
A Successive Refinement Approach to Wireless
Infrastructure Network Deployment

N. Ahmed and S. Keshav
School of Computer Science, University of Waterloo

Waterloo, ON, Canada, N2L 3G1
{n3ahmed, keshav}@cs.uwaterloo.ca

Abstract— There has been a recent proliferation in wireless
infrastructure network deployments. In a typical deployment, an
installer uses either a one-time site survey or rules of thumb to
place wireless access points and allocate them channels and power
levels. Because the access point location problem is inherently
complex and one that requires tradeoffs among competing
requirements, these approaches can result in either dead spots
or significant unintended interference among wireless access
points. This degrades network performance for end clients, with
throughput reduction factors of 4x found in field measurements
[1]. In this paper, we take a first step towards improving client
performance by coordinating choices of channels and power
levels at wireless access points using asuccessive refinement
approach. Our contributions are two-fold: First, we develop a
mathematical model that crisply defines the solution space and
identifies the characteristics of an optimal channel and power-
level configuration. Second, we present heuristics that, under
some simplifying assumptions, yield near-optimal configurations.
We use Monte Carlo simulations to evaluate the performance of
our heuristics. We find that the choice of heuristics for transmit
power control impacts performance more than the channel
allocation strategy, especially at high densities. Also, surprisingly,
randomly assigning channels to access points appears to be an
effective strategy at higher deployment densities. Taken together,
we believe that this study paves the way to designing rapidly
deployable real-world infrastructure networks that also have
good performance.

I. I NTRODUCTION

There has been a recent proliferation in the deployment of
wireless infrastructure networks based on the IEEE 802.11
standard. These networks are created by placing a set of
wireless access points (APs) within a geographical area, such
as a floor of a building or a public space, so as to maximize
coverage and prevent the creation of ‘dead spots’. This place-
ment problem is challenging because of competing pressures.
On the one hand, the greater the number of APs, the better
the coverage and the lower the likelihood of creating dead
spots. Besides, mobile devices that are always likely to be
close to an AP can use higher transmission rates and are
less likely to suffer from connection drops due to dead spots.
On the other hand, increasing the number of access points
costs more money, both to purchase the APs and to install
them. Moreover, in locations that are served by more than one
AP, there is a problem ofinterference, that is, suppression
of communication between a mobile device and a particular
AP because of simultaneous communication between another
mobile device and another AP. Therefore, blindly increasing

the number of APs can not only be more expensive but in fact
counter-productive.

The problem is further complicated by the following con-
siderations:

• Irregular AP coverage areas: The Euclidean distance of
a point from an AP does not uniquely determine whether
that point is in the AP’s coverage area.

• Dynamic coverage areas: Coverage areas may change
over time due to shadowing and multi-path transmission,
which can be induced simply by having people walk into
a room, or shifting a metal cabinet by a few centimeters.

• External Interference: Interference can be caused not only
by mobile devices and APs in the infrastructure (i.e. inter-
nal interference), but also by rogue APs in the coverage
area, as well as cordless phones and microwave ovens that
are essentially uncontrollable (i.e. external interference).
Internal interference includes AP-AP interference, client-
AP interference, and client-client interference.

• Asymmetric channel conditions: Channel state may differ
in the client-to-AP and AP-to-client directions even on
the same path. Moreover, the interference range of an
AP may be much larger than its transmission range.

To cope with these problems, infrastructure designers have
only four degrees of freedom. First, they can choose how many
APs to install. Second, they can choose the location of each
AP. Third, they can assign a power level to an AP; the greater
the power level, the larger the coverage area1. Finally, they
can assign any one ofN non-overlapping channels to an AP
because interference is caused only among APs assigned to
the same channel.

A closer examination of the free variables, however, indi-
cates a difficulty. Once the number of APs and the location
of each AP is determined and the APs have been installed,
it is difficult, if not impossible, to physically relocate them.
Therefore, in practice, the only free variables that can bedy-
namicallyvaried are the power level and the channel assigned
to each AP. Given the inherently dynamic nature of wireless
coverage, the problem, therefore, essentially reduces to an
optimal (and dynamic) assignment of these two parameters
to maximize coverage while simultaneously minimizing cost

1Although some modern cards [2] also allow modifying transmission
rate separately from transmit power, we assume each AP uses the highest
transmission rate supported for the transmit power used.



and interference.
In an ideal world, we envision that a wireless infrastructure

installer can place a number of APs roughly equally spaced in
a geographical area, without necessarily doing a site survey,
and then simply walk away. The APs should manage their
channel and power allocation to maximize coverage, taking
into account the complications mentioned above. If there are
persistent dead spots, then the system should automatically
detect them and tell the installer where to add an AP. Con-
versely, if some AP’s power level has been set to zero, the
installer could be asked to remove that AP. Moreover, the
system should dynamically adapt its parameters in response to
changing workloads and environmental conditions. We term
this approachsuccessive refinement, as opposed to today’s
typical pre-planned deployments that use a one-time physical
site survey followed by a static choice of operating parame-
ters. We argue that our approach can not only improve the
performance of currently deployed infrastructure networks but
also make new deployments much easier. This approach is also
well suited for dynamically changing environments.

Unfortunately, we are far from this ideal world. We do
not really know how to deal with irregular coverage, asym-
metric and dynamic channel conditions, external interference,
and changing coverage areas. In this paper, we take a first
step towards our ultimate goal of building a self-managing
successive refinement framework for wireless infrastructure
networks. We make some assumptions that allow us to solve a
far simpler problem. Our goal in making these simplifications
is to develop intuition for the problem that can serve as the
basis for eventually constructing a more realistic solution. As
discussed in Section VII, our simplified model does indeed
point a way toward solving the general problem in real-world
deployments, a topic we plan to explore in future work.

Our contributions are two-fold. First, we develop a mathe-
matical model that describes the solution space and identifies
the characteristics of an optimal channel and power-level
configuration. Second, we present heuristics that, under some
simplifying assumptions, yield near-optimal configurations.
We use Monte Carlo simulations to evaluate the performance
of our heuristics. We find that the choice of heuristics for
transmit power control significantly impacts performance,
and, that, surprisingly, randomly assigning channels to access
points appears to be an effective strategy at higher deployment
densities.

The rest of the paper is organized as follows: Section
II discusses related work, Sections III and IV describe the
mathematical model for our problem, and Section V presents
our proposed heuristics. Section VI presents our evaluation of
the proposed algorithms and Section VII presents a discussion
of our findings and conclusions.

II. RELATED WORK

There is a large body of literature that attempts to ad-
dress the AP configuration and placement problem [3], [4].
This combination is typical of site survey based wireless
deployments. We argue that wireless deployments need not

only conduct one-time surveys, but also dynamically adjust
in response to changes in environmental conditions, making
successive refinement a better alternative.

Due to the cost of wireless site surveys, many companies are
also recently trying to move toward dynamic reconfiguration
of wireless infrastructure networks [1], [5], [6]. In particular,
our successive refinement approach is similar to the vision
shared by Autocell [1]. However, these management solutions
are customized for proprietary hardware and use proprietary
algorithms to achieve their ends, which makes them both hard
to validate and hard to compare with other algorithms. In
contrast, our algorithms are meant for commodity hardware
and are published openly.

Power control is a well-studied problem for wireless net-
works in general. For wireless infrastructure networks, pro-
posed solutions include methods that compute optimal power
levels off-line and then select appropriate power levels based
on such values [7]. Akella et al [8] use a state machine
approach for combined power and rate control. However, none
of these solutions take into account the degree of interference
actually experienced in the environment to decide on the
appropriate transmit power to use at each of the APs. We
later show that this is crucial in determining the performance
of any power control technique.

Channel assignment for infrastructure networks has also
been studied in the literature and has been shown to be
NP-hard [9]. Mishra et al [10] use a client-based channel
assignment that assigns channels to APs based on the inter-
ference experienced by clients. However, they are not able to
accurately capture the degree of interference at individual APs
and also require a feedback mechanism from agents running
on the clients. Most other techniques [11] support channel
assignments by solving complex optimization problems that
are not well suited for a dynamically changing environment.
We advocate that any approach be efficient and adopt a
refinement strategy to adapt to changes in the environment.

Self-management ofchaoticnetworks was first proposed by
Akella et al [8]. This work studied autonomous mechanisms
that use local information for making decisions. They focused
mainly on transmission rate and power control whereas our
work also addresses channel assignment. In parallel, Wetherall
et al [12] are also exploring coordination mechanisms to make
better self-management decisions.

Finally, a new class ofSpectrum Etiquetteprotocols [13]
have also been proposed for coordination between wireless
devices that share the medium. These protocols, although well-
grounded, are hard to realize on existing wireless infrastructure
networks. In contrast, we propose techniques that can run on
existing infrastructure without requiring any protocol modifi-
cations to APs.

III. M ODEL

We now state the general problem more formally. This
allows us to state our assumptions crisply and delineate the
scope of our solution.



We assume that the wireless network infrastructure is meant
to cover a given geographical area,A. At a point with
coordinates(x, y) in A, we define a utility functionU(x, y).
This utility function is proportional to the transmission rate
that can be obtained by a client at that point, and is zero at
points where there is no coverage. The transmission rate at a
given point, in turn, depends on the load from other clients
at the closest AP, and the signal strengths and the degree of
interference among multiple APs that cover that point. For
instance, if there is a single AP serving that location, with a
high signal strength, and that has no other clients, then the
transmission rate is high. On the other hand, a point that is
far away from all the APs, or is too near multiple APs would
have a low transmission rate.

We model the degree of interference, for locations in
overlapping AP coverage areas, as being proportional to the
sum of the traffic loads in each such AP. We can summarize
this discussion as follows. LetAP (x, y) be the AP with the
highest signal strength at(x, y), whereAP (x, y) = φ if no
AP has a signal strength higher than the signal floor at that
point. Then, a mobile at(x, y) will associate withAP (x, y).
We define the setInterfere(x, y) as the set of APs and clients
that have a signal strength greater than the signal floor at(x, y)
and are notAP (x, y). Then:

U(x, y) ∝ 1
load(AP (x, y))

(1)

U(x, y) ∝ signal strength(AP (x, y)) (2)

U(x, y) ∝ 1∑
i∈Interfere(x,y) load(i)

(3)

We would like to choose channel assignments and power
levels so as to maximize the overall utility, subject to con-
straints on the number of available channels, the number of
available power levels, the traffic load at each AP, and the
(x,y) placements of the access points2.

Formally, the objective function we wish to maximize is:

Maximize

∫
(x,y)∈A

U(x, y)dxdy (4)

Given that we need to assign channels and transmit power
levels to each of the APs, the problem is therefore a joint
channel assignment and power control (CAPC) optimization
problem. Our long-term goal is to solve the general CAPC
problem in realistic settings. As mentioned earlier, in this paper
we solve a simpler version of the CAPC problem by choosing
a simpler form of the utility function. Harder versions of the
CAPC problem correspond to more complex utility functions.

IV. SOLUTION MODEL

Our model attempts to maximize the objective function
indicated in Section III. We make the following simplifying
assumptions:

2Though the discussion so far has assumed static coverage areas and traffic
loads, it can be trivially extended with a time parameter to allow us to compute
the overall utility at each point in time.

Fig. 1. Model Lattice that represents (x,y) location coordinates in the vertical
plane and channels in the horizontal plane.

• APs in 2-D plane: We assume APs are located in a two-
dimensional plane.

• Omni-directional Antennas: We assume all APs are
equipped with omni-directional antennas.

• Physical Interference Model: We use the interference
model used in [14] for modeling signal path loss in
our model. Using this model and the assumptions listed
above, our coverage areas can be represented as circular
disks in a 2-dimensional plane.

• Centralized solution: We assume that a single central
coordinator determines the optimal solution. Given that
most real deployments have a centralized controller for
authentication, authorization, and accounting (AAA), this
assumption is not particularly strong.

• Cooperation: We assume that the APs are cooperative.
• Access Point Interference: We only consider AP-AP in-

terference for our model.
• Symmetric channels: We assume channels are symmetric.
• Identical APs: We assume all APs have identical discrete

power levels and choice of channels.

Based on these assumptions, we can geometrically represent
our model as shown in Fig. 1. The vertical plane on the lattice
embeds the locations of each of the access points, which are
fixed. The channels are represented by the third dimension
as the horizontal plane on the lattice. The transmit power
and corresponding coverage areas of each of the APs are
represented by dashed circles around the origins A, B, and
C. Larger transmit powers correspond to larger circles on the
2-D plane. Therefore, using this model, overlapping circles
indicate interference between neighbouring APs.

With this model and the stated assumptions, we translate
the CAPC optimization problem to two simple geometric
problems:

1) Packing variable-size disks on a rectangle (PACK-
RECT): Here, we model the utility function as follows:

• U(x, y) = 0 if there is no coverage at(x, y) i.e.
AP (x, y) = φ

• U(x, y) = 1 if Interfere(x, y) = φ
• U(x, y) = −∞ if Interfere(x, y) 6= φ



Here, we study power-control only (i.e. a single chan-
nel), ignoring the effects of client load and assuming
uniform signal strength in a coverage area. Given the
utility function above, it is easy to see that no coverage
overlap between adjacent APs is allowed. The problem
thus reduces to a packing problem forfixed-location
variable-sized disks on a 2-dimensional plane where
the objective is to maximize the coverage of the plane.
This problem is computationally hard because there are
pn possible solutions wheren is the number of access
points andp is the number of discrete power levels for
each AP. For even small deployments with 10 APs and
considering only 5 possible power levels, there are more
than 9 million possible solutions.

2) Packing variable-size disks on a stack of rectangles
(PACK-ST): This problem extends the previous one for
multiple channels, keeping the utility function the same.
In this case, each rectangle represents a separate channel.
Due to the additional degree of freedom, we now need
to solve the channel assignment problem as well. It has
been shown in [9] that the channel assignment problem
for Wireless LANs is NP-hard3.

Optimal solutions to even these simplified problems are
computationally hard. Therefore, in an effort to build practical
solutions, we devise heuristics to approximate the optimal
solution. We then compare their performance relative to the
optimal solution, computed using exhaustive search.

V. HEURISTICS

We now present three heuristic power-control algorithms
for the PACK-RECT problem and two algorithms for joint
channel assignment and power control (PACK-ST). All APs
are initialized to the lowest power level (i.e. transmit power
of zero) when the algorithms begin execution.

A. Randomized Incremental Algorithm (RIA)

The idea behind this algorithm is to pick an AP at random
and increase its power level, until either the maximum power
is reached, or the AP begins to interfere with another AP. More
formally, the algorithm first places all APs into an unordered
feasibleset. It then randomly picks an AP from the set and
increases its power level by one step. If the transmit power of
the AP cannot be increased any further or increasing its power
causes interference, it is removed from the set, otherwise it
is kept. The algorithm then selects another AP at random and
repeats this process until eventually all APs have been removed
from the set. This process is illustrated in Algorithm 1.

Due to randomization, a single run of this algorithm does
not always yield a good solution. Therefore we run the
algorithm many times and choose the run with the best
performance. In the worst case, no APs interfere and the
algorithm incrementally increases the power of each AP until
all APs reach maximum transmit power. Therefore, the running

3The authors reduce the channel assignment problem to a maximumk-
colorable graph problem on an unweighted graph, wherek is the number of
channels.

Algorithm 1 Randomized Incremental Algorithm(Tx = Transmit
Power)

1: Place all APs into feasible setf .
2: Randomly select an access pointAPi from f .
3: if AP ′

is Tx 6= max. Tx then
4: IncreaseAPi’s power by one.
5: if ( ∃(x, y) s.t. U(x, y) = −∞ ) then
6: DecreaseAPi’s power by one and allocate it this

power level.
7: RemoveAPi from f .
8: end if
9: else

10: RemoveAPi from f and allocate it its current power
level.

11: end if
12: if f = ∅ then
13: Terminate.
14: else
15: Go to step 2.
16: end if

Algorithm 2 Generalized Greedy Power Allocation Algorithm
(Tx = Transmit Power)

1: Place all APs in a setf
2: Order the set according to the power control algorithm

being used.
3: Remove the first AP,APi from f .
4: Expand coverage ofAPi until (∃(x, y) s.t. U(x, y) =
−∞) or APi’s Tx = max. Tx.

5: if ( ∃(x, y) s.t. U(x, y) = −∞ ) then
6: DecreaseAPi’s power by one and allocate it this power

level.
7: end if
8: if f = ∅ then
9: Terminate.

10: else
11: Go to step 3.
12: end if

time of RIA is bounded byO(p ∗ n), wherep andn are the
number of discrete power levels and access points respectively.

B. Generalized Greedy Power Allocation Algorithm

Algorithm 2 illustrates the general steps followed by the
other two power control algorithms. The generalized algorithm
greedily increases the transmit power of an AP, chosen in turn
from an ordered feasible set, to the maximum possible power,
given AP interference and power constraints.

1) Distance-based Ordering Algorithm (DOA):The DOA
algorithm orders the feasible set by decreasing distance of
an AP from the center of mass (or centroid) defined by: (∑

i(xi/n),
∑

i(yi/n) ), where (xi, yi) are the coordinates
of APi and n is the number of APs. The DOA algorithm is
based on the idea that APs farthest from the center of mass
are likely to experience less interference and thus should



Fig. 2. The center point indicates the center of mass (orcentroid) of the
five APs.

be the first to have their power level greedily increased.
An illustration of the computedcentroid is shown in Fig
2. Using an efficient sorting algorithm such as quick-sort
for set ordering, the worst case running time of DOA is
bounded byO(nlogn), wheren is the number of access points.

2) Interference-based Ordering Algorithm (IOA):The IOA
algorithm uses the degree of interference at each AP to order
the feasible set. IOA first instructs all APs to transmit at
maximum power. Using this configuration, IOA assigns the
degree of interference at each AP as the amount of overlap
that an AP experiences in its coverage area with neighbouring
APs. APs are then placed in the feasible set in increasing
order of interference. The ordering thus gives priority to low
interfering APs, ensuring that the aggregate interference is
minimized while the coverage area is also maximized. An
illustration of how IOA might classify APs based on the degree
of interference is shown in Fig. 3. The worst case running time
of IOA is alsoO(nlogn).

C. Multi-Channel Algorithms

Thus far, we have assumed all APs share a single channel.
We now study the multi-channel case. We assumen access
points andm channels wherem is typically much smaller than
n. Therefore, the objective here is to devise algorithms that
construct good channel re-use configurations. The following
issues need to be addressed:

1) Which channel does each AP use?
2) What power-level should each AP use?
We assume separability and first allocate channels to APs

and then allocate power levels. Power level assignment is done
using the RIA, DOA and IOA algorithms presented earlier.
Therefore, we concentrate on the first issue.

The general solution to channel assignment is known to be
NP-hard [9], and therefore, we discuss a heuristic algorithm
that approximates the optimal solution. We also describe a
naive random channel allocation algorithm that is used as a
straw man for comparison with our proposed algorithm.

Fig. 3. The classification of APs based on interference performed by IOA.
In this figure, all APs transmit at the maximum transmit power. SinceAP3
does not interfere with other APs, it is the first AP whose transmit power is
increased.

1) Two-Phase Channel Assignment:This channel assign-
ment algorithm operates in two phases. In the first phase, it
generates a set of APs that are either ordered based on the
metric used for power control (i.e. for DOA/IOA), or are in a
random order (i.e. for RIA). In the second phase, the algorithm
begins by removing the first AP from the set and assigning it
to the first channel. Then, using this AP as a reference point,
the algorithm removesnm − 1 APs farthest in distance from
this reference AP and also adds them to the first channel.
Assuming that APs are uniformly distributed within an area,
an assumption that is likely to be valid for most practical
scenarios, this not only assigns the same channel to APs that
minimally interfere with each other but is also likely to evenly
divide the load across the channels. This process is repeated
for each available channel in turn.

This algorithm has several variants. For example, instead
of sequentially allocatingn

m APs to each channel, we can
assign just two APs to each channel at each iteration of the
algorithm and repeat this process in a round-robin fashion
across all the channels until all APs have been assigned. We
found that this variant performs almost exactly the same as
the algorithm discussed above, thus we only present results
for the first algorithm.

2) Random Channel Assignment:For random channel as-
signment, we begin with an unordered set of APs. We proceed
sequentially through the set and uniformly at random assign
a channel to each AP. Thus, although there is no limit to
the number of APs that can be assigned to a channel, on
average, we expect to assign approximatelyn

m APs to each
channel. Nevertheless, since this algorithm does not consider
interference or distance between APs in its assignment process,
we expect it to perform poorly in comparison with our two-
phase channel assignment algorithm.

VI. EVALUATION

We now evaluate our algorithms for power-control and
channel assignment. We first compare our power-control algo-



rithms with each other and the optimal configuration. We then
compare the two-phase channel assignment algorithm with
random channel assignment.

A. Evaluation Methodology

We have written a compact simulator in Java to compare
our algorithms. We emulate a random deployment scenario by
randomly placing APs on a two-dimensional grid of fixed size
(i.e. 500x500). APs are placed such that no two APs occupy
the same location but however may be within interference
range of one another (even if they transmit at minimum
power). This may cause some APs to be effectively blocked
out during the configuration generation process. We discuss
the implications of this problem in later sections. The inputs
to the simulation include:

• The number of deployed APs.
• The number of available channels.
• The number of transmit powers to choose from.
• The maximum transmit power of all APs.
• The power control algorithm being used.
• The channel assignment algorithm being used.
Coverage areas of APs are represented as uniform circular

areas on the grid. As indicated in section IV, since we
are solving the PACK-RECT and PACK-ST problems, the
objective here is to maximize coverage of the grid while
keeping the interference zero. The maximum transmit power
of an AP is computed by taking the maximum coverage of
the AP as a fraction of the total grid area (which is 30%
for our simulations). This prevents any single AP from using
up the entire grid, since, due to power limitations, this is
unlikely to happen in practice. For most of our results, we
have also fixed the number of transmit power levels to15.
The number of transmit power levels are quite diverse across
different vendors [15][2] and we find that15 power levels
covers the space of most typical radios. For our multi-channel
results, we also fixed the number of available channels to three.
This represents the most widely-deployed 802.11b systems4.
For transmission rate, we adopt a conservative approach where
APs always transmit at 1 Mbps uniformly across their entire
coverage area. We defer the study of dynamic rate-adaptation
schemes based onpath lossto future work.

To compute the utility, we have used Monte-Carlo sampling.
That is, we randomly select some sample points within the
coverage areas to estimate the cumulative coverage of all the
APs. We could have used an exact method for computing
coverage areas by first computing the coverage of each AP
and then subtracting from it any overlapping zones. However,
exactly computing overlaps is a mathematically daunting task.
Monte-Carlo sampling provides a quick, simple, and fairly
accurate approximation of the coverage of the grid. In our
computations, we used different sample sizes and compared
the relative error in the computed result. When comparing

4Our multi-channel results only present the benefits of using multiple
channels and their effect on power control. We defer a study of the effect of
varying the number of available channels on the performance of the algorithms
to future work.

Fig. 4. The square represents the area on which the APs are placed. Each
shade represents a separate channel.

Fig. 5. Histogram of performance of power control algorithms against
optimal configuration using single channel and five power levels.

sample sizes of 50,000 and 250,000 for example, we found
that the error in the computed utility was less than±1.6%,
which is acceptable. The area of the grid was 250,000.

B. Results

We repeated our simulation 30 times in order to minimize
statistical variation in our results. For every run, we generate
a set of randomized AP locations to prevent placement biases
that could affect any of our algorithms. For RIA, in each run,
we also ran the algorithm 10 times on the same set of AP
locations and took the maximum of the computed utilities. An
example output of our simulator is shown in Fig. 4. We now
discuss our results further.

Fig. 5 presents the mean coverage area for each of our
power-control algorithms and the optimal solution (using only



Fig. 6. Performance of power control algorithms using a single channel and
15 power-levels

Fig. 7. Comparison of power control algorithms based on the number of
APs used by the algorithms, using a single channel and 15 power-levels

a single channel and five power levels). For these low density
deployments, we see that the IOA and DOA algorithms per-
form quite close to the optimal solution, which was computed
using exhaustive search of all possible configurations. For high
density deployments, we are not able to provide a quantitative
comparison since the search space for the optimal solution
increases exponentially fast with increasing AP densities. In
general, since we need to assign both power levels and chan-
nels to APs, the size of the search space effectively becomes
PN ∗CN , where P = number of transmit powers, C = number
of channels, and N is the number of APs. For P = 5, C = 3,
and N = 10, we have≈ 576 billion possible configurations!
However, as we discuss later, we do obtain evidence of near-
optimal behavior even for high density deployments from our
multi-channel results. These results show that our algorithms
cover almost 100% of the grid, clearly indicating that our
algorithms are near optimal.

Fig. 6 presents a comparison of IOA, DOA, and RIA. We

Fig. 8. Performance of power control algorithms using random channel
assignment for 3 channels and 15 power-levels

Fig. 9. Performance of power control algorithms using two-phase channel
assignment for 3 channels and 15 power-levels

observe that RIA always performs worse than IOA and DOA,
especially in high density environments. This is probably
because RIA does not bias power-level increases towards
APs that are in less congested areas, causing it to perform
poorly in high-density environments where opportunities for
interference increase. Another reason may be that RIA incre-
ments power levels atall APs. In contrast, DOA and IOA
greedily maximize their coverage at each step of the algorithm.
Consequently, with these algorithms, at high AP densities,
APs that are close to an AP transmitting at high power may
effectively be blocked from communicating at all. Although
this may be thought of as negative behavior, it is actually
beneficial since it serves to reduce the overall interference
in the system. Figure 7 illustrates this by showing that the
number of APs can be reduced by as much as 60% with the
IOA algorithm while RIA uses almost all of the available APs.
This result also gives us an intuition as to the optimal number
of APs that would be required to cover a grid of given size.



We now turn our attention to the multi-channel case. Fig. 8
presents results for our power-control algorithms using random
channel assignment and Fig. 9 shows the performance of
the power control algorithms using our two-phase channel
assignment algorithm. These figures demonstrate the bene-
fits of using multiple channels over a single channel. For
dense environments, we see an almost 37% increase in the
cumulative coverage area as compared to a single channel.
Moreover, the percentage grid coverage of the IOA/DOA
algorithms increases to approximately 93%, from about 70%
for the single channel case. Since the interference region is
effectively partitioned among the three channels, the coverage
area increases. In addition, we also observe that the gap
between RIA and IOA/DOA has also decreased. Since the
interference per channel has been reduced, RIAs blindness to
interference does not hurt it as much.

When we compare the performance of the random channel
assignment algorithm and our two-phase channel assignment
algorithm, we see that both channel allocation algorithms
perform roughly similarly across the board. At low AP den-
sities, the two-phase algorithm does perform better because
it places APs farthest away from each other (i.e. with least
interference), onto a common channel. This gain is maximized
for the first channel, but decreases for later channels, so that
overall, the gain from this strategy is not too great, especially
at higher AP densities. Intuitively, having multiple channels
simply partitions the problem space into three. At high enough
density, this reduction in problem size does not reduce the
overall interference level, and a random channel assignment
works just as well as a more complex channel allocation
strategy. In such situations, performance depends more on
the power-allocation algorithm than the channel allocation
algorithm, as illustrated by the better performance of IOA and
DOA over RIA for both channel allocation schemes. This leads
us to advocate the (far simpler) random channel allocation
strategy as a pragmatic solution in real-world deployments.

VII. D ISCUSSION ANDCONCLUSIONS

Deploying a wireless infrastructure network requires us to
balance several conflicting requirements. In this paper, we have
taken the first step towards an ideal world, where an installer
can quickly set up a network and simply walk away. We
propose a successive-refinement approach to deployment. We
argue that this approach is better suited for real-world wireless
deployments. We also present a mathematical and geometric
model that crisply describes the solution space and identifies
the characteristics of an optimal configuration. We design and
evaluate heuristics that yield near-optimal configurations. We
find that the choice of heuristics for transmit power control of
access points is a crucial factor in determining the quality of
the solution. We also find that a random channel assignment
approach is effective for assigning channels as the deployment
density increases.

We hasten to point out that our results are preliminary
because they do not capture several aspects of the real-
world problem. For example, our interference model is very

simplistic and does not capture irregularity in the coverage of
the APs. This affects IOA since it relies on the underlying
geometric model. Also, our utility function assigns the same
utility to each point on the covered grid. In reality, this utility
is dependent upon many factors: uplink/downlink channel
conditions, transmission rate, traffic load, etc. Finally, although
our algorithms do perform well in simulation, we still need to
test them on a real testbed.

Nevertheless, our results do allow us to develop some
intuition about the form of the final solution:

• Although finding the optimal configuration even for our
simple problem is hard, to our surprise, we find that sim-
ple heuristics closely approach this optimal configuration.

• In general, careful power control appears to be more
important than careful channel allocation. This result
should hold even in more general conditions.

• Surprisingly, both IOA and DOA perform almost iden-
tically even though IOA more accurately models the
degree of interference and was thus expected to be
superior to DOA. We can explain this phenomenon from
a computational geometric perspective. Note that each
AP’s coverage area roughly corresponds to its Voronoi
region [16], i.e. the region such that points in the region
are closer to this AP than any other AP. Clearly, we need
to first allocate power levels to APs in larger Voronoi
regions, that are likely to be closer to the boundary
area. The DOA metric does well because it sorts APs in
order of their distance from the centroid, which, due its
greedy nature, are assigned larger power levels and thus
larger coverage areas. In this sense, DOA approximately
allocates power levels in order of decreasing size of the
Voronoi regions. Incidently, DOA is also insensitive to
the underlying geometric model, making it suitable for
non-circular coverage areas as well.

• We also observe that a naive random channel assignment
is able to perform similarly to an interference-aware two
phase channel assignment.

Based on these observations, we conjecture the following:
For sufficiently dense deployments, an effective configuration
strategy would be to first perform a random assignment of
channels to APs, and then use a greedy power allocation
algorithm that is the same as or similar in spirit to DOA. Since
channel assignment is performed at random, coordination is
only needed for power allocation.

Our future work lies in two directions. On the theoretical
side, we intend to explore the use of computational geometry,
in particular Voronoi diagrams, to study the general problem.
We are also extending our model to allow overlapping cover-
age areas, which is necessary to support seamless mobility. For
a start, this can be modeled simply by modifying the utility
function as follows:U(x, y) = −k ∗α if |Interfere(x, y)| =
k, where α is a tuning parameter. In this case, we essen-
tially associate a disutility, corresponding to the number of
overlapping APsk, at each point where overlap is possible
(of course, this ignores the load at these APs). Our next



step is to augment our model to incorporate other sources
of interference such as Client-AP interference and Client-
Client interference. Finally, we are considering algorithms
that permit rapid reconfiguration in response to changes in
the environment. On the practical side, we are constructing
a real test bed on which to investigate the performance of
our algorithms. We hope to use this experience both to refine
our assumptions and to test our algorithms in a more realistic
setting.
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