fresh DSDV up-
dates that will take place due to a merge will be limited by the number of pairs of nodes
that started the merge operation. Since each such DSDV update will have the same 	 ���
across all pairs, the routing tables of all nodes will eventually be updated consistently.

Group Split There are two main things to be done when members leave a group. Nodes
still belonging to the group should realize quickly that such members have left the
group. Also, since the 	 ��� of a group should reflect the value of the lowest

���
member

in the group, the 	 �
� of the group which does not contain the lowest
���

node any more
should be changed. However, nodes disconnect from a group in an unannounced fash-
ion, with no prior information as to when they will leave the group. When a node leaves
a group, the protocol depends on the underlying DSDV routing protocol to inform other
members of its departure. If a node leaves a group, then eventually its neighbor would
detect that it is no longer reachable and will remove it from its routing table. It will then
send a DSDV update packet to inform the other group members of this. Thus, within a
short time, the node which moved out from the group will be dropped from the routing
tables of all remaining members of the group. Also, the part of the group which splits
and does not contain the lowest

���
node, will eventually be classified as belonging to a



separate group using the following mechanism. Among the nodes which belong to the
above split part, the node having the lowest

���
will eventually discover that its

���
is not

equal to its 	 ��� and it does not have a path to any member having
���

lower than it. This
node then forms a new group with itself as the leader by sending an announcement to
all other nodes to which it has a path in its routing table to change ther 	 ��� to its

���
. On

receiving the announcement, all nodes which no longer have paths to their current 	 �
�
(because they split from the old group) and which has the node sending the announce-
ment as the lowest

���
member in its routing table, will change their 	 �
� to the

���
in the

announcement. All these nodes also clear their existing routing tables, and build them
from scratch (this is needed to ensure that these nodes do not accidentally consider the
members of the old group to be part of their group).

2.2 Routing

Once the groups are identified, any standard routing algorithm for disconnected net-
works can be used to route between groups. Here, on the assumption that groups often
move in predictable ways, we show how to adapt the PRoPHET routing protocol [7]
to work in our group scenario. Like PRoPHET, we maintain probability measures of
the delivery predictability; but instead of them being measures of successful delivery to
nodes, they indicate the chances of successful delivery to other groups. These measures
are stored at each node in a vector called ��������� �!�#"%$ , which contains an entry for each
group. In order for this scheme to work, it is also necessary to have up to date informa-
tion regarding the group to which a destination node belongs. The protocol gathers this
information in a proactive manner and stores it in a vector called the &�� � $(')&+*,� vector,
which contains an entry for each node. For the purpose of inter-group routing, the node
with the lowest

���
is chosen as the group leader. The main responsibility of the leader

is to consistently update and decay the ��������� �!�#"%$ vector of a group, and to disseminate
the ��������� �!�#"%$ and &�� � $-'.&+*,� vector to the rest of the group.

Updating and Propagating Delivery Predictability and Group Information The
method of updating the ��������� �!�#"%$ vector is the same as the approach followed by
PRoPHET [7]. Let /1032
4 576 be the probability of group 8 being able to deliver a mes-
sage to group 9 . Each group maintains, in its ��������� �!�#"%$ vector, the values /:0<;#=?>@4 5
6 ,
for all groups 9 . The group leader is responsible for carrying out the update of the
��������� �!�#"%$ vector. It does so when a group member informs it that a group has be-
come newly adjacent to its group (this information is sent to the leader in the form of aA �-�-���,B:� � �)��$ packet). On receiving information that group 9 has become adjacent to
its group, the leader of group 8 will update its group’s delivery predictability value to
group 9 as follows ( / =3C.=<DFEHGJILK@MON is an initialization constant).

/P032
4 5
6RQS/T0?2
4 576JU
VXWFY GZM\[ /P032
4 5
6]U
VXW(^`_a/ =3C.=<D (1)

Also, a group 8 can deliver a message to group b indirectly through another group
9 . To take care of this, the delivery predictability value can also be updated transitively
using the following equation ( c Eed ILK@MON is a scaling constant, deciding how large a role



transitivity should play).

/T032
4 f76RQS/P032
4 f+6 U
VXW Y GZM`[ /P032
4 f+6 UgVXW ^:_h/P032
4 5761_h/T035P4 f+61_ac (2)

If two groups do not meet each other for a while, they become less likely of being
able to exchange messages in the future. Hence, it is necessary for the delivery pre-
dictability values to age or decay. This is done according to the following equation,
where i EjGJI�K�M ^ is an aging constant and k is the time elapsed since the last decay
operation was carried out.

/P032
4 576lQm/P032
4 5
6 U
VXW _ni�o (3)

The group leader periodically sends out the updated values of the �p�-���#� �!�#"J$ and
&�� � $-')&+*,� vectors to the entire group in a qP$-� � $(�.BF� � ����$ packet. The q1$(� � $(��B:� � �)��$
packet serves two purposes. First, each node belonging to the group of the leader
updates its own �p�-���#� �!�#"J$ and &�� � $(')&+*,� vectors using the values present in the
qP$-� � $(�.BF� � ����$ packet. Second, these qP$-� � $(�.BF� � ����$ packets will also be received
by nodes of other groups which lie within communcation range of some member of
the group of the leader. These nodes, on receiving a new qP$-� � $(�.BF� � ����$ packet from
an adjacent group, forward it to their own group leader using a

A ���-���,BF� � ����$ packet,
so that their group leader can update the �p�-���#� �!�#"J$ vector using equations 1 and 2.
Further, the group leader, on receiving a

A ���-���,BF� � ����$ packet also updates the values
in its &�� � $-'.&+*,� vector, using information from the &�� � $-')&+*,� vector contained in theA �-�-���,B:� � �)��$ packet. Specifically, an entry in its &�� � $(')&+*,� vector is updated, if either
the corresponding entry in the received &�� � $(')&+*,� vector has a higher sequence number
( �($-r�st� ), or it has the same sequence number, but has a lower 	 �
� value.

The changes in the delivery predictability values when groups merge or split depend
on the specific application scenario and the movement pattern of the new merged or
split group. For example, when two groups merge, we may use the weighted average
(according to size) of the �p������� �!�#"J$ values of the two groups, or we may take the
minimum of the two values, etc. For simplicity, we use the ��������� �!�#"%$ values of the
group having the lower gid. In the case of a split, the nodes which form a new group
will start with an empty ���������u�v�O"J$ vector, whereas no change occurs for the remaining
nodes.

Forwarding Strategy The ���������u�v�O"J$ and &�� � $-'.&+*,� vectors at each node are used
to decide whether a message should be forwarded to an adjacent node belonging to
another group. The protocol uses the following simple greedy strategy for forwarding a
packet. A node uses the information present in its &�� � $(')&+*,� variable to learn the group
to which the destination node belongs. We call this group as the destination group. A
node forwards a message to an adjacent node belonging to another group, only if the
other group has a higher delivery predictability value to the destination group than the
group to which the sending node belongs. Thus messages are transferred from group to
group, until it reaches the destination group. Once the message reaches the destination
group, the message is sent to the destination node using the DSDV routing table.



Table 1. Essential Node Structures

Name Type FieldswXx
simple -y w x simple -z]{J|g}�~ simple -� {]� x {]�
��{]|g}�~ simple -�J�)��� � { compound

x z����<�#{]�Z�3�+~��#�?z]{]|g}�~� ~�����~%�������3� w �O�Z~J� w � {]�y��%~%�
�����O�Z~ compound y w x �����?� w � {
�<y w �O�Z~J� w � {]�%�� {]� x {]�
�@{]|g}�~�� ���%~%�]{%zJz]{ x ��{]|g}�~��~ x {]���O�Z~ compound
w x ��y w x �3zJ{]|g}�~���%~%�?�)��� � { compound y wXx � x { � w � {]�%�Z���g{ x�w ���<��� w � w �<�� {]�JyZ{J�v{]|J� w � { compound y w x � � ��z���� w � {

Table 2. Constants Used

Name Description Value��� ��� �
Initial delivery predictability value 0.5�
Transitivity constant 0.5  Aging constant 0.98¡.¢
Merge wait period 50 sec¡v£
Interval for sending ¤L¥�¦#§O¨]© s 15 sec¡)ª
Interval for sending «�©�§O¦�©�¬O¤!¥�¦#§O¨]© 10 sec¡)­
Timeout period for ®�¯�¦�©�°O®.±(¯ entry 45 sec¡)²
Timeout period for ³�¬�¯�´�¥-°O®)±(¯ entry 15 sec¡ ¢Tµ
Min span between two merge request’s 5 sec

Table 3. Type of Packets

Name Members
Update ¶]·v¸�¹�¶]·v¸
ºO»1¼�½�¾�¿

LeaderUpdate ¶]·v¸Z¾�¿#¼�·�¿#º-À�¿#Á@ÂÄÃ.¸?Åvº�Ã@½Z»1¼�½�¾�¿-¸
ÆLÃ@·�¿#Ç�ÆpÈ�Ã
GroupUpdate ¹�¶]·v¸�¾�¿#¼�·�¿#º-À�¿#Á@ÂÄÃ.¸?Åvº�Ã@½Z»1¼�½�¾�¿-¸
ÆLÃ@·�¿#Ç�ÆpÈ�Ã
MergeRequest ¶]·v¸�¹�¶]·v¸g¹�¶]·�ÉFÊ�Ë�¿Oº�¸
ºO»P¼.½�¾�¿
MergeReply ¶]·v¸�¹�¶]·v¸�Ì�Ê
¼�ÊgÍLÌ(¸
ºO»1¼�½�¾�¿

3 Implementation Overview

The essential data structures maintained by each node is shown in Table 1. Some of
these members (like

��� K 	 ��� K �($-r�st� K "%$-� � $(��Îl$-r�st� ) are simple data types, while the
rest are multi-valued compound data structures. Not shown in the table are additional
fields (like settling time etc.) in �-� �!�#"J$ (the routing table) that will be necessary for
DSDV. The data structure 	����-���p')&+*,� is maintained at each node to keep track of
groups which are currently adjacent to it. Each entry has a field called �vÏ#� �
Ð $ , which in-
dicates whether the group corresponding to that entry is currently adjacent to the node.
If an entry remains active for more than �+� time, then the node initiates a merge re-
quest (as explained in Section 2.1) with the group corresponding to that entry. The field
"J$-� � $(��Îl$-r�st� in the 	v�-�-���p')&+*,� structure is used to discard old qP$-� � $(�.BF� � ����$ pack-
ets received from an adjacent group. In a similar fashion, the field �p�-��Ï�$-�-�($ � ÎT$(r�sÑ� is
used by a group leader to discard

A �-�-���,B:� � �)��$ packets that it has already processed.
Further, Òh$(�(	v$-ÓÔ$-r-� � Òa$ is a data structure that is used to limit the number of merge
requests that are sent by a node to another group. A node does not send two consecutive
merge requests to the same group within a span of � �ÖÕ seconds.

All packet types that are used by our protocol are listed in Table 3. The BF� � ����$
packet corresponds to the DSDV update packet. The qP$-� � $@�.BF� � ����$ packet is sent
periodically by each group leader. The

A ���-�)��BF� � ����$ packet essentially has the same
fields as a q1$(� � $(��B:� � �)��$ packet, but it is sent by a node to its group leader. The× $@�(	!$-ÓØ$-r-�,$���� and

× $@�(	!$-ÓØ$��Ù"]Ú packets are used for sending merge requests and
replying to them. The �-� �!�#"J$ member shown in the BF� � ����$ , × $(�@	!$-ÓÔ$(r-�,$��@� , and× $@�(	!$-ÓØ$��Ù"]Ú packets is essentially the routing table of the sending node, with only the
following fields -

� �@� , �($-r�st� , Û����,bÔ�-�p&�� . Table 2 lists some constants that are used



in the protocol. These values were chosen based on estimates from initial simulation
results.

Since the q1$-� � $(�.BF� � ����$ packet is sent periodically, it also acts as a beacon packet
for detecting adjacent groups. Thus, when a node receives a qP$-� � $(�.BF� � ����$ packet
from another group, it sends its contents in a

A ���-�)��BF� � ����$ packet to its leader and
also carries out the actions that were outlined in Section 2.1.

It is possible that, during a merge operation, the 	 ��� of the node receiving the merge
request may change even before it processes the merge request (due to another merge
operation initiated elsewhere). In that case, the merge reply sent back would confuse
the node which initiated the merge request, since the 	 ��� of the replying group is differ-
ent from what it is expecting. To circumvent this, the

× $(�(	!$(ÓÔ$-r-�,$-�@� packet contains a
field called 	 ����Ü �ZÛp$(� , which is the 	 ��� value of the adjacent group at the time the merge
request is being sent. The node which sends the

× $(�(	v$-ÓÔ$��p"JÚ copies the 	 ���vÜ �ZÛ�$(�
from the

× $(�(	v$-ÓÔ$-r-�Ù$��@� packet into the 	 �
� field of the
× $(�(	!$(ÓÔ$��p"JÚ packet. The

node receiving the
× $(�(	!$(ÓÔ$��p"JÚ is then able to easily find out the group it had origi-

nally sent the
× $(�(	v$-ÓÔ$-r-�Ù$��@� to. The fact that the other group possibly has a different

	 ��� even after the merge operation is not significant, because as soon as the next round
of DSDV updates are triggered, all nodes of the merged group will have a common 	 �
� .

Note that a node accepts a DSDV BF� � ����$ packet from its neighbor only when
either (i) the 	 ��� in the B:� � �)��$ packet has the same value as the node’s own 	 �
� ,
or (ii) the neighbor is already present in the routing table of the receiving node, and
the 	 ��� in the B:� � �)��$ packet has a lower value than the node’s own 	 �
� . If the first
condition is satisfied, then it means that the node has received an update packet from a
neighbor which also belongs to its group. The second condition signifies that its group is
currently taking part in a merge operation. The second condition allows a node to reject
any BF� � ����$ packet from a group member which has a higher 	 ��� than the node’s 	 ��� .
This condition is necessary to ensure that nodes which split to form new groups (they
will have a higher 	 �
� , compared to the original group which they were a part of) do
not incorporate any change received from the members of the old group. This condition
might lead to an occasional loss of BF� � ����$ packets (for example, when a node lowers
its 	 ��� due to a merge operation, and then it immediately receives an BF� � ����$ packet
from a neighbor which is yet to lower its 	 ��� ), but this loss of information is corrected
in the next round of B:� � �)��$ packets sent.

4 Simulation & Results

We verify the effectiveness of our protocol through simulations across a wide range of
scenarios on the NS-2 simulator [16]. The input parameters varied included mobility
pattern, communication range, and the size of the network. We compare the perfor-
mance of our protocol with that of the 2-Hop protocol and AODV. Results for AODV
are included in order to highlight the ineffectiveness of standard routing protocols in
disconnected environments. The performance metrics used for the comparison are de-
livery ratio and delay in receiving messages. We first discuss the simulation setup and
then present results of our simulations.



Three different mobility patterns are chosen in the simulations - Random Waypoint
Model [11], Inplace Model [12], and Community Model [7]. In Inplace Model, the topol-
ogy is divided into different grids. Each group is assigned a specific grid, which it never
moves out of. Groups are able to interact when they meet along grid boundaries. In
Community Model, the topology is again divided into grids. There are some designated
grids called the gathering grids. Each group is assigned a home grid and also a gath-
ering grid. The movement of groups is such that they tend to travel to and fro between
the home and gathering grids, even though there is a slight chance that they may move
to some other grids temporarily.

For the Community model, each grid has dimensions 200m _ 200m. Each scenario
has 3 randomly chosen gathering grids. If a group is in its home grid, it moves to its
gathering grid with a probability of 0.90, while if it is in its gathering grid, it moves to its
home grid with a probability of 0.95. For the Inplace model, each grid has dimensions
250m _ 250m. Node assignments to groups are generated using the model in [13]. About
3% of the nodes are not placed in any group at the beginning of the simulation. In
[13], nodes have to choose a new destination after reaching their current goal. The new
destination can be within its group, within another group, or can also be outside of
all groups. The probability of choosing these 3 types of destinations are set to 0.98,
0.01 and 0.01 respectively. For all scenarios, nodes belonging to a group move in a
bounding box of 100m _ 100m. Further, each group moves to its destination with a
uniform random speed of (0,10] m/s. Likewise, each node within a group moved to its
destination within the group with a uniform random speed (relative) of (0,5] m/s. The
pause time for node movement within a group is set to 5 seconds, while the pause time
for the group movement is set to 25 seconds.

We tested 3 scenarios having different network sizes. The first scenario has 50
nodes, 7 groups, a 1000m _ 1000m topology, 30 randomly established communicating
pairs and a simulation time of 1000 seconds. The second scenario has 100 nodes, 13
groups, a 2000m _ 2000m topology, 50 randomly established communicating pairs and
a simulation time of 2000 seconds, while the third scenario has 200 nodes, 25 groups,
a 3000m _ 3000m topology, 70 randomly established communicating pairs and a simu-
lation time of 3000 seconds. In all scenarios, each node has a buffer capacity of 1000
messages. All messages are generated as CBR traffic over a UDP connection. The un-
derlying MAC protocol that used in our simulations is the IEEE 802.11 protocol. No
measurements are taken during the first 50 seconds of the simulation to allow the pro-
tocols to stabilize.

We present results of simulation for scenario 2 (100 node case) in Figures 1 and
2. The results for the other two scenarios look similar, and due to lack of space, we
do not include them here. Figure 1 shows the delivery ratio v/s communication range
for different mobility models. Each point on the plot is the average value taken over 5
simulation runs. The plots also show best fit bezier curves and 95% confidence intervals.
Figure 2 gives the CDF of the message delivery delays, when the communication range
is 100m.

From Figure 1, we see that our protocol provides much better delivery ratios than
the other two protocols for the Inplace model. Moreover, from Figure 2, we see that the
delay our protocol incurs is significantly less than the 2-Hop protocol for the last set of
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Fig. 1. Delivery Ratio % v/s Communication Range for 100 nodes, 13 groups and various mobility
models

delivered messages. This is expected , as in the Inplace model, groups move in more or
less predictable ways, and our protocol is able to exploit this property effectively.

For the case of the Community model also, it is seen that our protocol performs
better than the 2-Hop protocol, although the improvement is not as drastic as in the
case of the Inplace model. One reason for this is that the movement of the groups is
less predictable in the Community model than in the case of the Inplace model. For
example, this can happen due to groups moving to grid locations which are neither their
home grid nor their gathering grid. Another reason for this is that in the Community
model, groups have more freedom to overlap and mingle with each other. This causes
merging of some groups, even when they are not actually going to stay as a merged
group in the near future. Due to this, there would be instances where groups merge,
followed by a split very soon. This in turn, would cause otherwise unnecessary delays
in rebuilding routing tables, and also a temporary loss of information regarding delivery
predictability values.
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Fig. 2. CDF of message delivery delay for 100 nodes, 13 groups, various mobility patterns and
100m communication range

For the case of the Random Waypoint model, we see that our protocol performs
quite well in comparison to the 2-Hop protocol. However, in general, it is observed
that the delivery ratio performance of our protocol varies and lies close to the delivery
ratio curves for the 2-Hop protocol. This reasonably good performance of our protocol
in the Random Waypoint model is slightly unexpected. This was also reported in the
PRoPHET protocol simulations [7], and can be due to the fact that even in random
motion, two groups that have met each other may not have moved far away from each
other. In such cases, the delivery predictability values will still be useful.

5 Conclusion

In this paper, we proposed a routing protocol for disconnected networks where nodes
tend to move in groups following particular mobility patterns. Initial simulations have
shown that for the Inplace and Community model, our group protocol is able to deliver
more messages than the 2-Hop protocol at comparable or better latencies.
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