
1

Application Support for Opportunistic
Communication on Multiple Wireless Networks

A. Seth1, S. Bhattacharyya2, S. Keshav1

1School of Computer Science 2Sprint Advanced Technology Labs

University of Waterloo, Ontario, Canada Burlingame, California, USA

Abstract— Many wireless network technologies are in use today. How-
ever, each technology has to make a difficult but unavoidable tradeoff be-
tween the area covered by a single access point and the capacity available
to an individual user. Fortunately, current and future mobile devices are
likely to come equipped with multiple wireless interfaces that can be used ei-
ther singly or in parallel. By opportunistically using these multiple wireless
interfaces a mobile device can mitigate the coverage-capacity tradeoff of
the underlying networks. However, actually using multiple interfaces– re-
quiring sessions to be maintained across interface switches, disconnections,
and device shutdowns–is complex. Consequently, to be useful in practice,
we believe that application writers need to be shielded from these details,
while still exercising fine-grained control over network usage policies. In
this paper we describe a system that allows applications running on a mo-
bile device to seamlessly exploit multiple heterogeneous wireless networks.
We have designed, implemented, and evaluated the performance of an Op-
portunistic Connection Management Protocol (OCMP) that allows such
applications to opportunistically communicate on multiple network inter-
faces, switch across interfaces, aggregate their bandwidths, remain discon-
nected or powered off for arbitrarily long periods, package and move their
state across devices, and interoperate with legacy applications and servers.
The implementation is in J2ME so that it can be run on any Java-based
mobile device. Extensive policy control for interface selection is also pro-
vided to applications, along with a very simple API for application devel-
opers. This paper explains the design, architecture, and implementation of
OCMP, and illustrates its benefits through both analysis and field experi-
ments. Our results are encouraging and suggest that application support
for multi-network opportunistic communication is both achievable in cur-
rent systems, and of significant practical value.

I. I NTRODUCTION

The past few years have seen an explosive growth in the num-
ber of mobile devices such as cellphones, PDAs, and laptop
computers. These devices can use a variety of wireless access
technologies. These range from wide-area technologies such
as GPRS, EDGE, CDMA 1xRTT, EV-DO, and satellite access,
to local-area technologies such as 802.11a/b/g and short-range
technologies such as Bluetooth, Zigbee, etc. However, any wire-
less access technology must make a difficult tradeoff between
the coverage of an access point and the capacity available to
a user in that access point’s coverage area. To offer wireless
access in a given geographical area, wide-area wireless access
technologies require fewer access points but offer inherently
lower per-user capacity. Short-range infrastructure access net-
works can offer large per-user capacity, but the capital cost to
offer coverage in large geographical areas can be prohibitive.
Although recently 802.11-based mesh networks have attempted
to provide near-ubiquitous wireless broadband access, in prac-
tice success has been limited because of uncontrollable exter-
nal interference in the 2.4GHz band and a dramatic reduction in
capacity when the multi-hop count is large. Consequently, we

think that no single wireless access technology can be expected
to provide ubiquitous, high-bandwidth coverage. For example,
high-speed 802.11 a/b/g access coverage is typically confined
to WLANs inside buildings and public hot-spots. In contrast,
lower-speed WWAN technologies such as CDMA 1xRTT and
GPRS provide far wider coverage, although even such technolo-
gies cannot be expected to be available everywhere and coverage
can be decidedly spotty inside enclosed areas. Note that, besides
this coverage-capacity tradeoff, managed wireless technologies
impose limits on the number of simultaneous users in a given
geographic area. This may prevent a user from using a network
even when it is available.

Fortunately, future mobile devices will almost surely come
equipped with multiple wireless interfaces that can be used ei-
ther singly or in parallel. Our key insight is that mobile de-
vices equipped with multiple radio interfaces can opportunisti-
cally use one or more wireless networks to increase their over-
all communication capacity.However, actually using multiple
interfaces–requiring sessions to be maintained across interface
switches, disconnections, and device shutdowns–is complex. To
be useful in practice, we believe that application writers need to
be shielded from these details, while still exercising fine-grained
control over network usage policies. In the rest of the paper,
we elaborate on this insight and use it to design, analyze and
implement an Opportunistic Connection Management Protocol
(OCMP).

The rest of the paper is laid out as follows: In Section II we
describe our design goals. Sections III and IV present first an
overview, then a detailed description of our system. We evaluate
our design using analysis in Section V and field measurements
in Section VI. Section VII is a survey of related work. We
conclude with a description of our contributions, and an outline
of future work in Section VIII.

II. D ESIGN GOALS

Our top-level design goal is to allow an application to oppor-
tunistically exploit the presence of one or more wireless con-
nections between a mobile and a server. However, in meeting
this goal, we ran into several non-trivial problems. For instance,
how should a mobile stripe its data across multiple interfaces?
How should it interact with legacy servers that cannot identify
multiple streams originating from a single mobile as a single
striped stream? How can an application direct the communi-
cation subsystem to obey constraints on pricing and/or delay

2

bounds? These question led to the following sub-goals:

• Application-directed intelligent use of multiple networks:
Today’s mobile devices can detect the availability of one or more
access networks, but asingle interface is selected by default at
the IP layer. Because IP chooses a next hop based solely on
the destination address, fine-grained multi-path routing of ap-
plication data segments on multiple access networks is difficult.
Instead, we’d like a mobile device to potentially usemultiple
access networks simultaneously even for a single application,
opportunistically switching to the best available access network.
When multiple interfaces are in use for a single application, data
has to be striped across these interfaces. Decisions about which
networks to use and how to stripe data across them has to take
into consideration the bandwidth and congestion states of the
available access networks, energy-efficiency of the wireless ra-
dios, provider pricing policies1, and application requirements.
So, we would like to allow an application developer or user to
specify fine-grained (i.e. per-application data unit) policies.
• Application session persistence across disconnections:
Consider a mobile device that has established a connection to
a server using one of several network interfaces. Suppose the
mobile decides to power itself off or switch to a different in-
terface; then reconnects to the same server with a different IP
address. With existing systems, the server would be unable to
recognize that the two connections correspond to a single on-
going data transfer session, and therefore would not be able to
migrate persistent application state from the old connection to
the new. For network access to be truly opportunistic and seam-
less, an application should be able to exchange data with a server
when changing network interfaces or even when faced with in-
termittent loss of connectivity. This requires the maintenance
of persistent application state at both the server and the client
so that data transfer can resume from the point where it stopped
once connectivity is restored.
• Support for legacy servers: We recognize that existing
servers are heterogeneously administered, so it is unlikely that a
solution that requires changes at a server will ever be deployed
in practice. Consequently, we would like a solution that works
well with existing servers.
• Ease of application design and implementation:Applica-
tion designers who are familiar with the socket-bind-connect ap-
proach to writing distributed applications cannot deal well with
systems where connections may fail arbitrarily, be resumed ar-
bitrarily, and exhibit large variations in bandwidth depending on
the currently available network. We would like to insulate appli-
cation developers from these problems and provide them with a
simple and intuitive communication interface.

We address these goals by means of our system architecture
and Opportunistic Connection Management Protocol (OCMP).
We present an overview of the system architecture next, in Sec-
tion III, deferring details of OCMP to Section IV.

IP wired backbone

Content host or

legacy server

Proxy

2.5G or 3G
wireless

WiFi

WiMax

Mobile
device

Opportunistic
Communication
Management
Protocol

WiFi

WiFi

Fig. 1. Architecture overview

III. A RCHITECTURE

Figure 1 presents an overview of the system architecture. The
main components are the content host, the proxy–which runs
an OCMP server–and the mobile host, which runs the OCMP
client. We describe each component next.

A. Content host

At the left of Figure 1 is the content host, a server that ei-
ther provides content such as video or stored voice to a mobile
device or receives uploads and content requests from the mo-
bile. This represents popular web sites like google.com, or ya-
hoo.com as well as media servers that provide audio and video
content. Content hosts reside in a data center at the core of the
Internet. These servers are connected to a wired, high-capacity,
and global IP backbone. Existing content servers run legacy
applications and do not support disconnection resilience or par-
allel transport connections over multiple networks for a single
application session. We would like to provide a feasible path
for supporting opportunistic communicationwithout requiring
modifications to legacy servers. We achieve this via the deploy-
ment of network-based proxies which are described next.

B. Proxy servers

Proxy servers allow interworking between legacy servers and
our protocols. A proxy is located in the communication path be-
tween a mobile device and a content host. It serves as the termi-
nation point for the multiple transport connections opened by the
mobile host over multiple network interfaces. The proxy server
hides data striping and multiple connections from the content
host. It can also provide fine-grained and application-specific
connection management, as will be described in Section IV.

The proxy can either be provided by an internet service
provider, or by an enterprise on behalf of its employees. Proxies
should be placed so that the round trip time from the proxy to
the large majority of the mobile devices is as low as possible.
For example, cellular providers could naturally keep the prox-
ies adjacent to the PDSNs in CDMA or the GGSNs in GPRS
networks, or on the backhaul point to the Internet core. On the
other hand, if a third party provides a proxy as a value-added

1Provider pricing policies can have a huge impact on the usage of cellular data
networks. For instance, Rogers Telecom in Canada charges up to CDN$21/MB
for some rate plans! In contrast, Airtel in India charges only CDN$0.135/MB
for its most expensive plan, which is 155 times cheaper.

3

service, it should place the proxy in a well-connected data cen-
ter. We only require that the proxies have one or more globally-
reachable public IP addresses, or dynamic DNS registrations.

The proxy acts as a store-and-forward agent for data down-
loads to a mobile device. A download starts with a mobile ap-
plication initiating a data transfer request, for instance, an HTTP
GET request. This request is intercepted by the OCMP client on
the device and forwarded to the proxy. The OCMP server on
the proxy supports anapplication plugin(described in more de-
tail in Section IV-D) that allows it to understand how to process
application-specific data transfer requests. If the request is from
an application supported by the proxy, the plugin at the proxy
processes the request and then uses legacy protocols to contact
the content host on behalf of the mobile device. Thus the con-
tent host is shielded from details of communication between the
mobile and the proxy.

Once data is downloaded from the content host to the proxy,
the proxy caches the data and looks for available transport con-
nections to the mobile device. No such connection may be avail-
able at that time if the mobile device is temporarily disconnected
from all access networks. If so, the proxy holds the downloaded
data in persistent storage until the device reconnects. Alterna-
tively, the proxy can use an out-of-band mechanism (e.g., an
SMS message if the mobile device is a smart phone) to inform
the mobile device about the availability of data. When the mo-
bile device reconnects using one or more transport connections,
the proxy segments the application data intobundles(which are
similar in spirit to the bundles in Delay Tolerant Networking [6])
and routes the bundles over these connections. The routing pol-
icy over multiple connections is negotiated in advance between
the OCMP peers on the mobile client and the proxy.

Similarly, when data is being uploaded from the mobile de-
vice to a content host (e.g., blog or picture uploads), the proxy
receives bundles from a single application over multiple trans-
port connections from the mobile, reassembles them into a sin-
gle stream, opens a connection to the content host and forwards
the data using legacy protocols. Thus the OCMP client on the
mobile host and the OCMP server on the proxy implement anal-
ogous functions for segmentation and reassembly of application
data as well as policy-based multi-path routing of application
data segments.

The multi-connection state between a mobile and a proxy can
be packaged and moved to a different proxy to allow a mobile
to always use a ‘nearby’ proxy, greatly improving performance.
Similarly, the state on a mobile device can be retained persis-
tently across arbitrary periods of disconnection or power loss.
The state can even be transferred to a different end-point like a
home or office desktop, and unpackaged to recreate an operating
state identical to the state on the mobile prior to disconnections.
This can be used to provide semantics similar to that provided
by Internet Suspend and Resume [8].

C. OCMP

The proxy and a mobile are connected by multiple heteroge-
neous wireless networks that differ in coverage, capacity, pric-
ing, and availability. An OCMP server-side protocol running on
the proxy coordinates access on these networks with an OCMP

client-side protocol running on each mobile. OCMP defines
a message format for encapsulating application data segments
which are striped across multiple interfaces. This allows en-
capsulation of application data segments that are created at the
mobile or the proxy for transfer over multiple transport connec-
tions. For example, the OCMP header contains the sequence
number for each segment, which allows reassembly at the other
end. OCMP also has control messages, i.e., messages that con-
sist of only an OCMP header and an empty body. For example,
control messages are exchanged between the OCMP client and
the proxy to coordinate policies regarding data striping across
multiple transport connections.

Connections between an OCMP client and OCMP server are
always initiated by the client. A new transport layer connection
is created each time the device connects on a new network and
torn down when the device disconnects. Each network interface
is associated with a single transport connection that is shared by
all application data units assigned to that interface.

Using OCMP, data can be transferred on multiple connections
in parallel, under fine-grained application control. Essentially,
OCMP clients and servers choose the connection to be used for
each application-level data unit using application-specified poli-
cies. Moreover, if a connection abruptly terminates, or even
if all the connections terminate, the OCMP client and server
gracefully recover from the failure, providing applications the
illusion of seamless connectivity.

Unlike past work, OCMP does not depend on TCP seman-
tics of the underlying connections, as long as the transport layer
provides end-to-end reliability. An underlying connection can
be a standard TCP/IP connection or can be a transport pro-
tocol optimized for wireless networks, such as erasure-coded
UDP. OCMP can therefore exploit systems that compress and
transcode data on wireless links to optimize bandwidth use [23].

Besides working with the server-side, the OCMP client-side
also has the additional responsibility of detecting network con-
nections and disconnections. It uses application-specific poli-
cies to decide whether it should initiate a connection to the
server side when a connection opportunity arises. It also has
a notification mechanism to inform an application if there is any
data that has arrived for it.

D. Mobile

The proxy identifies a mobile device (and all connections
originating from it) by a globally unique identifier (GUID). This
GUID can be drawn from an existing namespace such as the
IMSI numbers for mobile phones or IPv6 addresses. The GUID
serves several purposes. First, as in HIP [10], it decouples
device addressing (a GUID) from routing (in terms of IP ad-
dresses). This solves the problem of IP address changes due to
mobility and/or disconnections. Second, it enables the proxy to
maintain persistent data transfer state even when a mobile appli-
cation uses parallel transport connections over different access
networks. Finally, it enables the proxy to stripe data intended
for a single mobile device across all the transport connections
belonging to the device.

The OCMP client on a mobile device provides two applica-
tion interfaces. The first is meant for legacy applications that are

4

designed in the socket-bind-connect paradigm. For such appli-
cations, data download requests are intercepted by the OCMP
client and dispatched to a client-side application plugin, which
sends a message on a control connection to its peer running on
the proxy. The plugin at the proxy, acting on behalf of the client,
initiates a connection to the server using legacy protocols (e.g.,
TCP/IP) and downloads the data. It then transmits the data to the
mobile device striped across multiple connections. The OCMP
client layer on the mobile device reassembles the data before de-
livering it to the application. For data uploads, the plugin at the
proxy reassembles data received from the device over multiple
connections and transmits to the server over legacy protocols.

We have also built a new application interface for
disconnection- and delay-tolerant applications. It takes the form
of a ’communication directory’, which is a standard directory
in the file system. An application writer drops a file into this
directory, and is guaranteed that the file will appear at a desti-
nation directory at some point in the future. This is described
in more detail in Section IV-A. We have found that this API is
both robust and easily understood by application developers.

We have developed a Java-based prototype implementa-
tion for our system and evaluated its performance on laptops
with multiple wireless access technologies such as 802.11b/g,
CDMA 1xRTT, and GPRS EDGE. We chose to implement
our system in Java due to the rapid proliferation of J2ME-
compatible mobile devices. Our system is platform independent
and can be simply downloaded to a suitable end point device.
We encountered a number of implementation problems in going
from a paper design to a working prototype. These problems are
described in detail in [13] and are elided from this presentation
due to considerations of space.

IV. OCMP DETAILS

This section describe the OCMP client and server protocols
in greater detail.

A. Client side communication API

OCMP interacts with applications on the client side either by
means of a ’communication directory’ or by intercepting socket
calls made by legacy applications.

A communication directory is simply a directory in the file
system that contains application data. Each file in this direc-
tory has a sequence number and the files are transferred to the
proxy in order of the sequence numbers. To send data, an ap-
plication creates a new file in the directory with the next unused
sequence number. A ‘watcher’ process periodically looks for
modifications to the last modified time of the directory. If the
modification time is more recent than the last time the directory
was checked, the newly created files are sent to the OCMP stack
using the OCMP API.

The watcher also registers itself as the default receiver with
OCMP, much like inetd. When called, it accepts data and writes
them to a file in the appropriate communication directory. A
client can simply read this file to get its incoming data.

Each communication directory has two special files. The
config file has application-specific configuration parameters.
For example, for the blog-upload application, this is the user-

SAR agent

Application

RMI/

Directory watcher

OCMP interface

Connection buffer pool

TCP UDP

IP

Client

Connection buffer pool

SAR agent

Application specific plugin

TCP,

UDP

To server or

another proxy

App Ctrl

App plugin

Sockets

TCP UDP

IP

Proxy

P
o
li

ci
es

,
C

o
n
tr

o
l

p
la

n
e

WiFi CDMAG
at

h
er

 d
at

a

Persistent
storage

Wired interface

P
o
li

ci
es

,
C

o
n
tr

o
l

p
la

n
e

OCMP interface

App Ctrl

Heterogeneous

networks

Internet

Fig. 2. The OCMP protocol stack at a mobile and a proxy. Only two NICs are
shown.

name and password for the user. The config file also contains
application-specific policies to control the interface(s) used for
transferring data for that application. These policies are passed
to OCMP by the watcher. The other special file is thestatusfile.
This file has one entry for each file in the communications di-
rectory and contains the status of that file. The status of a file
can be, for example, ‘ready to send’, ‘partially sent’, or ‘sent’.
An application that wants to know the status of a file’s transfer
can read the status file. This can be used, for example, to update
an icon in the GUI.

The use of a communication directory simplifies application
development. An application writer has to only create a send and
receive directory and the associated config and status files. After
that, all communication is achieved by writing files or reading
files from the directory.

In addition to the communication directory, we support legacy
Java applications by intercepting ‘socket’ calls in the Java API.
These calls are instead handled by OCMP, specifically by the
application plugin associated with that application. OCMP
guesses the plugin associated with a socket call by looking at
the destination port number as well as the first few bytes of the
written data. We describe this in more detail in Section IV-D.
After the interception, the remainder of the processing is identi-
cal as with the communication directory as is described next.

B. OCMP protocol stack

The OCMP client and server stacks that run on a mobile and
on a proxy respectively are shown in Fig. 2. We assume that ap-
plications or their associated plugins can categorize their com-
munications into either a control or one or more datastreams.
The application control stream provides an explicit control chan-
nel between the application plugin peers running on the mobile
and proxy. For example, it is used to tell a receiver about the
length of the bulk data sent on a data stream, or application pa-
rameters required by a peer plugin. It can also convey to the
mobile the status of the data transfer between the plugin on the
proxy and legacy servers.

Each application data stream is assigned to aSAR (Segmen-
tation and Reassembly) agentthat segments incoming data into
one or more bundles to support data striping across interfaces.
These bundles are enqueued at aconnection poolshared buffer.

5

The connection pool is an entity that maintains a list of active
transport layer connections, one on each interface, and has a
shared buffer from which theOCMP schedulercan remove bun-
dles. The scheduler sends each bundle on one of the transport-
layer connections depending on network availability and the
application-specified policy. The scheduler can also decide what
kind of a transport layer to use over which interface and send
connection requests to the proxy. In order to support mobile de-
vices that switch themselves off to save energy, all bundles in
the connection pool are also stored in persistent storage.

Applications select the interface for each bundle by regis-
tering application callback methods with the OCMP scheduler.
These methods are called when the scheduler has to select an
outgoing interface for bundles belonging to that application. The
handlers for these callbacks can make application-specific deci-
sions with as much control as desired. Naive application writers
can simply return the default interface, while a more sophisti-
cated programmer can take into account variables such as the
current time, the energy remaining at the mobile or other rel-
evant factors. For example, applications can send application
control messages over a cellular connection and application data
on WiFi connections. Other policies can include an intelligent
striping mechanism that takes the cost and power consumption
on different interfaces into account. Similar policies are also
supported in the application plugins running on the proxy, and
the policy parameters are conveyed to the proxy by encapsulat-
ing them in application control messages.

At a proxy, incoming bundles are processed by a symmetric
stack and eventually handed to an application-specific plugin.
These plugins can be loaded into OCMP dynamically to use
the OCMP API directly. The plugin can then take application-
specific actions to transfer the data to a legacy server. The plugin
can also fetch data from a legacy server on behalf of an appli-
cation and store it in the connection pool buffer for the mobile.
When a mobile opportunistically connects with the proxy, bun-
dles in the connection pool buffer are enqueued on the appropri-
ate transport layer connection and sent to the mobile.

C. Session-level reliability

Due to the presence of a send buffer in the network stack,
write calls that enqueue data into a non-empty send buffer re-
turn successfully, making an application think that the data was
reliably delivered to the receiver, even though it might not be
delivered at all if the connection closes prematurely! In this
case, the data in the send buffer is actually lost after a connec-
tion termination is announced to the application. Similarly, on
the receive side, bundles that have been acked by TCP, are not
actually passed to the OCMP agent on an unclean disconnec-
tion. Hence, with any buffered protocol stack, there is always
a possibility that data equal to the sum of the send and receive
buffers is actually lost, even though the sending side believes the
data to have been delivered successfully. For this reason, trans-
port layer semantics are insufficient for reliable deliver, and a
session level reliable data transfer protocol is needed to recover
from lost data.

To avoid the overhead of a per-bundle ack or nak protocol, an
OCMP sender keeps track of the order in which it transmitted

OCMP Client Agent (Id) OCMP Proxy

Out of bandOut of band

Sms/wap(data avbl, proxy)Turn flag ON to keep
connecting

Control Plane
Interface
Listener

AvblWiFi start

EDGE start

WiFi end

Connect?

Yes, Use TCP, Construct TCP agent

TCP, UDP listeners

newConnMessage(Id, If-ID-1)

�TCP, UDP agents

Construct Control Plane for ID

Control Plane(Id)

�(If-ID-1, WiFi)

Avbl

�(If-ID-2, EDGE)
Connect?

Yes, Use UDP, Construct UDP agent

newConnMessage(Id, If-ID-2)

sendBundle(TCP)
Get packets for Id

Error

Conn
close

(If-ID-1)
closeConnPacket(Id, If-ID-1,

Last_Seqno_Received_On_If-ID-1)
Infer lost bundles window

sendBundle(UDP)

Retransmit lost
bundles

Fig. 3. Control flow sequence diagram

data on each network interface, and retains, in persistent store,
all data that might possibly get lost in transit. When a connection
closure is detected, the receiver informs the sender of the last se-
quence number bundle it successfully received on that connec-
tion. The allows the sender to infer the set of bundles that were
not successfully received. The sender therefore queues them for
transmission on a working interface, or marks them as undeliv-
ered for subsequent retransmission.

The ability for one end of a connection to inform the other
of unclean connection termination on an alternate interface is
a useful feature of OCMP. This is because we have found that
in practice, one of the ends knows about a disconnection far
sooner than the other. This technique allows both ends to reason
correctly about the disconnection and to take corrective action.
Typically, disconnections are due to wireless failures, which the
mobile device finds out about much faster than the proxy. The
mobile then sends a disconnection notification, along with the
last sequence number it received on the WiFi interface, on its
cellular (EDGE) interface. If the proxy was sending some data
to the mobile on the WiFi interface, it can then immediately
retransmit the data sent on the failed interface after the last se-
quence number received by the mobile. The proxy responds
to a disconnection message with a reply disconnection message
that carries the last sequence number it received on the failed
interface. In case the mobile was uploading data, it can now re-
transmit everything it sent after the last sequence number that
was received by the proxy. This allows us to quickly recover
from a broken connection. We evaluate the performance of this
technique in Section VI.

The discussion is illustrated in a sample scenario shown in
Fig. 3 for a mobile device that encounters intermittent WiFi
connectivity and uses both WiFi and EDGE for data transfer.
The protocol begins when the OCMP proxy notifies the mobile
device that it has data waiting to be picked up by the device. We
assume that these notifications can be sent through an out-of-
band mechanism, such as SMS. When the mobile receives this
notification, it asks the interface listener module to raise an event
whenever the device connects to a new network. Thus, when the

6

If needed create app

plugin for client ID

Intercept socket call

Segment data

into bundles

Select a connection

Connections

avbl?

Yes

No

If client, try to

connect to proxy

Enqueue in connection

pool buffer

Send

assmblrs

RMI or directory watcher

Deque bundles from

buffer and try to send

Client Proxy

Persistent app plugins

poll servers

App daemons listen

for server pushes

Find corresponding OCMP ID

New message for some user

Send SMS to user

about pending data

Create NewConn message with

Last_Seq_No_Received

Able to

connect?

Yes

No

Connection

dead?

Send CloseConn message

Yes

Data

type
App data

App ctrl

Save bundles in

persistent store

Success?
Yes

No

OCMP ctrl msg

OCMP ctrl msg

Fig. 4. Processing steps on the sender side

Receive OCMP message

Extract User Id, App Id,

SAR agent Id, Seq No

Data store for User

Apps for User Id

SAR agents

for App Id

App data bundle

Insert is resequencing

buffer

Did pointer

advance?

No
Notify callback entity

Yes

App plugin

App control msg

Client Proxy

RMI calls

Connection pool

OCMP

Control

msg

Message

type?

App plugin

Internet
Legacy servers

Create new connection

objectCloseConn msg

Message

type?

NewConn msg.

Only received at proxy

Infer lost bundles

window

Reenque

Shared buffer

Scheduler

Send to

connection objects

Fig. 5. Processing steps on the receiver side

mobile connects to a WiFi hotspot, the OCMP control layer de-
cides to use TCP as a transport layer on WiFi to connect to the
proxy. The connection is initiated through a control message,
which first instantiates an OCMP connection pool entity for the
mobile on the proxy if it did not exist already. The connection is
then added into the connection pool. Similarly, a new transport
layer connection is created when the mobile enters into EDGE
coverage, this time using a reliable UDP protocol. The proxy
can now stripe data on both connections, or use policy feedback
from the application to regulate the relative data rates on each
connection. If one connection breaks uncleanly, the other con-
nection is used to send control messages to the proxy so that the
proxy does not have to wait until a TCP timeout to detect the
connection failure.

Fig. 4 and Fig. 5 summarize this discussion and show the

Client App OCMP Client Agent OCMP Proxy

Proxy app Plugin

send AppCtrlMessage

(HTTP, GET,
“news.google.com”)

construct AppCtrlMessage

send AppCtrlMessage

recv OcmpAppCtrlMessage

send AppCtrMessage

(“news.google.com)

construct AppPlugin(HTTP, GET)

Get all the data
from
news.google.com

send AppData(data)

construct AppDataBundle

send Bundle

Disconnectionreceive AppData(data)

send Bundle
destruct AppPlugin

reassemble

Attempt http GET session

Construct HTTP GET plugin

Client app Plugin

Forward to app

Fig. 6. Data transfer sequence diagram

processing steps involved on the sender and receiver side.

D. Application-specific plugins

Both the OCMP client and the server support application-
specificplugins. These short-lived code modules are invoked
to carry out application-specific actions for each client-server in-
teraction. All applications need a plugin at the proxy, and legacy
application need a plugin at the client end as well. For example,
a legacy web browser request on a mobile is associated with an
instance of a HTTP plugin both on the client on the proxy that
initiates an HTTP GET on its behalf. The proxy-side plugin
stores the results in persistent storage and communicates them
to the client over opportunistic links. Other examples are a blog
plugin to support upload from a mobile device to a blog [22],
and a flickr plugin to upload a photograph to flickr [24]. Appli-
cation plugins attempt to mask a mobile’s disconnections from
legacy applications either on the mobile or at the content host.
Of course, long disconnections that last for hours or days cannot
be masked, particularly from interactive applications. However,
delay-tolerant applications, such as email and music download,
are ideal for opportunistic communication. Note that client side
plugins are needed only for legacy applications. If the applica-
tions are rewritten to use the ‘communication directory’, then
application plugins are not required on the client.

An instance of a plugin is created on the mobile if OCMP
intercepts a socket call made by legacy applications. The desti-
nation port number or the first few bytes written into the socket
are used to disambiguate different applications from each other,
and a corresponding plugin object is created to handle the con-
nections. Whenever a new plugin is created, or a new file is
dropped into the ‘communication directory’, an application con-
trol message is also sent to the proxy to ask it to dynamically
instantiate a peer plugin on the proxy. We illustrate this through
a sample data transfer sequence diagram shown in Fig. 6. Note
that application control messages have an application ID and
application type field to uniquely identify the correct plugin and

7

the type of the plugin. The plugin then collectsone-timedata
from the legacy server, hands it to a SAR agent, and finally de-
structs itself. A distinct plugin object is therefore associated
with each client interaction with the server. Although somewhat
heavyweight, this allows us to cleanly handle communication
state in the event of a disconnection. We are looking into more
lightweight techniques for state persistence in current work.

Persistent application daemons can also be created at the
proxy that either monitor legacy servers for updates, or receive
‘push’-style updates from the servers. The data from these up-
dates is then handed to an application plugin, which hands over
the data to SAR agents in the usual way. If the mobile is already
connected to the proxy, an application control message is sent to
the mobile to notify it about pending data lying at the proxy. The
mobile now either downloads the data into the ‘communications
directory’, or instantiates the appropriate application plugin to
handle the incoming data. If the mobile is not connected to the
proxy, potentially an out-of-band SMS message can be sent to
the mobile to indicate pending data. The client OCMP running
on the mobile receives this SMS and tries to connect to the proxy
whenever connection opportunities arise.

E. OCMP identifiers

As described earlier, OCMP identifies each mobile device by
a unique GUID such as its IMSI [19]. The proxy uses this ID
to demultiplex bundles belonging to different users. A different
class of identifiers is needed for some applications. Consider a
proxy that registers itself as the email server for a set of mobile
users using a DNS MX record. When receiving incoming email,
the proxy needs to find the user’s OCMP-GUID. Therefore, the
proxy needs to maintain a mapping from the user’s application-
specific address, such as an email address, to the user’s GUID
so that when the user connects to the proxy, it can send data to
the correct user.

We have defined a framework on the proxy to support trans-
lation from application-IDs to OCMP-GUIDs. A registered ap-
plication can create a daemon on the proxy that maintains map-
pings from application identifiers to the OCMP identifiers for
all users of that application. This daemon is also registered to
receive content from legacy servers. So, when a content server
pushes data to the application daemon, it can instantiate an ap-
plication specific plugin with the correct OCMP-GUID for the
user, and redirect the incoming data to the plugin. The plugin
caches the data in the usual way and delivers it to the mobile
whenever it connects.

Note that each bundle carries aGUID to distinguish bundles
belonging to different users, anapplication identifierso that
bundles can be routed to the correct application, aSAR agent
identifier for each data stream, and asequence number. A con-
catenation of the first three identifiers defines a uniquesession
identifier.

F. Adaptive striping

An important feature of our work is the ability to stripe data
over multiple interfaces. This approach has been used by sev-
eral systems in the past. However, they have either suffered from
poor performance, as described in detail in [7] or require that the

Deque a bundle

Blocking connection object

Set state blocked

Select unblocked conn

Send

Save bundle

Get bundle

Call blocking send

Set state unblocked

When send unblocks

Record blocked duration

and update rate estimate

T
h

re
a d

C
o

n
n

e
c
ti

o
n

 P
o

o
l

Non-blocking connection object

Deque a bundle

Select preferred conn

Call non-blocking send

Success?

If just blocked, record

block start time

Record blocked duration,

update rate estimate

No

Yes

Enque bundle

Send

C
o

n
n

e
c
ti

o
n

 P
o

o
l

Pull

Push Push

Fig. 7. State maintenance with blocking and non-blocking transport layer im-
plementations

underlying reliable protocol be TCP. Our transport-layer agnos-
tic and rate-based approach to stripe data is described in detail
next.

The key problem with application-layer (i.e. transport agnos-
tic) striping, as pointed out in [7], is that data ‘stuck’ on a slow
interface can cause data sent on a faster interface to be held in-
definitely in a resequencing buffer at the receiver, causing the
buffer to grow, potentially without bound. To begin with, we
believe that this is not a significant problem in OCMP because
our focus is on delay tolerant applications. This allows us to
have essentially infinite resequencing buffers by placing them in
secondary storage. Nevertheless, to minimize disk accesses and
save power, OCMP uses a simple algorithm to detect when an
interface stalls, and then reassigns in-flight data from the stalled
interface on to unstalled interfaces. This allows the system to
quickly recover from stalled interfaces. We explain this algo-
rithm next.

The first step is to estimate average transmit rates at each in-
terface. This is done through a standard EWMA estimation us-
ing a weight parameter of 0.8. The algorithm is triggered im-
mediately after an OCMP bundle is dispatched on an outgoing
interface. This is shown in Fig. 7 for two cases, namely, when
the transport layer implementation has blocking write calls, and
when the write calls are non-blocking1.

Once the rates are estimated, Algorithm 1 is used to detect
stalled interfaces and reassign data. The connection pool ob-
ject keeps track, for each interface, of how much data had been
sent onother interfaces while that interface was blocked. If this
amount exceeds a stall threshold, then it determines that the in-
terface is stalled, and reassigns a fixed amount of data from the

1Blocking transport layer implementations need a thread for each connection.
Our implementation uses thread sleeps and waits so that thread overhead is kept
at a minimum.

8

Algorithm 1 Detect stalled interface and reassign bundles
ε // Constant: Safety factor
B // Constant: Maximum size of resequencing buffer
Wj // Constant: Expected window size ofjth interface
ratej // Estimated value of rate forjth interface
stalledj // Whetherjth interface is stalled or not
trackdataj // Data dispatched on interfaces other thanjth

Function detect stall(D) // D = Size of bundle dispatched
// Called onith interface when some data is dispatched on it

for each j s.t.j 6= i do
trackdataj ⇐ trackdataj + D
sumrates ⇐

∑
k 6=j ratek

if trackdataj > B − ε− sumrates ∗Wj/ratej then
stalledj ⇐ true
ratej ⇐ 0
reassignWj bytes of data sent onjth interface

end if
end for
trackdatai ⇐ 0

end Function

stalled interface to unstalled interfaces. We now discuss how to
determine appropriate stall thresholds.

We will illustrate our algorithm by considering just two inter-
faces, say WiFi and EDGE. We will denote by awindowthe set
of bundles that have been sent by OCMP, but that have not been
acknowledged by its peer. LetWedge be the maximum window
size of EDGE. Then the maximum amount of data that could
have been sent on WiFi while the EDGE pipe is being filled up
= rwifi∗Wedge/redge. This is also the maximum amount of data
that could be waiting in the resequencing buffer on the receiver
for a bundle from the EDGE interface. If the EDGE connection
stalls, the data in the resequencing buffer will grow linearly at
a rate ofrwifi. We wish to avoid this, by transferring bundles
away from the EDGE interface to the WiFi interface when a stall
is detected.

We know that at timet after the EDGE connection stalls, the
size of the resequencing buffer isrwifi∗Wedge/redge+rwifi∗t.
This has to be always kept less than the maximum size of the
resequencing buffer =B, within some safety threshold =ε. Thus,
t < (B − ε)/rwifi − Wedge/redge. Now, the amount of data
dispatched on WiFi since the EDGE connection got stalled =D
= rwifi ∗ t. Hence, we can substitute fort, and claim that the
reassignment should take place whenD > B − ε − rwifi ∗
Wedge/redge. The amount of data to reassign from EDGE to
WiFi is simplyWedge. This logic is incorporated in Algorithm 1
reflecting the fact that a mobile may have more than 2 interfaces.

We chose conservative values for our parameters. In our sys-
tem, we useWedge = 16Kb, which is the commonly used default
window size in most OSes. Since we multiplex all application
data onto the same transport layer connections, we are also able
to afford a large resequencing buffer of 2Mb shared across all
connections between a client and a proxy.

Note that the need for reassignment is more severe in case of a
complete disconnection from some interface. In such cases, we
send a disconnection notification on a working interface, instead

of relying on the transport layer of the broken interface to detect
the disconnection through transport layer timeouts.

V. A NALYSIS

This section presents a mathematical analysis of the perfor-
mance of a mobile device in a fairly limited environment that
supports both (and only) WiFi and EDGE or 1xRTT. Our goal is
to compute the expected throughput achieved by the mobile as a
function of its mean residence time in the WiFi network and the
delay in connecting to a wireless network. We are also able to
analytically compare the performance of, for instance, a policy
that only uses WiFi with that of a policy that uses both networks
when possible. Though preliminary, and with some strong as-
sumptions, we believe that our analysis allows us to get a good
intuitive grasp of the expected performance of our system. We
compare this analysis with an actual field measurement of the
system in Section VI.

For the purpose of analysis, we assume that the connectivity
schedules of a mobile device with WiFi networks can be mod-
eled by two random variables: residence timeR in a WiFi net-
work (with meanµr), and disconnection timeD from a WiFi
network (with meanµd). We also assume that the devicealways
has EDGE coverage, even though it may choose not to use this
coverage to save on costs. We consider the connection estab-
lishment latencies to be fixed andLwifi andLedge for WiFi and
EDGE networks respectively. We also assume fixed throughputs
for EDGE and WiFi networks ofredge andrwifi respectively.

In general, the distribution ofR andD are strongly dependent
on the mobility model. Because this is unknown, we proceed in
two steps. First, we compute the expected performance of five
different connection policies as functions of some quantities de-
termined by these distributions. These performance measures
can therefore be computed as long as we are given the distribu-
tion of R andD. Several ongoing research projects are mod-
eling user mobility through raw traces on mobility [5]: we an-
ticipate that we can use their results to compute these values.
Second, we show quantitative results comparing these five poli-
cies assuming thatR is exponentially distributed. We hasten to
add that these are merely illustrative. We realize that we cannot
draw strong conclusions about the relative performance of the
policies based on this assumption. Nevertheless, the numerical
results give us an intuitive understanding of the relative perfor-
mance of the policies that are likely to hold for any distribution
of R.

We first assume that we are (somehow) given the following
quantities:

• PR>Lwifi
= Probability of a successful WiFi connection

• ER<Lwifi
= Expected value ofRduring which WiFi connec-

tions cannot be established
• ER>Lwifi

= Expected value ofRduring which WiFi connec-
tions are possible

We use these values to compare the following five policies:

1. Bandwidth aggregationUse EDGE all the time and WiFi
whenever available.

r = redge + rwifi(ER>Lwifi
− Lwifi)/(µr + µd)

9

2. Handoff with connection overlap Use either WiFi when
available or EDGE otherwise. Here, we assume that an on-
going connection is maintained during the time in which the
other is establishing a connection. However, after a con-
nection has been established, only one network can be used.
This is a reasonable assumption to make because two ra-
dios cannot be used simultaneously on legacy devices with-
out making changes to the routing tables.

r = {redge(µd + ER<Lwifi
− LedgePR>Lwifi

)
+rwifi(ER>Lwifi

− Lwifi)}/(µr + µd)

Note that the first expression for the connected duration in
EDGE is written as the mean disconnection time from WiFi
(=µd), plus the time during which a WiFi connection is being
established (=ER<Lwifi

), minus the time it takes to recon-
nect to EDGE if the device was able to switch to WiFi in the
first place (=LedgePR>Lwifi

).

3. Handoff with orthogonal connectionsThis policy is sim-
ilar to the previous one, except that we assume that EDGE
and WiFi networks cannot be used simultaneously during
the connection establishment phase. This scenario is true
for some devices with limited capabilities.

r = {redge(µd − LedgePR>Lwifi
)+

rwifi(ER>Lwifi
− Lwifi)}/(µr + µd)

4. WiFi only

r = rwifi(ER>Lwifi
− Lwifi)}/(µr + µd)

5. EDGE only

r = redge

Given these expressions, which are independent of the distri-
bution ofR, in the second step, to generate illustrative quantita-
tive results, we assumeR andD to be exponentially distributed
random variables. This allows us to compute the required ex-
pressions as follows:

• PR>Lwifi
= 1

µr

∫∞
L

e−x/µrdx

• ER<Lwifi
= 1

µr

∫ Lwifi

0
xe−x/µrdx

• ER>Lwifi
= µr − ER<Lwifi

We compared the five schemes in two different scenarios:
when the proxy is locatedcloseto the correspondent host, and
when it is locatedfar from the correspondent host. A large dis-
tance between the mobile and the proxy increases the RTT, re-
ducing the throughput on a connection. We model this through
an inverse relationship between the RTT and throughput, as in-
dicated in [9]: redge = rwifi/RTT . Here RTT is the Round
Trip Time between a mobile and the proxy. We plot the values
of r for different schemes and scenarios in Fig. 8- Fig. 12. The
parameter values we used for our analysis are listed in Table I.
We chose these values based on experimental observations as
indicated.

In Fig. 8, we keep the mean residence time in WiFi, i.e.µr

1In our experiments, we observed a small correlation between signal strength
and link acquisition delays. However, DHCP delays always took approximately
the same value, indicating that commercial 802.11 hardware have good support
for power and rate adaptation depending on the link conditions.

Fig. 8. Increasing disconnection time for fixed mean residence timeµr

Fig. 9. Increasing WiFi residence time for fixed mean disconnection timeµd

Fig. 10. All schemes, fixed mean degree of connectivityµr/µd

10

Fig. 11. Differentµr , fixed mean degree of connectivityµr/µd

Fig. 12. Fixed mean degree of connectivityµr/µd

Param Value Reason
redge 8 Kbps Expt. observations
rwifi 290 Kbps Expt. observations

L 8 sec Expt. observations:1

1. Link acquisition = 3 to 5sec
2. DHCP = 2 to 2.5sec
3. Client initializations =

80 to 150ms
4. TCP, proxy initializations =

400 to 500ms
RTTcloseproxy 40 ms Ping measurements
RTTfarproxy 100 ms Ping measurements

TABLE I

CONNECTION ESTABLISHMENT DELAYS

fixed at 5 sec and 35 sec respectively, and varyµd for the band-
width aggregation policy with the proxy located at two different
locations. We see that the mean throughput drops off recipro-
cally with respect to the amount of disconnection. The asymp-
totic value is the throughput derived by only using EDGE, which
also happens whenµr < Lwifi. We also observe that the proxy
placement has a large effect on throughput. Similar behavior is
likely for any policy that opportunistically exploits WiFi, that
is, achieving nearlyrwifi whenµr >> µd and asymptoting to
redge whenµd >> µr.

In Fig. 9, we keepµd fixed at 10 sec and 3600 sec, to in-
dicate two different scenarios of dense WiFi connectivity and
sparse WiFi connectivity respectively. We observe that asµr

crossesLwifi, the throughputs for the bandwidth aggregation
policy with µd = 10 sec saturate at a value ofµedge + µwifi.
Our analysis indicates that forµd = 3600 sec, the saturation will
occur much later. Again, we expect these trends to hold rela-
tively independent of the distribution ofR andD for any policy
that opportunistically exploits WiFi connectivity.

In Fig. 10, we keep the value ofµr/µd fixed at 0.5, and vary
µr for the first three policies. We notice that in the third pol-
icy, where WiFi and EDGE cannot function simultaneously, se-
vere thrashing takes place whenµr < Lwifi because the device
simply switches between networks without getting much useful
work done. Asµr is increased from 1s toLwifi, the probabil-
ity of switching into a WiFi network increases, and hence the
amount of thrashing also increases. Therefore, we see a dip in
the value of mean throughput which starts rising afterLwifi,
and finally catches up at around 11 sec. This can be used to
find themake uptime introduced in [17], which is the minimum
connection duration of a WiFi network required to justify the
switching latencies and reconnection delays encountered in net-
work switches.

In Fig. 11, we plot graphs for different values ofµr/µd, and
we see that the degree of connectivity (i.e ratio ofµr to µd has
a greater effect in performance than the choice of scheme.

Finally, in Fig. 12, we keepµr/µd fixed at 0.5, and plot
graphs for the first and second schemes with the proxy placed
at different locations for each scheme. We again observe that
the closeness of proxy influences performance more signifi-
cantly than the choice of policy. This corroborates the need for
the application state packaging/unpackaging feature of OCMP
to relocate data to the OCMP proxy closest to a mobile de-
vice. We also see that after a sufficiently largeµr much greater
thanLwifi, the throughput averages out to a value ofredge +
rwifi(µr − Lwifi)/(µr + µd) for the first scheme. The asymp-
totic values of other schemes can be calculated similarly under
the limiting conditions ofµr → ∞, leading toPR>Lwifi

→ 1,
ER>Lwifi

→ µr.
Based on this analysis, we draw the following broad conclu-

sions:

• First, for any policy that opportunistically uses WiFi, the crit-
ical parameter is the degree to which WiFi is available. If a
mobile device resides for longer durations in a WiFi network,
its throughput asymptotically reachesrwifi.
• Second, policies that use WiFi opportunistically do not differ
very much from each other: the ability to use the WiFi interface

11

80

70

60

50

40

30

20

10

 24 20 16 12 8 4

T
hr

ou
gh

pu
t (

kb
ps

)

Time of day (Hours)

 0
 0

Scatterplot of values
Mean value

Fig. 13. Scatterplot of 1xRTT application layer throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

706050403020100

C
D

F

Throughput (Kbps)

Cumulative values
Mean

Fig. 14. CDF of 1xRTT application layer throughput

is more significant than the exact choice of policy.
• Third, the placement of a proxy critically influences perfor-
mance. Ideally, a proxy should be located as close to a mobile
as possible.
• Fourth, if a mobile is present for a short time only in a WiFi
network, then care should be taken to ‘make then break’. Other-
wise, thrashing will occur.

VI. EVALUATION

A. Throughput of cellular networks

We verified the erratic behavior of data on cellular networks
[2] by collecting traces of 100Kb file downloads repeated every
10 minutes on an 1xRTT network at different times of the day.
As shown by the scatterplot in Fig. 13, the throughput varies
considerably. Surprisingly, there appears to be a little correlation
between the mean throughput and the time of day.

Fig. 14 shows a cumulative frequency distribution of the
throughput traces. The CDF is approximately linear from 5Kbps
to 25Kbps, indicating uniform deviations of almost 100% from
the mean value of 16Kbps.

Although we did most of our subsequent experiments on
EDGE instead of 1xRTT,2 we expect EDGE networks to exhibit
a similar erratic behavior as well. Note that our measurements
indicated that the mean capacity on EDGE was only 8 kbps.

Fig. 15. Connectivity schedules used for experiments

2.5

2.0

1.5

1.0

0.5

0
120100806040200

B
yt

es
 r

ea
d

(M
b)

Time (sec)

App-1: Edge + WiFi
App-2: Wifi

Fig. 16. Download: Client and proxy geographically close

B. OCMP performance

For our experiments, we replayed the connectivity schedules
calculated using the simulator described in more detail [14].
Briefly, the schedules are generated by modeling a random walk
of a mobile on a 2D map of heterogeneous access networks.
This network map is constructed by randomly laying out net-
works with uniformly distributed radii of coverage. We chose
parameters to model drive-thru scenarios with small connection
durations so that we can illustrate the advantages of OCMP even
with brief connection opportunities. Our analysis shows that
with larger residence times in a network, the performance will
get only better because the WiFi throughput is an order of mag-
nitude higher than the EDGE throughput. The sample connec-
tivity schedule we used for our experiments is shown in Fig. 15.

For our experiments, we used a last hop WiFi link connected
to a shared DSL backhaul connection, and an EDGE connec-
tion from a commercial cellular service provider. We ran our
experiments in two scenarios: (a) client and proxy located close
to each other with mean ping times of 30ms, and (b) client and
proxy located far apart with mean ping times of 70ms.

2This was because of unexpected problems with our 1xRTT NIC, forcing us
to replace it with an EDGE NIC

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4
545250484644

B
yt

es
 r

ea
d

(M
b)

Time (sec)

App-1: Edge
App-1: WiFi
App-2: Wifi

Fig. 17. Download: Client and proxy geographically close: Zoomed in

12

2.5

2.0

1.5

1.0

0.5

0
120100806040200

B
yt

es
 r

ea
d

(M
b)

Time (sec)

App-1: Edge + WiFi
App-2: Wifi

Fig. 18. Download: Client and proxy geographically very far

2.5

2.0

1.5

1.0

0.5

0
200150100500

B
yt

es
 s

en
t (

M
b)

Time (sec)

App-1: Edge + WiFi
App-2: Wifi

Fig. 19. Upload: Client and proxy geographically close

We first studied download behavior. Fig. 16 shows the trace
of an experimental run where the mobile uses WiFi and EDGE
simultaneously, and the client and the proxy are located close
together. The graph shows two applications with different poli-
cies: App-1 uses both EDGE and WiFi, whereas App-2 uses
only WiFi opportunistically. During the trace, App-1 downloads
1.9 MB and App-2 downloads 600KB. The ‘mesa’ markings on
the X-axis indicate periods of WiFi network coverage. The trace
clearly illustrates the benefits of opportunistic communication:
even through a 8-9 sec delay is incurred in WiFi connection es-
tablishment, brief connection opportunities can still offer large
download spurts.

Fig. 17 shows the same graph with a detailed view from 44 to
54 seconds, during which a WiFi connection is available. Notice
the kink at approximately 47 sec, when App-2 terminates and

2.5

2.0

1.5

1.0

0.5

0
200150100500

B
yt

es
 s

en
t (

M
b)

Time (sec)

App-1: Edge + WiFi
App-2: Wifi

Fig. 20. Upload: Client and proxy geographically far apart

Network Throughput Delay =L R-L
1 EDGE 8.8 Kbps 0 48 sec

WiFi-I 291 Kbps 9.276 sec 2.714 sec
WiFi-II 292 Kbps 8.665 sec 3.335 sec
Average 43.3 Kbps

2 EDGE 7.5 Kbps 0 48 sec
WiFi-I 296 Kbps 8.985 sec 3.015 sec
WiFi-II 293 Kbps 9.246 sec 2.754 sec
Average 40.9 Kbps

3 EDGE 7.7 Kbps 0 48 sec
WiFi-I 287 Kbps 9.276 sec 2.724 sec
WiFi-II 288 Kbps 8.685 sec 3.315 sec
Average 42.0 Kbps

TABLE II

THROUGHPUTS MEASURED WITH A FIXED CONNECTIVITY SCHEDULE

App-1 gets the entire WiFi bandwidth to itself.
Fig. 18 shows the same connectivity schedule replayed with

the client and proxy situated geographically far away from each
other. The effect of a larger RTT results in lower throughput on
both the EDGE and WiFi networks and a general flattening of
the graph.

Fig. 19 and Fig. 20 show a trace of application behavior dur-
ing anuploadwith the same connectivity schedules and appli-
cation requirements as the download experiments. We observe
that uploads are slower than downloads, which is because up-
load rates on both a DSL backhaul and on EDGE are slower
than download rates.

C. Comparison with analysis

In order to verify our measurements with the analysis, we
ran two experiments. In the first experiment, we used a fixed
schedule for WiFi availability. The connectivity schedule was
as follows: 0..12 sec (only EDGE), 12..24 sec (EDGE+WiFi),
24..36 sec(only EDGE), 36..48 sec (EDGE+WiFi). During both
connection intervals, WiFi took approximately 9 sec to establish
connections and start download.

We find the measured values in Table II to be very close to
theoretically calculated values. Assuming thatredge = 8 Kbps,
rwifi = 290 Kbps, L = 9 sec,µr = 12 sec,µd = 12 sec, we
calculate:

redge + rwifi(µr − L)/(µr + µd)

to be 44.25Kbps, which is very close to the measured values
for all three experimental runs.

We also experimented with exponentially distributed WiFi
residence times. We computed 30 values ofR with µr = 12 sec
offline, and ran experiments with a fixed value forµd = 10 sec.
The distribution ofR is shown in Fig. 21. The figure also shows
the connection establishment latencies and the actual time avail-
able for data transfer. Measured values of the amount of data
transferred on EDGE and WiFi is shown in Fig. 22. OCMP
downloaded approximately 16.5Mb of data in 8 minutes, giving
an average throughput of 35Kbps. We find that the measured
value agrees closely to the value obtained from the equation de-

13

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sample runs

T
im

e
 (

m
s
)

Transfer time

Connection and server initializations

Client initializations

DHCP delay

Link acquisition delay

Fig. 21. Transfer times with 30 sample runs

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sample runs

B
y

te
s

 t
ra

n
s

fe
rr

e
d

WiFi

EDGE

Fig. 22. Bytes transferred with 30 sample runs

rived in Section V, withredge = 8Kbps,rwifi = 290Kbps, L = 8
sec,µr = 12 sec,µd = 10 sec. We calculate:

r = redge + rwifi(ER>Lwifi
− Lwifi)/(µr + µd)

to be = 37.9Kbps.
We conclude that our analysis, though rough and ready, is

able to accurately predict actual performance.

VII. R ELATED WORK

We are not aware of any other work that provides the full set
of functionality provided by our system. However, our work is
closely related to, and builds on, the insights of several threads
of past work in this area, as described next.

Our use of many wireless interfaces in parallel is similar in
spirit to pTCP [7]. Unlike pTCP, which assumes an underlying
TCP connection, OCMP is transport-agnostic. We are able to
make this tradeoff because we are primarily interested in delay-
tolerant applications that can deal with a large resequencing
buffer. In contrast, pTCP supports interactive applications, and
must therefore exploit TCP structure to reduce the size of the re-
sequencing buffer. Unlike pTCP, we do not require any protocol
changes in TCP, and do not require any modification to legacy
servers, which makes our system more likely to be deployed.
Finally, we have built, deployed and evaluated the performance

of the system in a testbed, instead of relying on simulations, as
in pTCP.

The use of location-independent identifiers for resuming a
session was proposed earlier in the context of Rocks and Racks
[21] and TCP Migrate [15]. However, these earlier solutions are
not only TCP-centric but also support only a single interface.
Our use of an almost-always-available cellular connection for
the transmission of control messages (i.e. data available, and
link down) distinguishes us from these proposals. Also, unlike
these proposals, we have designed and implemented a session-
level reliability protocol.

Our use of a proxy for dealing with session disconnections
and the aggregation of multiple transport connections into a sin-
gle connection is similar to that proposed in PCMP [12]. How-
ever, OCMP differs from PCMP in several ways. First, unlike
PCMP, OCMP supports the use of multiple NICs in parallel.
Second, unlike PCMP, OCMP nodes can be powered down be-
cause application data and control is persistently stored. OCMP
allows session state to be encapsulated and transferred from one
proxy to another. This allows us to reassign a mobile to the
closest available proxy, greatly improving performance. Finally,
servers can push data to OCMP proxies, or plugin daemons can
poll legacy servers to pull data, and the data can then be picked
up opportunistically by mobile devices. We believe that these
differences make OCMP much more suited to a dynamic multi-
network environment than PCMP.

Last but not the least, our work is complementary to, and ex-
tends, recent work in the area of implementing a router for delay
tolerant networks (DTN) [4]. Our notions of session persistence,
data persistence, bundling, and multi-network support originate
in this seminal work. However, we have made several non-trivial
extensions. These include the support for fine-grained policy
control, the notion of application plugins, the use of a proxy, the
separation of the data and control planes, and the the use of Java.
Some of our detailed design decisions also differ from that made
in the DTN reference implementation. For instance, DTN asso-
ciates a ‘convergence layer’ with each transport protocol, which
means that all NICs that support TCP would use the same con-
vergence layer. In contrast, we associate a connection with each
NIC, allowing us to exploit network heterogeneity even though
all transport networks may support TCP. Similarly, OCMP sup-
ports a control channel to communicate disconnection and reli-
able data transfer information between peers. This is not cur-
rently possible in DTN. We observe that our work is motivated
by a narrower set of problem areas than DTN, which allows us to
exploit the inherent problem structure to make these optimiza-
tions. In current work, we are extending OCMP to use a ‘DTN’
transport, so that we can interoperate with a DTN network. Es-
sentially, this allows the OCMP scheduler to act as a DTN node,
so that the path from a mobile to a proxy can accommodate mul-
tiple disconnected hops.

VIII. C ONCLUSIONS ANDFUTURE WORK

We have described the design, implementation, analysis, and
field evaluation of a system that allows a mobile device to op-
portunistically communicate using one or more wireless inter-
faces. The OCMP protocol allows an application designer to

14

take as much control over the details of the underlying commu-
nication mechanisms as he or she desires, allowing specification
of non-trivial high-level policies. Yet, naive applications can
be shielded from the underlying complexities by means of the
‘communications directory’ abstraction.

Our system makes the following contributions:

• Intelligent application-directed use of multiple network inter-
faces by means of application-specific plugins and scheduling
across multiple transport connections across different interfaces.
• Support for session persistence across disconnections by
means of a session-level reliability protocol, data persistence,
and the use of session identifiers.
• Support for legacy servers by means of a proxy and
application-identifier to OCMP-identifier translation at the
proxy.
• Ease of application design and implementation using a ‘com-
munication directory’.

These meet the design goals we stated in Section II.
We have implemented the system on a testbed and have used

it to develop three simple applications. A ‘mobile blog’ appli-
cation allows a user to create a text of photograph blog entry in
a communication directory, which is then uploaded to a blog at
blogger.com. The ‘opportunistic Jabber’ application is a port of
the XMPP protocol used in Jabber to use OCMP instead of TCP.
Finally, OCMP has also been used to create a disconnection-
tolerant RSS newsreader. These lead us to believe that our sys-
tem provides a broad foundation for building new applications
that run on smart mobile devices in an environment with multi-
ple wireless networks.

We now outline some avenues for future work:

• Policy design: Although OCMP provides support for fine-
grained policy control, the actual specification of non-trivial
control policies continues to be an open problem. We are cur-
rently investigating how to balance parameters such as the cellu-
lar pricing plans, power consumption, mobility prediction, and
application requirements to design sophisticated policies. To ob-
tain continuous indications from the lower layers about power
levels and battery life is yet another issue that still remains to be
solved.
• Detection of WiFi networks: Our work assumes that a mo-
bile can easily detect the presence of a wireless network. How-
ever, keeping a mobile powered on awaiting an opportunistic
connection wastes power. Indeed, leaving a WiFi NIC on at
all times in idle mode consumes 200mW and even sleep mode
consumes 60mW [1]. Proposals have recently been made for
hierarchical radios [16] where a low power WiFi detector is first
used to detect WiFi signals and then power on the rest of the
radio. We hope to incorporate these ideas into our system.
• Detection of disconnections from WiFi networks: Detect-
ing when a network is no longer accessible is a hard prob-
lem because the signal strengths of wireless networks vary dra-
matically even within a coverage area, introducing uncertainty
whether the mobile is temporarily in a fade, or actually out of
range. Recent work proposes that three consecutive retransmis-
sion failures most likely indicates a disconnection [20]. We hope
to use this insight into our system to efficiently detect disconnec-
tion.

• Power efficient device design: We believe that not only
should a radio interface on a mobile device be power efficient,
perhaps the entire device should be restructured to allow op-
portunistic access. For example, a mobile device can be pow-
ered down when not in use, and rapidly boot up it only when
a wireless network is detected. This could be accomplished by
a stripped down OS that is only capable of sending and receiv-
ing data and can be booted nearly instantaneously from flash
memory. The rest of the OS should be loaded only when it is
required, i.e. when there is data to send or receive.

To sum up, we believe that our work opens up several av-
enues for future work. We intend to pursue these and other
related efforts in our quest to provide application support for
multi-network opportunistic communication.

REFERENCES

[1] Atheros Communications, “Power Consumption and
Energy Efficiency Comparisons of WLAN Products,”
www.atheros.com/pt/whitepapers/atherospowerwhitepaper.pdf, 2003.

[2] R. Chakravorty, A. Clark, I. Pratt, “GPRSWeb: Optimizing the Web for
GPRS Links,” Proc. ACM/USENIX MOBISYS, 2003.

[3] M. Chan and R. Ramjee, “Improving TCP/IP Performance Over Third
Generation Wireless Networks,” Proc. IEEE INFOCOM, 2004.

[4] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and R. Patra, “Imple-
menting Delay Tolerant Networking,” Intel Research, Berkeley, Technical
Report, IRB-TR-04-020, Dec 2004.

[5] R. Jain, D. Lelescu, M. Balakrishnan, “Model T: An Empirical Model
for User Registration Patterns in a Campus Wireless LAN” Proc. ACM
MOBICOM, 2005 .

[6] K. Fall, “A Delay-Tolerant Network for Challenged Internets,” Proc. ACM
SIGCOMM 2003.

[7] H. Hsieh and R. Sivakumar, “A Transport Layer Approach for Achiev-
ing Aggregate Bandwidths on Multi-homes Mobile Hosts,” Proc. ACM
MOBICOM, 2002.

[8] M. Kozuch and M. Satyanarayanan, “Internet suspend/resume,” Proc.
Workshop on Mobile Computing Systems and Applications, 2002.

[9] J. Kurose and K. Ross, “Computer Networking,” Addison Wesley, 3rd
Edition, pp.271, 2004.

[10] R. Moskowitz, P. Nikander. P. Jokela, T. Henderson, ”Host Identity Proto-
col,” http://www.potaroo.net/ietf/ids/draft-ietf-hip-base-00.txt, 2004.

[11] D. Nystedt, “Intel Slashes PC Power-up Time,”
http://www.pcworld.com/news/article/0,aid,123053,00.asp, Oct 2005.

[12] J. Ott and D. Kutscher, “A Disconnection-Tolerant Transport for Drive-
thru Internet Environments,” Proc. IEEE INFOCOM 2005.

[13] A. Seth, S. Bhattacharya, S. Keshav, “Opportunistic Communication Over
Heterogeneous Access Networks,” Technical report, Sprint Labs, CA,
April 2005.

[14] A. Seth, N. Ahmed, S. Keshav, “Mobility Decisions in Heterogeneous
Wireless Access Networks,” Manuscript, University of Waterloo, Dec
2004.

[15] A. Snoeren and H. Balakrishnan, “An End-to-End Approach to Host Mo-
bility,” Proc. ACM MOBICOM 2000.

[16] J. Sorber, N. Banerjee, M. Corner, S. Rollins, “Turducken: Hierarchi-
cal Power Management for Mobile Devices,” Proc. ACM/USENIX MO-
BISYS, 2005.

[17] M. Stemm and R. Katz, “Vertical Handoffs in Wireless Overlay Net-
works,” In Mobile Networks and Applications, Volume 3, Number 4,
Pages 335-350, 1998.

[18] O. Tickoo, V. Subramanian, S. Kalyanaraman, K. Ramakrishnan, “LT-
TCP: End-to-End Framework to Improve TCP Performance over Net-
works with Lossy Links,” Proc. IEEE International Workshop on Quality
of service (IWQoS), Jun 2005 .

[19] V. Vanghi, A. Damnjanovic, B. Vojcic, “The CDMA2000 System for Mo-
bile Communications,” Prentice Hall, 1st Edition, pp.224, 2004.

[20] H. Velayos, “Autonomic Wireless Networking,” Doctoral thesis, TRITA-
S3-LCN-0505 , ISSN 1653-0837, ISRN KTH/S3/LCN/–05/05–SE, Stock-
holm, Sweden, May 2005.

[21] V. Zandy, and B. Miller, “Reliable Network Connections,” Proc. ACM
MOBICOM 2002.

[22] “Blogger API,” http://www.blogger.com/developers/api/1docs.
[23] “Bytemobile,” http://www.bytemobile.com.
[24] “Flickr API,” http://www.flickr.com/services/api.

