
1

Efficient and Decentralized Computation of
Approximate Global State

S. Keshav
School of Computer Science, University of Waterloo

Waterloo, ON, Canada, N2L 3G1

Abstract— The need for efficient computation of approx-
imate global state lies at the heart of a wide range of prob-
lems in distributed systems. Examples include routing in the
Internet, sensor fusion, search in peer-to-peer networks, co-
ordinated intrusion detection, and Top-K queries in stream-
oriented databases. Efficient algorithms that determine
approximate global state could enable near-optimal local
decision-making with little overhead. In this position paper,
we model this problem and summarize recent work on ran-
domized algorithms that navigate a four-way tradeoff be-
tween accuracy, robustness, performance and overhead. De-
spite these recent successes, many open problems remain.
We believe that solving these problems can radically im-
prove the design of robust, efficient and self-managed dis-
tributed systems.

I. I NTRODUCTION

The need for approximate global state arises in a wide
range of settings:
• Sensor networksConsider a system ofN sensors. Exam-
ples of global state that one may want to compute are the
average sensor value; extremal sensor values, such as min
or max; or quantile values, such as the median [2].
• Distributed systemsGlobal state is necessary to imple-
ment distributed system primitives such as barrier synchro-
nization, voting, leader election, and consensus [17].
• Peer to Peer networksIn a hybrid peer-to-peer search
system, that combines an unstructured flooding network
with a distributed hash table (DHT) [12], an example of
global state is the set of items that are popular, i.e., items
whose copies exist on many peers. If this information
can be efficiently computed, a queries for known-popular
items can be flooded instead of being sent to the DHT [19].
• Stream databasesIn a stream-oriented database, such as
a distributed database that records the number of hits to
an item in a content distribution network, an example of
global state is a Top-K query, i.e., the set of K documents
that have the most hits.

Position paper presented at the Workshop on Self-Organizing Net-
works, Seattle, Washington, June 1-2 2005. This research was sup-
ported by grants from the National Science and Engineering Council
of Canada, the Canada Research Chair Program, Nortel Networks, Sun
Microsystems Canada, Intel Corporation, and Sprint Corporation.

• Internet routingGlobal state is needed at every router
for Internet routing, because it has to forward incoming
packets to the interface that provides the best path to the
destination based on the current global topology. In Link
State routing, the flooding of Link State Packets results in
the global knowledge of this state.
• Network securityIntrusion detection systems detect
anomalies in network usage, such as port scanning. Recent
work suggests that collating anomaly information across
multiple detectors, a form of global state, may greatly in-
crease the accuracy of the system [18].
• File systemsIn a distributed file system, each node needs
to know the set of nodes that store a a given disk block
(or file), and this set needs to be updated in response to
changes in load, availability guarantees, and node failures
[5].

The thread that unites these varied areas is the need
to compute approximate global state in a system with a
large number of nodes, where computation may be mas-
sively distributed, and where the values stored at each node
change over time. In this position paper, we model this
problem, survey recent work, and outline some open prob-
lems. We believe that the solution to these problems can
radically improve the design of robust, efficient and self-
managed distributed systems. We note that this intuition
is also the basis for the Astrolabe system at Cornell [17];
unlike Astrolabe, we wish to address a much broader set
of application areas, and seek to move beyond strict hier-
archies to more general network topologies.

II. M ODEL

We use the following simple abstraction to model the
global computation. Consider a distributed system withN
nodes where, at timet, theith node has local state informa-
tion st

i and knows only of links to its neighbors. In prob-
lems of interest,N is very large and nodes arrive, depart,
and fail over time. Moreover, communications between
nodes may be lost.

Our goal is to have the nodes self-organize to compute
a functionF (St) whereF (.) = {f1(.), f2(.), ..., fN (.)}
and St = {st

1, s
t
2, ..., s

t
i}. The subscript onf indicates



2

that, in general, each node in the network would be com-
puting a different ’view’ of the functionF . This, for in-
stance, models computation of routing tables, where the
result of the computation is a different routing table at
each node. Theorem 1 shows that, due to unreliable nodes
and links, althoughF is well-defined, it may not be com-
putable.

Theorem 1:F (St) cannot be computed in a distributed
system that suffer from node failures and message loss.

Proof : The proof is by construction. Consider a two-
node system where node 1 and node 2 collaborate to com-
puteF (St). This requires that either node 1, or node 2,
or some third node needs to obtainst

1 and st
2 and com-

puteF (St). Without loss of generality, suppose node 1
is chosen to act as the coordinator. Now, if node 2’s state
changes just beforet, the communication of this changed
state from node 2 to node 1 is lost, and immediately after
communication node 2 also dies, then there is no way for
node 1 to computeF (St) �

We conjecture thatF can be correctly computed if ei-
ther of these two conditions does not hold. For instance, if
up toK nodes can fail, but messages are not lost, then a
node can updateK + 1 other nodes with its new state ev-
ery time its state changes. This allows the system to com-
puteF (St) despite node failures. Similarly, if messages
can be lost but no nodes fail, then peer nodes can use any
standard reliable transmission protocol with acknowledg-
ments, timeouts, and retransmissions, to eventually deliver
any message, and therefore allow computation ofF (St).

Theorem 1 shows that, in general,F is not computable.
However, for most interesting real-world problems,F ,
when computed over a sufficiently large fraction of nodes,
approximates its true value. More formally, letU t be the
set of nodes whose node statesσt can be gathered at a co-
ordinator node. For these functions,F (σt) − F (St) < ε,
whereε is the desired error bound. In the rest of this paper,
we will only consider such functionsF .

III. TAXONOMY OF THE PROBLEM SPACE

We now proceed from this abstract model to a taxon-
omy of the problem according to type of function being
computed, underlying network topology, and state change
model.

A. Function type

Although the function being computed, such as the one
for Internet routing, can be complicated, in the literature,
the functions studied can be categorized into one of a few
simple types:
• Extremal values:these include the minimum and max-
imum values and Top-K queries. Although conceptually

simple, these queries can be powerful: for instance, it turns
out computing the min can implement distributed barrier
synchronization. [17].
• Counts,such as of the total number of nodes, or of the
number of nodes that have a particular property. A count
query is a first step for many other distributed algorithms,
and can be used as a basis for distributed voting, consen-
sus, and leader election.
• Histogramsof the number of nodes with a particular
range of state values. This is a generalization of a count
query, with count being done for each histogram bin. Be-
cause histograms approximate distributions, this allows us
to compute attributes of distributions such as the mean,
median, or mode, the cumulative distributions, and higher
order moments.
• Membership:Maintaining membership in the system or
to a user-defined group as a distributed query allows sev-
eral powerful algorithms such as publish-subscribe, broad-
cast, and content-aware multicast (’SelectCast’) [17].

These examples serve to illustrate the power of decen-
tralized global state discovery. However, this approach has
not been applied to some of the areas outlined in the in-
troduction, such as routing, intrusion detection, and BGP
policy coordination. Modeling such known problems as
functions of approximate global state is an open area of
research.

B. Network topology

The cost and performance of a solution depends on the
assumed underlying network topology. For instance, with
a clique, every neighbor can be reached at unit cost; with
a unbalanced tree, the cost can be as large asO(N). In the
literature, the computation of approximate global state has
usually been studied in the context of overlay networks,
whose topology can be made as regular as desired: the
tradeoff then is between the mean path length,the robust-
ness of the topology, and the size of the routing table [9].
The following network topologies are relevant:
• Clique: In a clique, every node is one hop away from
every other node, so all communication has unit cost. In
particular, a node can communicate its state toall other
nodes in one time step. However, the size of a routing ta-
ble isO(N) which automatically limits scalability. Much
of the literature in this area implicitly assumes that the net-
work is a clique.
• Random graph of degreek: Here, every node hask ran-
dom neighbors. A random graph of degreek only needs a
routing table of sizek, but path lengths will be longer than
with a clique.
• Tree of degreek: In a k-ary tree, every node hask chil-
dren and one parent. A tree with degreek has a routing



3

table of sizek + 1, but, unlike a random graph, it is frag-
ile with respect to failures. On the other hand, computa-
tions the propagate values from leaves to the root finish in
O(logkN) time.
• Hypercube:This is a topology where nodes are arranged
on the vertices of a hypercube, so that a node is connected
to every other node such that the binary representation of
their IDs differ in one bit position (if such a node exists).
In a hypercube, both the routing table and the mean path
length isO(logkN).
• Power-law random graphs:These are approximate mod-
els for Internet topology, where the node degree is power-
law distributed.
• Hierarchical power-law graphs:These graphs, created
by tools, such as BRITE [14], are meant to closely ap-
proximate Internet topology.
• Measured Internet topology:Tools such as Rocketfuel
[16] map the actual Internet topology, so it is possible
to evaluate the relative performance of various solutions
on this graph. Note that all the other topologies can be
thought of as regular overlays on Hierarchical PLRGs or
measured Internet topologies.

The literature on graph topologies is deep and this list
leaves out many interesting topologies such as de Bruijn
graphs, rings with ’finger pointers’, and butterflies. At this
point, it is not clear which topology is ’best’ in terms of
a tradeoff between routing cost, memory cost, and robust-
ness to failure. The problem is made more complex by
realizing that regular overlay topologies, when overlaid on
a irregular network, can often result in the same real link
being part of many overlay links, causing both congestion
and correlated link failures!

C. State change model

The global state being computed may change over time
for several reasons. These include:

• Change in node stateThe state value at each node may
change over time.
• Change in number of nodesNodes may join, leave, or
abruptly fail. Moreover, the failure may be permanent or
transient.
• Change in linksLinks may be added, deleted, or fail.
Message failure can be modeled as transient link failure.

Clearly, if the rate of change of network state is too
rapid, global statistics are stale by the time they can be col-
lected, making them less useful as hints for optimal local
decisions. On the other hand, if the network is essentially
static, global state needs to be computed only once, which
allows the use of complex or time-consuming algorithms,
whose cost can be amortized over long durations.

IV. M ETRICS

Any solution for computation of approximate global
state must navigate a tradeoff among the following four
quantities:
• AccuracyHow close is the computed result to the true
value ofF (St)? Note that this metric can only be com-
puted in a synthetic setting.
• Cost The cost of a solution has three components: the
computation cost at each node, thememory cost for stor-
age required by the state discovery algorithm as well as
the overlay routing table, and thecommunication cost,
which is the number of bytes exchanged by the nodes to
computeF .
• PerformanceThe performance of a scheme has two as-
pects. First, how much time does it take to computeF?
State discovery usually involvesrounds of computation,
and this is therefore expressed in terms of the number of
rounds. Delay can be measured either as the average or
the worst case time for the computation to complete. Sec-
ond, what fraction of the nodes present in the system at the
time the computation ends computeF correctly (or, to be
precise, within a small error bound of the true value ofF )?
• RobustnessHow sensitive is the computation to node
and link failure and message loss? This quantifies the er-
ror in the computed function as a function of the fraction
of nodes that fail, or the fraction of messages that are lost.

Some tradeoffs are straightforward: for instance, accu-
racy for speed, or robustness for cost. Others are not so
obvious, for instance, trading accuracy for robustness, by
using randomized gossip. Our goal is to compare some
well known algorithms with respect to these metrics, and
potentially come up with a class of algorithms that are able
to achieve every solution in the Pareto frontier.

V. SOLUTION APPROACHES

Several solutions to global state computation have been
studied in the database, distributed systems, and network-
ing communities. These approaches fall into the following
broad categories.

A. Centralization

A centralized approach, where a designated root node
collectsst

i from all other nodes and computesF , has the
best speed and accuracy. In the database community, this
approach has been extensively studied for maintenance of
materialized views [8]; the emphasis here is on techniques
that minimize the cost of incremental view maintenance by
exploiting properties of the query as well as the underlying
data. The communication cost of this approach depends
on the number of updates needed for computation of the



4

global state, and whether the root is reachable by one-hop
paths from all other nodes. If so, then it also has the least
cost. If not, state values need to be transferred on multiple
hops, which adds to the cost.

Centralization is not scalable because the root node be-
comes a bottleneck. The solution is not robust, because the
loss of the root node causes total failure. However, note
that the solution is immune to failures in every node other
than the root node. Therefore, in practice, this solution is
commonly employed, with resources devoted to adequate
protection of the root node.

B. Tree-based solutions

A generalization of the centralized approach consists of
inducing a multi-level hierarchy or tree on the underlying
graph and having each node send its state to its parent,
which performs local aggregation and, in turn, sends the
aggregated results upwards, eventually reaching the root.
This approach was used by the TAG system [13] and in As-
trolabe [17]. Similar to a centralized solution, this solution
is fragile, in that the loss of a single node can disrupt the
tree. Therefore, care must be taken to maintain backups
for tree nodes, and to switch from a tree node to its backup
(or re-elect a new tree node) in case of a failure. With
in-network aggregation at each node, the communication
costs are lower than with a centralized solution. Assuming
a balanced tree, the computation time isO(logN).

C. Flooding and Randomized flooding

Flooding is, in a sense, diametrically opposed to a cen-
tralized solution. Instead of having a single nodepull a
single copy of data from every other node, with flood-
ing, a node whose state has changed (aninfective node)
pushes its data to all or a random subset of its neigh-
bors, who then become infective, and forward this mes-
sage to some or all their uninfected neighbors and so on
(this is called ‘rumor spreading’ or a ‘complex epidemic’
in [3]). If care is taken not to forward the same data twice–
accomplished, for instance, by using source-specific se-
quence numbers–flooding requires at mostO(E) mes-
sages, whereE is the number of edges in the network.
For reasonable networks,E = O(NlogN), so on surface,
flooding appears to be a good idea. However, with naive
flooding, there is noin − network aggregation, so, in
practice, it is quite inefficient. Combining flooding with
aggregation is more efficient.

D. Random walk-based solutions

A random walk is a style of computation where a node
sends its state in a message to a randomly selected neigh-
bor, which uses this message to update its local state, adds

its local value to the message’s state, and forwards the
message to the next randomly chosen neighbor. A ran-
dom walk message samples and updates state values at the
subset of the nodes that it touches. More than one random
walk may be in progress in parallel.

Note that with a random walk, a node’s state may be
sampled more than once. Therefore, it is necessary to
somehow prevent ’double counting’ [15]. A second issue
is that the global statistics can only be computed proba-
bilistically. Typically, we can only make statements such
as with probability 1–δ the error in the computed value is
less thanε.

The advantage of a random walk is that it relatively ro-
bust to node failures (as long as care is taken to regenerate
a walk that is lost due to a failing node). In a stable network
with sufficiently long message length and sufficiently long
walks, one can computeany function of global state, but
in a class of networks called expander graphs, even short
walks are ‘good’ random samples of local states [6].

E. Randomized gossip based solutions

In eachround of computation of random gossip, every
node talks to one or more randomly selected neighbors and
exchanges some information with it or them (this is called
‘anti-entropy’ or ‘a simple epidemic’ in [3]). It turns out
that, after approximatelylogN rounds of computation, all
nodes can, with high probability, compute the global state
[1,10]. Just like a random walk, we need to prevent double
counting, and we can only make probabilistic statements
about the computed values.

There are two subtle differences between a random walk
and randomized gossip. FIrst, with standard random-
ized gossip, every node participates in message exchange,
whereas with a random walk, ifK walks are ongoing, only
K nodes participate in message exchange. Of course, it
is possible to device a randomized gossip protocol where
only K of N nodes participate in gossiping. Second, two
nodes A and B may both choose the same node C as a node
with which to exchange state in either algorithm. With
random gossip, C’s value will be propagated only once
to some other node. However, with a random walk, two
walks leave C, so C’s value will propagate totwo other
nodes. When the number of random walks is much smaller
thanN , this is unlikely to happen, and in that situation an
network with K random walks look much like network
where, in each round of computation,K of N nodes par-
ticipate in random gossip.

VI. SKETCHES

The four mechanisms described in the previous section
can be characterized astransport mechanisms that move



5

information around in the network. In this section, we fo-
cus onwhat is being moved instead ofhow it is moved.

When using a centralized approach, there is no in-
network aggregation. However, with the other approaches
(tree, flood, random walk, and randomized gossip), par-
tial state is aggregated intosketches to prevent the size
of message scaling linearly withN . For instance, if the
function that is being computed ismin, then the sketch is
the smallest of the values being aggregated. Sketches are
essentially functions computed over partial state that, over
time, converge to the final solution.

It is important to ensure that when a node receives a
sketch, if the sketch already includes that node’s value, the
node should not add the its value to the sketch again (i.e.
it should avoiddouble counting). This problem does not
arise in centralized and tree-based solutions. For flooding,
random walk, and randomized gossip-based solutions, we
can avoid double counting in one of three ways.

• Carry node IDs in the sketchA sketch can carry the set
of node IDs that contributed to it. This prevents double
counting. However, this makes the sketch sizeO(N). One
can possibly restrict messages to a smaller region, such
as an Astrolabe zone [17], but this requires the distributed
construction of zones, and some mechanism for inter-zone
communication.
• Use order and duplicate insensitive sketchesThis approach
uses a special form of sketch (such as a Flajolet-Martin
sketch [4]) that is insensitive to duplicates [15]. Essen-
tially, this transforms a measure of central tendency into a
measure of extremal values, which is inherently order and
duplicate insensitive. However, this conversion often re-
sults in a loss of accuracy: an FM sketch can have an error
as large as 33%.
• Use push synopsesIn this approach, proposed by
Kempe et al [10], each node is associated with a weight,
and when it shares its value with another node, it also sheds
some of its weight. Using a principle of mass conserva-
tion, it can be shown that double counting is avoided. Mass
conservation is appealing in theory, but is problematic to
maintain in the face of message and node failures.

Each of these techniques has its own pros and cons.
Moreover, they can sometimes be used in conjunction
with each other. Therefore, determining a good mix of
duplicate-suppression techniques for a particular problem
is, at this time, more of an art than a science.

VII. O PEN PROBLEMS

Given this lay of the land, many open problems remain.
These fall into three broad categories. First, many theoret-
ical issues are still open. For instance:

• Are there fundamentally new techniques besides those
described above for global state discovery?
• Is there an algorithm that is better than all existing ap-
proaches simultaneously on all metrics?
• How do the various solution approaches compare on the
chosen metrics for different query types and topologies?

Second, can we map real problems such as network
routing and Top-K queries to these theoretically well-
studied algorithms? How about distributed intrusion de-
tection, or coordination of BGP policies? We think this is
non-trivial.

Third, how should we actually implement a global state
discovery in a real system? This requires solutions to prob-
lems such as:
• choosing the right transport and aggregation mechanism
• matching the overlay topology with the underlay topol-
ogy
• removing stale data
• interfacing the new algorithms with legacy systems
• distributed determination of convergence
• punching holes through firewalls and NATs using tech-
niques such as STUNT [7]
• taking advantage of heterogeneity in node connectivity
and lifetime
• coping with message and node loss and
• preventing corruption in the computation due to mali-
cious nodes [17].

We believe that finding answers to these issues will go a
long way towards creating robust, scaleable, and efficient
distributed systems.

VIII. A CKNOWLEDGMENTS

I would like to acknowledge Joe Hellerstein for alerting
me to this problem area, and to my students Matei Zaharia,
Nabeel Ahmed, and David Hadaller for many interesting
and insightful discussions.

REFERENCES

[1] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip Algo-
rithms: Design, Analysis, and Applications,” Proc. IEEE INFO-
COM 2005, March 2005.

[2] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate ag-
gregation techniques for sensor databases,” Proceedings of the
International Conference on Data Engineering, March 2004.

[3] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Stuygis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” PODC, 1987.

[4] P. Flajolet and G.N. Martin, “Probabilistic Counting Algorithms
for Database Applications,” J. Computer and System Sciences,
Vol. 31, 1985.

[5] S. Ghemawat, H. Gobioff, and S.T. Leung, “The Google File
System,” SOSP03, October 2003.

[6] C. Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-
to-peer networks,” In Proceedings of IEEE INFOCOM, 2004.



6

[7] S. Guha, Y. Takeda and P. Francis. “NUTSS: A SIP based ap-
proach to UDP and TCP connectivity,” in Proceedings of SIG-
COMM’04 Workshops, Portland, OR, Aug 2004, pp. 43–48.

[8] A. Gupta and I.S. Mumick “Materialized views: techniques, im-
plementations, and applications,” MIT Press, 1999.

[9] K.P. Gummadi, R. Gummadi, S. Ratnasamy, S.D. Gribble, I. Sto-
ica and S. Shenker, “The Impact of DHT Routin Geometry on
Resilience and Proximity, ” In Proc. ACM SIGCOMM 2003, Au-
gust 2003.

[10] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-Based Computation
of Aggregation Information,” Proc. IEEE FOCS, 2003.

[11] D. Kempe and J. Kleinberg, “Protocols and Impossibility Results
for Gossip-Based Communication Mechanisms,” Proc. FOCS,
2002.

[12] B.T. Loo, R. Huebsch, I. Stoica, and J.M. Hellerstein, “The Case
for a Hybrid P2P Search Infrastructure, IPTPS, 2004.

[13] S. Madden, M. J. Franklin,J. M. Hellerstein and W. Hong, “TAG:
A Tiny AGgregation Service for Ad-Hoc Sensor Networks,” Proc.
OSDI 2002.

[14] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Ap-
proach to Universal Topology Generation,” In Proceedings of the
International Workshop on Modeling, Analysis and Simulation
of Computer and Telecommunications Systems- MASCOTS ’01,
Cincinnati, Ohio, August 2001.

[15] S. Nath, P. Gibbons, S. Seshan, and Z. Anderson, “Synopsis Dif-
fusion for Robust Aggregation in Sensor Networks,” Proc. Sen-
Sys, Nov. 2004.

[16] N. Spring, R. Mahajan, and D. Wetherall, “Measur-
ing ISP Topologies with Rocketfuel,” In Proceedings of
ACM/SIGCOMM ’02, August 2002.

[17] R. vanRenesse, K.P. Birman, and W. Vogels, “Astrolabe: A Ro-
bust and Scalable Technology for Distributed System Monitoring,
Management, and Data Mining,” ACM Trans. on Computer Sys-
tems, Vol. 21, No. 2, May 2003, pp 164-206.

[18] V. Yegneswaran, P. Barford, and S. Jha, “Global Intrusion Detec-
tion in the DOMINO Overlay System,” In Proceedings of NDSS,
San Diego, CA, 2004.

[19] M. Zaharia and S. Keshav, “Adaptive Peer-to-Peer Search,” Uni-
versity of Waterloo Technical Report 2004-55, Nov. 2004.


