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Abstract

Large-scale data-centric services are often handled
by clusters of computers that include hundreds of
thousands of computing nodes. However, traditional
distributed query processing techniques fail to
handle the large-scale distribution, peer-to-peer
communication and frequent disconnection. In this
paper, we introduce LOT, a robust, fault-tolerant
and highly distributed overlay network for large-scale
peer-to-peer query processing. LOT is based on a
robust tree overlay for distributed systems. It uses
virtualization, replication, geographic-based clustering
and flexible state definition as basic design principles.
We show how we map these principles to desirable
performance goals. Moreover, we provide a light-
weight maintenance mechanism for updating state
information. Analysis and simulations show that our
approach is superior to other well-known alternatives
in its query processing performance and handling of
churn.

1 Introduction

Large-scale data-centric applications are often han-
dled by clusters of computers grouped in data centers
that include hundreds and thousands of computing
nodes. Large organizations usually have several data
centers distributed around the globe. Although there
are many different deployments, we assume the follow-
ing generic distributed environment: (1) the computing
nodes are commodity hardware that are similar in
their storage and processing capabilities; (2) nodes
communicate with each other in peer-to-peer mode
for query processing through an underlying network;
(3) communication among nodes within the same data
center is much cheaper than across data centers; and
(4) failures (e.g., disconnection or power shortage)
cause nodes to become up and down at arbitrary times.

These properties pose several query processing chal-
lenges, where traditional distributed query processing
techniques fail to handle the large-scale distributions,
the peer-to-peer communication and the frequent dis-
connection. Several peer-to-peer data layout and query
processing algorithms have been introduced in recent
years [16, 14, 8, 7, 6, 3]. However, these attempts
usually focus on one aspect of the problem and fail
to take into account other challenges. For example,
while DHT-based approaches [16, 14] focus on load
balancing, they fail to provide efficient support of range
queries. Tree-based structures [8, 7, 6, 3] provide a
scalable indexing mechanism with efficient support of
range queries, however, these techniques usually suffer
from the intrinsic weaknesses of tree structures with
respect to robustness and fault tolerance.

In this paper, we introduce LOT, a robust and
highly distributed overlay for efficient and reliable
query processing.

1.1 Design Principles

LOT is a virtual B-tree-like structure, which guar-
antees routing paths and query processing delays to
be logarithmic in the network size. In designing LOT,
we exploit four principles that map to our performance
goals:

• Geographic-based clustering Servers are
increasingly being placed in well-managed,
highly-connected data centers, where each data
center contains tens or hundreds of thousands
of servers. From the perspective of a server,
every other server within the same data center is
essentially at zero distance, in terms of latency
and bandwidth, compared to a server at another
data center. We believe that algorithms should
recognize and exploit this link heterogeneity.
From an algorithmic perspective, this means that
it is acceptable to greatly increase ‘local’ traffic
(i.e. within a data center) in order to decrease
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communications between data centers. LOT
exploits this geographic proximity in deciding
on node joining strategies, and by using more
intra-cluster communications in completing
expensive operations such as range index updates
and structural changes.

• Virtualization Load-balancing is an important
challenge for tree-structured overlay network since
upper level nodes tend to get more workload and
become a bottleneck. LOT solves this problem
by arranging all nodes at the leaf level and by
using them to emulate upper-level virtual nodes.
By ‘emulation’, we mean that a computing node
acts on behalf of all of its ancestor virtual nodes in
query processing and overlay network maintenance
tasks. Therefore, on average, all servers emulate
the same number of upper-level nodes and share
an even workload.

• Replication and multi-path routing An important
aspect of massively parallel computing is that each
server is less reliable than in a traditional main-
frame approach. Therefore, algorithms should
recognize that a non-trivial fraction of servers may
be down at any point in time. LOT uses repli-
cation and virtualization, and exploits multiple
paths in the routing structure, to increase system
availability. We prove that the system fails with

a very low probability bounded by O(( 1
N )c

(1+ρ)
2 ),

where c is a constant and ρ is a robustness
parameter at most poly-logarithmic to the network
size.

• Flexible state definition The LOT virtual tree
structure has a flexible state definition that allows
it to be used in a variety of applications, e.g.,
in-network function computation, and distributed
indexing mechanisms to support the computation
of range-queries, top-k queries and other data-
centric applications.

1.2 Contribution

To the best of our knowledge, we are the first to
analyze the emerging data center infrastructure and
develop a distributed and fault-tolerant index based on
a tree overlay for efficient range query processing over
this infrastructure. LOT is distinguished for its strong
guarantee on efficiency, load-balancing and robustness.
We summarize the main contributions of our work as
follows:

• We introduce the structure of LOT and we show
how to achieve robustness, load-balancing through

a non-trivial use of node virtualization, proximity-
based clustering and multi-path routing.

• We show how to efficiently use LOT to answer
range-queries as an example of query processing
challenges for highly-distributed peer-to-peer en-
vironments.

• We introduce a simple yet efficient maintenance
technique that achieves resilience to node failures
and arbitrary join/leave patterns of data nodes.

• Through extensive experiments, we demonstrate
the effectiveness of our design and show its supe-
riority over previous work.

The organization of the paper is as follows. We
introduce the LOT framework in Section 2. In Sec-
tion 3 we describe how to use LOT to support range
queries. We present our performance evaluation results
in Section 4. Other applications of LOT are described
in Section 5. We discuss related work in Section 6 and
conclude in Section 7.

2 LOT Framework

For clarity of presentation, we use “p-node” to
denote a physical node (i.e. server or peer) in our
system.

2.1 Data Structure

Super-leaf P-nodes within the same data-center are
grouped to form a super-leaf. Each super-leaf contains
between l and 2l p-nodes, where l is an operating
parameter. Within a super-leaf, we use a gossip-style
(or epidemic) algorithm [4] to propagate information
held by any subset of p-nodes in a super-leaf to all
others. These algorithms are extremely tolerant to link
and p-node failures, take O(ln l) time and use O(l ln l)
messages: a super-leaf can therefore be viewed as an
atomic unit with a self-consistent view of the world. In
the sequel, we therefore refer to the super-leaf when we
mean to refer to the collection of p-nodes constituting
the super-leaf. For example, we may say that super-leaf
F has state s, to mean that all p-nodes of super-leaf F
have state s.

Virtual Tree and Partial Representation Over-
all, super-leaves are organized to form a virtual tree,
where each tree node has degree between b and 2b and
each leaf corresponds to a super-leaf 1 Each tree node

1From now on, we use the terms leaf and super-leaf
interchangeably.
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is emulated by every one of its descendent (super)-
leaves, that is, p-nodes emulate the nodes on the path
from their super-leaf to the tree root. This is similar
in principle to the design of Willow [17], except that,
unlike Willow, we do not require the tree height to be
exactly 129.

Note that a p-node only maintains a partial repre-
sentation of the virtual tree, storing only information
about its super-leaf, its ancestors, and the children of
these ancestors. (Figure 1.)

P-nodes in the 
same super-leaf as s

1.1

1.1.1 1.1.2

1.1.3

s

Virtual nodes
that s emulates

1

1.2 1.3

Part of the tree that s does not know

Figure 1. Partial Tree Representation of s

State We gain flexibility in our approach by asso-
ciating a generic “state” with each tree node (both
virtual and real). The value of this state depends on
the purpose to which we are using the infrastructure.
For simple operations, such as finding the sum of the
values held at the leaf nodes, the state corresponds to
a partial sum. For more complex operations, such as
a content-based filtering of the data held at the leaf
nodes, the state would correspond to partial results of
the filtering operation.

To provide fault tolerance, we use the following
replication rule: all p-nodes that are descendants of a
virtual node are required to emulate it, by maintaining
an identical copy of that virtual node’s state. As we
will see later, for efficiency in computation, we require
that the state of a virtual node can be deterministically
derived from the state of its children. As an example,
suppose we are using LOT to compute the sum of the
values at the leaves. Then, the state of a node could
correspond to a partial sum of its descendant’s values.
All descendants of the virtual node would therefore
carry identical copies of this partial sum. Alternatively,
we can think of a virtual node as being associated
with an SQL query, whose evaluation requires the
aggregation of query evaluations on its children. Our
replication rule would require all descendants of the
virtual node to maintain copies of the partial results.
In the next section, we explain how to efficiently update

a virtual node’s state while maintaining consistency
among replicas.

2.2 Maintenance Algorithm

The state of a virtual node can only change if there
is a change in the values held at one of its descendant
leaves. Let’s say one of the leaf values changes at some
time t. This change is not immediately propagated
up the tree. Instead, the state of the interior tree
nodes is recomputed periodically, using the values at its
descendant super-leaves at the time the computation
starts.

The algorithm works in rounds. During round i,
the state of the height i nodes is recomputed. More
precisely, during round i, each super-leaf learns the
state of the relevant nodes of height i − 1, then
each super-leaf independently computes the state of
the height i node it emulates, namely, its height i
ancestor. Because the computation is deterministic
and all super-leaves have the same input, all super-
leaves emulating a node will obtain the same state.
Note that we assume the availability of an approximate
global clock so that all p-nodes run the same round of
the algorithm simultaneously. Such a clock is easily
available these days due to GPS. Slower p-nodes can
easily re-synchronize when receiving “early” requests.

Before detailing the algorithm, we describe some of
the tuning parameters: ρ is a user chosen reliability
parameter and should be at most polylogarithmic in
the network size n. The branching factor b is chosen
by the user. We suggest b = lnλ n for some constant
λ ≥ 0, which may or may not be larger than 1. The
algorithm uses parameters k1 = 2 and k2 = 1+ρ

2 lnn.
Finally, the super-leaf size is constrained between l and
2l. Set l = α · k2 for some user chosen 1 ≤ α ≤ 2b.
We suggest taking α = 2b. The results of Section 2.4
explain and justify our choices.

The round i of the algorithm is as follow. Each
super-leaf assigns k1 distinct super-leaf members to
each one of the children of its height i ancestor.2

Each designated p-node tries to contact one3 random
representative of the child it was assigned to, and learns
its state. We assume the existence of an emulation table
to map from a virtual node to a set of IP addresses
of p-nodes who emulate that node: the computation
and maintenance of the emulation table is described in
Section 2.3. We set a small time-out to guard against
slow p-nodes slowing down the whole computation.

2The k1 p-nodes contacting child ci are distinct. However,
the same p-node may be assigned to several (typically l/bk1)
children if there are not enough p-nodes in the super-leaf.

3Each p-node only gets one try.
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Then, the p-nodes from the super-leaf run a gossip
(epidemic) broadcast within the super-leaf to share the
information they have learnt. They also discover if, due
to failures, the states of some children have not been
learnt. In this case, the whole procedure is repeated,
this time with k2 p-nodes assigned to each missing
child. At this point, with high probability, all p-nodes
know the state of each of the children of the height i
ancestor. Finally, each p-node computes the height i
ancestor’s state.

2.3 Emulation Tables

It turns out that we can use LOT to maintain its
own emulation tables. Suppose we define the state of a
virtual node u to be a sample of p-nodes emulating u.4

Moreover, let each p-node s also hold a vector temp of
p-node IP addresses, initialized to m copies of s’s own
IP address. The algorithm to maintain the emulation
tables is then as follows:

During each intra-super-leaf communication (gossip
exchange), p-nodes exchange a random half of their
temp vectors. During each long distance communica-
tion, they swap their temp vectors. Recall, each p-node
only emulates one virtual node at height i, its height i
ancestor ai. We set states(ai) to the value of temps

taken at the end of round i.

Another description of this algorithm is the fol-
lowing: consider a virtual node u of height i, and
the concatenation of all states(u) over p-nodes s
that emulate u. This concatenation is a random
permutation of the IP addresses of p-nodes emulating
u. Each emulating p-node therefore returns a different
part of the concatenation. This allows each p-node to
get a nearly uniform random sample of the set of p-
nodes that emulate any virtual node u.

Finally, emulation tables are created out of the
partial tree representation P by adding to each non
ancestor node u ∈ P a list of p-nodes emulating
virtual node u. Consider a super-leaf F and denote by
v1, v2 . . . , vj the height i − 1 virtual nodes present in
F ’s emulation table, excluding F ’s height i−1 ancestor.
During round i, F receives one or more copies of the
state of v1, . . . , vj . The state of vj is actually a sample
of p-nodes emulating vj . From several samples of nodes
emulating vj , F randomly creates a new sample for
the emulation table. A different presentation, more
detailed, of the algorithm can be found in [2].

4Note that we had earlier stated that each p-node s emulating
a virtual node u has the same copy states(u) of u’s state. Here,
we allow a small divergence from this definition, so that each
p-node emulating u has a different random sample of p-nodes
emulating u.

2.3.1 Joins

We now describe how a new node joins the system. A
joining p-node s sends a request to any existing LOT p-
node s′. For each child ci of the root, p-node s′ returns
a small set of p-nodes emulating ci. P-node s selects
the closest child ci and forwards its join request to
one of the p-nodes emulating ci. This process iterates,
stepping one level down in the tree each time until s
locates the appropriate super-leaf, i.e. the one closest
to it, that it joins.

Alternatively, the p-nodes can run a localization
system like Meridian [19], which directly locates the
best super-leaf to join.

2.3.2 Structural changes

At the end of round i, each super-leaf checks whether
the branching constraint on its height i ancestor is
satisfied. If it is not, during round i + 1, the super-
leaves announce the relevant change to the ancestor
(the ancestor splits into two nodes, merging with a
contiguous node, as in a normal B-tree). Because all
super-leaves have received the same information during
round i, all super-leaves will reach the same decision
regarding the ancestor. Thus they will all update the
tree in the same way and announce the same change
during round i+1, without further need to communicate
to reach agreement.

At the end of each maintenance process, each super-
leaf gets a fresh emulation table, with a partial tree
representation that is consistent with that of all other
p-nodes. P-nodes that fail will be removed from the
emulation tables by the end of the next maintenance
run, ensuring good performance.

Balance Denote by Du the set of super-leaves de-
scending from u. These are the super-leaves emulating
u. Even though the tree is height-balanced, the number
of super-leaves in subtrees of the same height may be
different. Consider virtual node u of height i. During
round i, some p-nodes (not in Du) try to learn u’s
value. Denote by acq(u) the number of these p-nodes

and by βu = acq(u)
|Du | the expected load on the p-nodes

of Du . Let

β = max
u

(

acq(u)

|Du |

)

Variable β is the maximum expected load on a p-node.
We assume that, for a user-chosen η ≥ 0 (see the bound
on ε below):

β ≤ βmax = max load · e−1−(2+η) ln max load

max load ≈
max load

e
(1)
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In other words, each time a virtual node u is such
that βu > βmax, the re-balancing mechansims of the
algorithm kicks in and re-balances the tree to restaure
the constraint βu ≤ βmax.

2.4 Analysis, Performance and Reliability

2.4.1 Performance

Running Time We now state theorems on the
performance of LOT, with the proofs deferred to
Appendix A.

Theorem 1. The running time of the algorithm is
Θ((1 + b

α ln b ) lnn), that is, Θ(lnn) when α = 2b.

Proof. The running time is O(h · R) where R is the
running time of a round and h the height of the virtual
tree. We have log2b

n
2l + 1 ≤ h ≤ logb

n
l + 1, or h =

Θ
(

1
ln b ln n

l

)

. There are two operations during a round:
the acquisition of states and the broadcast within the
super-leaf, each of which may be repeated once more
if some values are missing. The running time of the
broadcast within each super-leaf is Θ(ln l). Because
each p-node sends one or two messages long distance
messages and processes at most 2 max load incoming
messages the length of both acquisition phases is upper
bounded by 2 max load+ 2 = 2 ln lnn + 2 ≤ 2 ln l + 2.
We have R = Θ(ln l+max load) = Θ(ln lnn) = Θ(ln b).
The running time is then

T = h · R = Θ

(

1

ln b
ln

n

l
· ln b

)

= Θ(lnn)

2.4.2 Reliability

Assumptions We assume that failures are fail-stop,
independent, and distributed uniformly at random
among the p-node. We denote by p an upper-bound
on the individual probability of failure between two
consecutive tree re-computations.

We also assume that p-nodes are provided with a
uniform random sample of p-nodes emulating the vir-
tual nodes present in their partial tree representation,
(the algorithm we present in Section 2.3 allows us to
compute almost uniform samples). Then the algorithm
succeeds with high probability even in the presence of
p-node failures during computation.

Assuming that p-nodes select uniformly at random
which connections to drop when they become too
numerous, we model the dropping of incoming connec-
tions by an increase bounded by ε in the probability of
failures from p. The justification for this and the new
modified probability of failure p′are described below.
The detailed proofs of the theorems can be found in
appendix.

Lemma 2. Leaves dropping connections when their
load exceeds max load long range messages in a round
is equivalent to leaves serving all their connections but
with an increase of ε in the failure probability of targets,
where ε ≤ 1

4 ln2
max load

· 1
(max load)η .

We set k1 = ln lnn
| ln(2p+ε)| . Note that limn→∞ ε = 0.

Theorem 3. The algorithm fails with probability:

pfail = O

(

1

n(γ−1−δ)+γρ

)

where γ = | ln(2(p + ε))|/2 is a parameter depending

on the failure probability, δ =
ln b

α(1+ρ) ln b

ln n is small,
and can be ignored if δ ≤ 0 which is the case most
of the time, including when α = 2b. Last, ρ a user-
chosen parameter governing the reliability with 0 ≤ ρ ≤
O(ln n) being acceptable values. Larger ρ leads to larger
super-leaves, of size l = (1 + ρ) · α · lnn

2.4.3 Load on P-nodes and Tree Balance

The virtual tree must be maintained in a way that
satisfies the bound on β as defined in Equation 1.
Denote by S(u) the number of super-leaves that need
to acquire u’s value. Note that acq(u) ≤ S(u) ·k2 since
each super-leaf sends at most 2l/b messages to Du . For
the highest virtual nodes in the tree, the bound on
acq(u) is loose by a k2/k1 = (1 + ρ) lnn/ ln lnn factor.

Theorem 4. For the virtual nodes u high in the tree,
that is, such that

S(u) ≥ (1 + ρ)| ln(2(p + ε))|
ln2 n

2e2
(2)

we have acq(u) = O(S(u) · k1) = O(S(u) · ln lnn)
This result holds with very high probability. The

probability that some (virtual) node exceeds the bound
during the execution of the algorithm is smaller than
the algorithm failure probability.

In other words, none of the virtual nodes satisfying
constraint (2) will have a load exceeding O(k1 ·S(u)).

Message Complexity The number of messages sent
by the algorithm is O(n ln n). However, not all
messages have the same cost. A more interesting metric
is to count the number of long distance messages (as
opposed to local messages, sent within the super-leaf).

Theorem 5. When α = 2b, the number of non-local
messages sent is, with high probability, O(n)

In fact, each p-node initiates on average 2b/α long
distance messages.
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Theorem 6. Long distance messages are of size
O(Agg). Local messages are of size O(b · (Agg + k2))
where Agg denotes the size of messages used to
describe the state of a node.

Note that Agg ≥ 2m because they are two vectors of
m elements used for the maintenance of the emulation
tables. However, as explained in Section 3.4 in the
case of two internal nodes merging, Agg = O(b · m);
and depending on the implementation, we may always
have Agg = O(b · m).

3 Distributed Index

We now describe how to use LOT to create a
distributed index that supports range queries in a dis-
tributed database. We focus here on uni-dimensional
ranges, deferring a discussion of multi-dimensional
ranges to Section 5.2.

3.1 Index and Data Deployment

In a standard uni-dimensional B-tree, data is placed
in sorted order on the leaf nodes, and internal nodes
are associated with a range that covers the data values
of its descendants. Our approach adds a layer of
indirection: each p-node leaf node can store data in
more than one range. However, it is responsible for
indexing a range of data values stored at other p-nodes.
It is these indices that are contiguous, and constitute
the ‘state’ held in a LOT node. For instance, a p-node
may hold data values 1, 5, and 10, and be responsible
for the range [6-9]. Then, it will have pointers to every
p-node that holds data values in the range [6-9], and is
pointed to by p-nodes responsible for the ranges that
include the values 1, 5, and 10. Nodes at higher levels
in the tree use their state variables to aggregate these
ranges in the normal fashion. For simplicity, we assume
that the range of an internal node is divided between
its children with no gaps and no overlaps.

Recall that we cluster p-nodes to form super-leaves.
We therefore aggregate the index ranges at the p-nodes
to form the index range of the super-leaf and replicate
the index range of the super-leaf at every p-node in the
super-leaf (Figure 2).

3.2 Range Query Processing

Conceptually, range queries are issued at the root
node, and recursively forwarded down the tree to the
appropriate nodes. In practice, the nodes are virtual
and the request is forwarded to a randomly chosen
p-node emulating that node (Algorithm 1 where r is

Figure 2. Range Index and Data Deployment

the querying range and i the level initialized with the
height of the tree).

Algorithm 1 range query processing(r, i)
1: if i==0 then

2: Use the data table to return the p-node IP’s of entries
matching the range.

3: else

4: for each routing entry at level i intersecting with r do

5: [Denote by C the node, by rC the resulting intersection]
6: if C is our ancestor (of height i) then

7: call (locally) this.range query processing(rC , i − 1)
8: else

9: get a random p-node sC emulating C
10: call (remotely) sC .range query processing(rC , i − 1)
11: end if

12: end for

13: end if

Note that this algorithm will fail if a p-node fails
while forwarding the request. To make the algorithm
fault-tolerant, on receiving a query, each p-node can
return, not of a single p-node emulating the next hop,
but a list of p-nodes emulating the next hop. The
enquirer can then propagate the query to more than
one of these p-nodes in parallel. In essence, the query
execution plan is parallelized among multiple execution
paths. As long as any one of these paths succeeds,
the overall query will succeed. Furthermore, each
temporary result may be cached at the super-leaf to
improve performance.

3.3 Joins and Leaves

We now describe how to maintain the index struc-
ture when new p-nodes join and leave. Recall that
a p-node s always joins the closest super-leaf from a
network perspective. At join time, it gets a copy of the
super-leaf state while being added to the list of super-
leaf members. Then, p-node s issues a data update
operation (described in the next paragraph) to get its
data inserted in the appropriate set of indices held
at other super-leaves. Previously joined p-nodes issue
similar operations in the case of data updates. While
s will not be included in the emulation tables until the
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next maintenance phase, thus not receive any load until
then, its data is available immediately to all queries.

To perform a data update, p-node s first issues a
query to locate the data table (and equivalently the
super-leaf) that maintains the range corresponding to
the item to insert. Then p-node s sends a notification
of data insertion to a p-node of that super-leaf. The
message is propagated throughout the super-leaf via a
gossip broadcast algorithm to update all copies of the
data table.

Note that p-node s’s data always resides on s.
However, the data may be replicated within s’s own
super-leaf if desired. Were s to leave or permanently
fail, s’s super-leaf would notice and issue (several copies
of) a delete operation on s’s data. The data index entry
corresponding to s contains s’s address so that multiple
delete operations may be issued without damaging the
rest of the index.

Note that we have a ‘best-effort’ semantics regarding
consistency: during the gossip-based propagation of a
data update, the data table replicas are inconsistent,
thus the same query being answered by different p-
nodes may return different results. However these in-
consistencies are quickly fixed at the next index main-
tenance operation. Alternatively, if strong consistency
is desired, traditional transaction control mechanisms
(write locking) may be applied to the super-leaf. This is
not prohibitively expensive thanks to the rather small
super-leaf size and the low latency of communications
within the super-leaf.

3.4 Index Maintenance

As p-nodes join and leave, super-leaves will acquire
members who are not part of the emulation tables
at other p-nodes. Hence, they will not serve any
query load. New p-nodes are incorporated into the
emulation tables during the maintenance phase, which
proceeds as described in the “membership” algorithm
in Section 2.3. At the end of the maintenance phase,
all p-nodes known to the system at the start of the
maintenance phase can start serving query load.

In addition to maintenance of the emulation tables,
super-leaves may need to be re-balanced if too many p-
nodes join them. This is done using the split technique
described in Section 2.3. If a super-leaf split causes an
internal node to split, then the range at the internal
node is partitioned into two ranges, which are then
associated with the two new internal nodes.

The case of two internal nodes merging, and re-
balancing operations, are complex and not particularly
illuminating. We describe them next.

Essentially, a re-balancing operation is the transfer

of a child of node u to node v where v is a node
immediately to the left of right of u. A merge between
u and v is a special, extreme case of re-balancing,
one in which all children of u are transferred to v.
Further, re-balancing operations between u and v have
no consequences on other nodes except the change
in index range of u and v. This allows the tree to
efficiently re-balance virtual nodes in case of data skew,
but also in the case of load skew.

During round i, information regarding the children
of the height i ancestor is being exchanged. Infor-
mation about children of these children is required
for a tree-merge. The approach in the full-scale
simulator we describe in Section 4.2 is to always send
this information, at the cost of larger messages, but
with the gained flexibility of being able to do B-tree
branch re-balancing to re-balance branches and indices.
Alternatively, this information about the children of
the children may be sent/request only when needed,
for a merge. This makes for smaller messages but a
substantially more difficult implementation and was
done in our leight-weight simulator of Section 4.1

3.5 Query Processing Performance

The number of hops needed to answer a single point
query is h + 1 where h ≤ logb

n
l +1 is the height of the

tree. The extra message is needed to reach the data
itself after reaching the index table at the super-leaf.
Assuming failures and emulating tables to be uniformly
random, each query will stumble on an expected E =
hp/(1 − p) failed p-nodes before reaching destination.

Thanks to the high branching factor of our B-tree-
like structure, the tree hight is smaller than that of
other overlays using binary trees [8, 7], thus improving
query performance. Furthermore, this number of hops
needed to answer a query is constant, regardless of
failures. This is of prime importance in a dynamic
environment where churn can be high. In contrast,
if a query is routed around failed physical nodes, the
number of (live) hops needed to complete a query
increases with the number of failed nodes, thus leading
to performance issues under churn. The simulations of
[6] (and we expect the same to hold for [8, 7]) suggests
that the number of hops per query grows quadratically
with the failure rate.

4 Evaluation

In this section, we present an experimental evalua-
tion of LOT, as well as a direct comparison with the
BATON/VBI family of algorithms.
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4.1 Reliability

We developed a light-weight, highly scalable simula-
tor specifically to evaluate the robustness of the LOT
framework, especially at large scale.

To measure robustness, after growing the network
until reaching a system of 10,000 p-nodes, we ran-
domly kill a fraction p of the p-nodes, then run
the maintenance algorithm. Recall that during the
maintenance phase, membership tables are updated
using two rounds of inter-cluster messages. In Figure 3
we plot the fraction of these membership updates that
fail, as a function of the failure rate, and for two values
of m. Note that even with a failure rate of 20%, no
membership updates fail! Membership updates start
to fail as the p-node failure rate increases beyond 20%,
with a rate of increase smaller for larger m. In practice,
we do not expect more than about 5% of the nodes to
fail between two runs of the maintenance algorithm.
Therefore, even with these high churn rates, we see
that LOT performs robustly.

Figure 3. Reliability

4.2 Experimental Setup

To study other aspects of LOT, and to compare it
with the BATON/VBI family, we used the discrete
event simulator P2Psim5. We also implemented our
own version of the BATON/VBI algorithms based on
the source code we obtained from the authors, and with
small modifications (described later).

We generate a data center topology by employing
a placement strategy similar to that developed in
Brite [11]. Here, we assume that all data centers are
distributed in a square area with a side equivalent to
100ms of delay. We divide this square into 16 non-
overlapping smaller squares, with one data center per
square. The number of p-nodes per data center follows

5P2Psim: http://pdos.csail.mit.edu/p2psim/

a power-law distribution with exponent 2.3 The p-
nodes are placed uniformly at random within each
small square. The latency between two p-nodes is
then modeled by their Euclidean distance. This results
in low delays between p-nodes within the same data
center, with larger delays between p-nodes in different
data centers. Note that we are being conservative, in
that the ratio of delays in practice is likely to be about
200:1, rather than the 4:1 in our simulations.

The system starts with a single p-node. Then p-
nodes join the system according to a Poisson distribu-
tion. We varied the join rate, having between 1000 and
5000 p-nodes join over the course of the experiment.
Our experimental data has been measured after the
system stabilizes, and we report the average number
of p-nodes in the system. We set l = 15, b = 4 and
m = 20. To realistically simulate node churn, the life
time of p-nodes follows a power-law distribution with
exponent α = 0.9. This matches the Gnutella host life
time distribution reported in [15].

In this work, we focused on uni-dimensional data
and implemented the same framework as in [8] Each
p-node carries an integer randomly chosen from the
range [1, 10 000 000]. Range queries are generated
in the following way. The range starting point is
randomly chosen from the data range; the range span
is computed by choosing a random integer from [1, 10]
and multiplying it with the expected range span held
by a super-leaf. Queries are issued by randomly
chosen live p-nodes at a random instant during the
measurement time.

4.3 Performance Evaluation

4.3.1 Range Query Processing and Join Delay

We issued 10,000 range queries and measured the
latency (Figure 4). As expected, the latency increases
logarithmically with the system size. The average cost
in number of messages per query was only slightly
larger than the height of the tree. This is despite
queries that cover multiple super-leaves. Note, we
only report the time to locate the p-nodes holding the
requested data: we did not include the time to actually
retrieve the data itself, because this depends on the size
of the data itself and is independent of the query cost.

We also measured the latency of a join request, from
the point of view of the joining p-node. This excludes
the propagation time of the join request within the
joined super-leaf. Results were very similar to those of
Figure 4, which is to be expected because the process of
a p-node joining is very similar to a single point query.
We do not show the graph to conserve space.
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Figure 4. Range Query Latency

4.3.2 Maintenance Costs

We now turn to the maintenance phase and show that
it both short and light-weight. Table 1 shows the total
latency for the execution of a complete maintenance
phase. Note that even with several hundred nodes, the
entire process finishes in a few seconds.

Nb of P-nodes 132 264 398 523 635
Average delay (ms) 1116 1846 1923 3268 3622

Table 1. Maintenance Phase Duration

An additional metric of interest is the bandwidth
consumed by inter super-leaf messages. This is plotted
in Figure 5 (b). We mentioned in Section 2.4 that
the number of long distance messages sent by each p-
node is a small constant. This can be verified with
Figure 5 (a). Figures 5 (c) and 5 (d) illustrate our
design principle to trade off long distance messages for
local ones: we see that the number of intra-super-leaf
messages is a small fraction of the number of inter-
super-leaf messages.

4.4 Performance Comparison

We now compare the query processing cost of
LOT to BATON and VBI [8, 7], two balanced tree
overlays used for range query processing. To make
the comparison fair, we re-implemented these systems
under the P2Psim simulator. While our intent was to
compare the algorithms under a realistic scenario, we
found out that neither work addresses the concurrency
issues that arise in a high-churn environment. We
therefore enhanced BATON/VBI with a simple concur-
rency control, locking p-nodes when they update their
routing and range index. To avoid dead-lock issues, p-
nodes fail when encountering a locked node, and retry
the operation later. They eventually give up after a
few unsuccessful attempts.

Unfortunately, under our original scenario of Sec-
tion 4.2, failures during the join process rise to dramat-
ically high levels (above 50%), making it impossible
to build a large-scale BATON and VBI network.
Consequently, we reverted to comparing LOT with
these systems in a nearly static environment, with
systems of size between 250 and 1500.

We measured both the number of messages used
per range query and the query latency (Figure 6).
The results show a statistically significant performance
advantage for LOT over BATON/VBI. Concurrent to
this work, the authors of BATON and VBI published
BATON* [6] addressing the query performance issue
by increasing the fan-out of the tree. The number of
messages per query appears to be competitive with that
of LOT. However, BATON* also does not address the
issue of concurrency, making the system impracticable
in high-churn environments.

(a) (b)

Figure 6. Query Processing Cost Comparison

5 Extending State Information for

Other Applications

As mentioned in Section 1.1, flexible state definition
is one of the LOT design principles that allows use
of the LOT framework for a variety of applications.
In this section, we show how to use other state
definitions to enable two important applications: in-
network computation and multi-dimensional indexing.

5.1 In-Network Computation

In-network computation tries to compute an ag-
gregate of the values distributed over the network
without sending all the values to a central computation
node. Practically any in-network computation, such as
computing aggregates like sum of the super-leaf values,
can be carried out in LOT by a simple definition of the
appropriate ’state’ value. Other in-network computa-
tion algorithms are well known in the literature, such
as [10] and [9]. Like LOT they all require O(ln n) time.

In terms of the number of messages, [9] is superior
to LOT by a factor of O(ln n/ ln lnn). However, we
believe that the appropriate cost metric is the number
of long distance messages, which is O(n) in both cases.
Note that if a node of [10] or a leader of [9] fails during
the computation, the result will almost certainly be
incorrect. This is because these algorithms tolerate
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(a) (b) (c) (d)

Figure 5. Maintenance Cost Per P-node

link failures but not node failures. In contrast, our
algorithm tolerates both.

In the context of P2P databases, we expect a
considerable degree of node churn, either due to node
failure, or because the owner of the node has decided
to remove it from the system. When used in such
environments, systems that do not tolerate node churn
are inapplicable. We believe that LOT is an attractive
solution in such environments.

5.2 Multi-dimensional Indexing

Extending the state of LOT nodes to contain multi-
dimensional ranges instead of one-dimensional intervals
is orthogonal to the design and structure of LOT.
Basically, treating LOT as a R-tree like structure
is a straightforward extension of this paper. Multi-
dimensional bounding regions, however, have implica-
tions on the query processing algorithm since multiple
ranges can satisfy a point or a range query (because
of overlapping ranges). Exploiting parallelism in LOT
allows for pursuing all paths that are consistent with a
range query at the same time.

6 Related Work

Our work is in the general area of peer-to-peer
Distributed Hash Tables (DHTs) and the related area
of tree-overlays for query processing in P2P distributed
databases. The literature in both areas is extensive,
therefore, for considerations of space, we discuss only
the work that is closest to ours.

With respect to the DHT literature, our work is
similar in spirit to the Astrolabe[18], Willow [17],
PIER [5], and SDIMS [20] DHTs. Astrolabe [18]
organizes peers into a tree. Like LOT, each non-
leaf node maintains a user-defined state table, and in-
network aggregates are computed in multiple rounds.
To gain fault tolerance, each non-leaf node is monitored
for failure, and, on failure detection, an alternative is
elected. Astrolabe differs from LOT in two ways: (1) it
uses a physical tree instead of a virtual tree and (2) it

gains reliability through explicit leader election instead
of virtualization and replication.

The Willow [17] overlay binary tree supports
aggregate query processing, multicast, and
publish/subscribe. Like LOT, internal tree nodes
aggregate the values of children nodes, and, in turn
are emulated by all their descendants. It differs from
LOT in: (1) the tree is binary and of fixed height, so is
less flexible than a B-tree (2) even with a few p-nodes,
every computation requires 129 rounds (3) it ignores
physical locality and (4) it handles consistency with
only best-effort semantics, while LOT can guarantee
a stronger consistency by periodically running a
membership maintenance procedure.

PIER [5] is a P2P query processing system that
handles a variety of SQL queries in P2P networks,
including range queries, using several overlay network
protocols. For range query processing, PIER uses a
distributed prefix tree [13], which can get unbalanced,
as discussed below.

SDIMS [20] system is an information management
system that targets aggregation queries in large-scale
distributed systems. It achieves scalability by using
Plaxton-network [12] DHT to arrange peers in scalable
aggregation trees. Although SDIMS has many good
properties, it does not explicitly take data center
topology into account, so long-range links are as likely
to be used as local links. Second, it only provides even-
tual consistency, compared to the stronger consistency
models possible in LOT. Finally, although it employs
replication to improve robustness, it does not guarantee
a failure probability bound, which is a necessity in a
high-churn environment.

With respect to the P2P database literature, our
work can be viewed as a natural extension to the
work on tree-overlay-based range query processing as
proposed in P-Grid [1], Prefix Hash Tree [13], P-
trees [3], and BATON, VBI, and BATON* [8, 7, 6].

P-Grid [1] is based on a randomized binary prefix
tree. However, the prefix tree becomes unbalanced
under skewed data distribution so that the worst-case
search cost cannot be logarithmically bounded. A
similar prefix-tree based overlay network in described
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in [13] and shares the same problem as P-Grid. In
contrast, LOT builds a balanced tree overlay network
regardless of the data distribution, and the worst-case
query processing cost is guaranteed to be logarithmic
in the network size. P-tree [3] uses a B+-tree index
to support P2P range query processing. However, it
relies on an underlying protocol (e.g., Chord [16]) to
deal with query routing and overlay network mainte-
nance, while we include these as part of LOT’s design.
This allows us to reuse LOT itself to do membership
and routing table maintenance. Second, P-tree can
only achieve eventual consistency through running a
stabilization process individually on each peer, which
can result in performance degradation. In contrast, we
periodically run an inexpensive maintenance algorithm
to synchronize and achieve a strong performance guar-
antee.

Jagadish et al. have proposed a series of tree-
based overlay network protocols that deal with range
query processing [8, 7, 6]. BATON [8] uses a balanced
binary search tree with in-level links for efficiency,
fault-tolerance, and load-balancing. VBI [7] enhances
BATON with a limited degree of virtualization and
focuses on employing multi-dimensional indexes to
support more complex range query processing. Fi-
nally, BATON* [6] speeds up the query processing
by increasing tree fan-out. These systems share the
following common problems. First, their tree overlay
structures fix the tree fan-out. So, each peer join or
leave can cause a tree structural change. This lacks the
resilience of a B-tree. Second, they employ an in-place
synchronization strategy that globally updates routing
and range index information immediately after any
change. Under a high-churn environment, this strat-
egy either requires a prohibitively expensive mutual
exclusion mechanism to guarantee the consistency and
performance, or tolerates considerable inconsistency.
These problems are addressed in LOT through the
employment of B-tree topology and a light-weight
periodic maintenance algorithm.

7 Conclusion

In this paper, we presented LOT, a virtual B-tree
like structure that is robust, load-balanced, efficient
and able to handle high churn situations. As an
example of LOT’s fitness to highly distributed peer-to-
peer environments, we show how to efficiently answer
range queries using LOT. Our simulations demonstrate
the effectiveness of our design and its superiority over
previous work.

Our contribution lies in the unique combination
of four design principles: proximity-based clustering,

node virtualization, path and node replication, and
flexible state definition, which correspond to the four
major strengths of LOT: performance, load-balance,
robustness and extensibility.

Acknowledgement: We would like to thank H. V.
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A Proofs of Section 2.4

Proof of lemma 2. First note that the p-nodes whose
connections are dropped are chosen uniformly at ran-
dom:

Let H be a descendent p-node of a virtual node
u. Consider the set of p-nodes that are set to learn
u’s value during the round and assume that H will
drop some connections. Break the process of p-nodes
selecting their communication partner uniformly at
random into two steps. First, an oracle chooses the
histogram distribution of the load of the potential
partners and randomly attaches a p-node to each load.
(The probability distribution of the histograms is the
same as if p-nodes selected their targets uniformly at
random.) Then, each p-node selects at random the load
of its communication partner – the probability is pro-
portional to the load – and attempts to communicate
with the p-node responsible for that load. This process
is the same as if p-nodes chose their communication
partner uniformly at random

Thus it is equivalent to consider that p-node targets
fail uniformly at random with probability p′ = p + ε
where ε is the probability that a connection is dropped.
We now compute an upper-bound on ε.

Consider p-node f , descendent of virtual node u.
Denote by s = |Du | the number of p-nodes that
emulate u and denote by m the number of p-nodes
that try to learn u’s value during the current round.
By our assumption, each one of these m p-nodes
selects a p-node uniformly at random in Du . The
probability that p-node f has received j connections

is therefore
(

m
j

) (

1
s

)j (

1 − 1
s

)m−j
. Denote by E the

expected number of connections that f drops. The
probability for a given p-node to see its connection

dropped is ε = sE
s = E. We have

ε =

m
∑

j=max load

(j − max load) ·

(

m

j

) (

1

s

)j (

1 −
1

s

)m−j

≤
m

∑

j=max load

(j − max load) ·

(

m · e

j

)j (

1

s

)j

· 1

since
(

m
j

)

≤
(

m·e
j

)j

≤

m
∑

j=max load

(j − max load) ·

(

α · e

j

)j

m
s ≤ α by definition of α

≤

∞
∑

j=max load

(j − max load) ·

(

max load

j
· e−(2+η) ln max load

max load

)j

bound on α

≤

∞
∑

κ=0

κ · 1 · e−(κ+max load)(2+η) ln max load

max load max load ≤ j

≤ e−(2+η) ln max load

∫ ∞

0

xe−x(2+η) ln max load

max load dx

=

(

1

max load

)2+η

·

(

max load

(2 + η) ln max load

)2

∫ ∞

0 xe−βxdx = β−2

≤
1

4 ln2
max load

·
1

(max load)η

Proof of Theorem 3. For the purpose of an upper-
bound on the algorithm failure probability, we may
ignore the successes of first phase acquisitions and only
consider the second phases. Recall, p is the probability
that a p-node is dead. Let p′ = p+2ε. We justify below
that p′ is an upper-bound on the probability that a
request to a p-node is not answered during the second
phase, either because the p-node is dead, or because
the p-node is overloaded.

Some p-nodes may receive max load or more
in-coming messages during the first acquisition phase.
These p-nodes may be unwilling to serve up to
max load requests during the second acquisition
phase because they may exceed their load quota of
max load connections for each phase. We do not
assume that p-nodes are able to distinguish between
first and second phase acquisition messages, therefore
they may serve too much during the first phase.
Since these p-nodes may fail to answer requests
during the second acquisition, we mark them as
dead. Although the number of these p-nodes may
be computed, for convenience we shall use ε|Du | as
a rough upper-bound, yielding an increase of ε in
the failure probability of targets. Applying Lemma 2
yields another increase, by ε as well, of the probability
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of targets failing to answer a query.
The probability that a p-node set to acquire the

value from a given sub-tree T succeeds is at least
(1−p)·(1−p′). The probability that a super-leaf fails to
acquire the value of T is at most (1−(1−p)(1−p′))k2 ≤

(p+p′)k2 when there are k2 = (1+ρ)
2 lnn p-nodes set to

acquire the value from T.
Taking a union bound on all branches whose value

a super-leaf needs to acquire, for all super-leaves and
for all rounds, we get an upper-bound on the failure
probability of the algorithm: pfail ≤

(

2bn
l h(p + p′)k2

)

.
Note that bh/l ≤ b/(α(1 + ρ) ln b). We have

pfail ≤ 2elnn(1+
ln b

α(1+ρ) ln b

ln n
)− (1+ρ) ln n| ln(2(p+ε))|

2

=
2

n
| ln(2(p+ε))|

2 −1−δ
·

1

(n| ln(2(p+ε))|)
ρ
2

with

δ =
ln b

α(1+ρ) ln b

lnn

Proof of Theorem 4. Consider a virtual node u. There
are S(u) super-leaves trying to acquire u’s value. Each
of them fails to do so during the first phase with
a probability upper-bounded by 1/ lnn (see proof of
Theorem 5). Denote by M the number of super-leaves
that need to run a second acquisition phase and by µ
the expected value of M . Bound M using a Chernoff
bound:

Pr[M ≥ (1 + δ)µ] ≤

(

eδ

(1 + δ)1+δ

)µ

≤

(

e

1 + δ

)(1+δ)µ

Note that µ ≤ S(u)/ lnn. Set (1 + δ)µ = e2S(u)/ lnn,
which guarantees that e

1+δ ≤ 1
e , and we have

P1 = Pr[M ≥
e2S(u)

lnn
] ≤ e−

e2S(u)
ln n

Define P1 to be the probability of exceeding this bound.
We want P1 small enough that the probability of some
vnode exceeding the bound is smaller than Pfail, the
algorithm failure probability. There are at most 2n/lb
vnodes satisfying requirement (2). It is sufficient to
have P12n/lb ≤ Pfail, which can be rewritten as

e−
e2S(u)

ln n ∗ 2n ≤ 2ne−
(1+ρ) ln n| ln(2(p+ε))|

2

equivalent to Equation 2. This shows that with
sufficiently high probability, all super-leaves learn the
subtree value during the first acquisition phase, that
is, acq(u) = k1S(u)

Proof of Theorem 5. The number N1 of messages sent
during all first acquisition phases is O(n

l 2bhk1) where

k1 = ln lnn/| ln(2p + ε)| is the number of p-nodes that
are dedicated to any given subtree. We simplfy the
expression O(n

l 2bhk1) by substituing by their values

l = α · b and h = lnn
ln b = ln n

λ ln lnn . We get

N1 = O(
b

l
· k1 · h · n)

= O(
b

αk2
· ln lnn

lnn

ln lnn
· n)

= O(
b

α
·

lnn

(1 + ρ) lnn
· n)

N1 = O(
b

α
·

1

1 + ρ
· n)

A second phase acquisition is run only if the first
phase one is unsuccessful. A first phase acquisition fails
with probability upper-bounded by (2p+ε)k1 = 1/ lnn.
We use a Chernoff bound to bound the number M of
these unsuccessful first phase acquisitions:

Pr[M ≥ (1 + δ)µ] ≤

(

eδ

(1 + δ)1+δ

)µ

≤

(

e

1 + δ

)(1+δ)µ

We have µ ≤ 2bhn/(l · lnn) ≤ 2n/((1 + ρ) lnn). Set
(1 + δ)µ = 2e2n/((1 + ρ) lnn), which guarantees that

e
1+δ ≤ 1

e , and we have

Pr[M ≥
2e2n

(1 + ρ) lnn
] ≤ e−

n
(1+ρ) ln n ≤ e−n/2

The last inequality holds for sufficiently large n.
With high probability, the number N2 of messages

sent during all second phase acquisitions is upper-

bounded by 2e2n
(1+ρ) ln n · 2l

b ≤ 2e2n
(1+ρ) ln n · 4k2, that is

N2 = O (n)

Finally, the total number N of messages sent to non-
(super-leaf)-local p-nodes is N = N1 + N2:

N = O

(

(1 +
b

α(1 + ρ)
) · n

)

Proof of Theorem 6. Long distance messages are of
size O(Agg) since each long distance message contains
the information about the state of a single node.

There are at most 2b − 1 virtual nodes whose state
needs to be exchanged within the superleaf. There are
also messages regarding the assignement of servers to
virtual child for the next round of acquisitions. More
precisely, this is an assignement of k2 p-nodes to each
children, for a total of at most (2b + 1)k2. Hence the
size of local messages is O(b · (Agg + k2)).
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