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Abstract— The need for efficient computation of approx- e Internet routingGlobal state is needed at every router
imate global state lies at the heart of a wide range of prob- for Internet routing, because it has to forward incoming
lems in distributed systems. Examples include routing inthe npackets to the interface that provides the best path to the
Internet, sensor fusion, search in peer-to-peer networks, co- destination based on the current global topology. In Link

ordinated intrusion detection, and Top-K queries in stream- . . . .
oriented databases. Efficient algorithms that determine State routing, the flooding of Link State Packets results in

approximate global state could enable near-optimal local € global knowledge of this state.
decision-making with little overhead. In this position paper, * Network securityIntrusion detection systems detect

we model this problem and summarize recent work on ran- anomalies in network usage, such as port scanning. Recent

domized algorithms that navigate a four-way tradeoff be- work suggests that collating anomaly information across

tween accuracy, robustness, performance and overhead. De-multiple detectors, a form of global state, may greatly in-

spite th.ese recent successes, many open problems remairbrease the accuracy of the system [18].

We believe that solving these problems can radically im- 0 o stemdn a distributed file system, each node needs

prove the design of robust, efficient and self-managed dis- . :

tributed systems. to know the seF of nodes that store a a given disk block
(or file), and this set needs to be updated in response to

changes in load, availability guarantees, and node failures

[5].

The need for approximate global state arises in a wideThe thread that unites these varied areas is the need
range of settings: to compute approximate global state in a system with a
« Sensor network§onsider a system & sensors. Exam- |arge number of nodes, where computation may be mas-
ples of global state that one may want to compute are #jgely distributed, and where the values stored at each node
average sensor value; extremal sensor values, such as¢hiihge over time. In this position paper, we model this
or max; or quantile values, such as the median [2]. problem, survey recent work, and outline some open prob-
« Distributed system&lobal state is necessary to impletems. We believe that the solution to these problems can
ment distributed system primitives such as barrier synchiggically improve the design of robust, efficient and self-
nization, voting, leader election, and consensus [17].  managed distributed systems. We note that this intuition
« Peer to Peer networkin a hybrid peer-to-peer searchs also the basis for the Astrolabe system at Cornell [17];
system, that combines an unstructured flooding netwajklike Astrolabe, we wish to address a much broader set
with a distributed hash table (DHT) [12], an example aff application areas, and seek to move beyond strict hier-

global state is the set of items that are popular, i.e., ite@ghies to more general network topologies.
whose copies exist on many peers. If this information

can be efficiently computed, a queries for known-popular 1. MODEL

items can be flooded instead of bglng sentto the DHT [19].We use the following simple abstraction to model the
« Stream databasdsa a stream-oriented database, such %fobal computation. Consider a distributed system with

a distributed database that records the number of hits '

. : o n 0des where, at time theit* node has local state informa-
an item in a content distribution network, an example %on o and knows onlv of links o its netahbors. In orob-
global state is a Top-K query, i.e., the set of K docume ‘ y g -Inp

S
that have the most hits.

I. INTRODUCTION

ems of interest)NV is very large and nodes arrive, depatrt,
and fail over time. Moreover, communications between

Position paper presented at the Workshop on Self-Organizing Nglodes may be lost.

works, Seattle, Washington, June 1-2 200Bhis research was sUp- _,r g is to have the nodes self-organize to compute
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that, in general, each node in the network would be comimple, these queries can be powerful: for instance, it turns
puting a different 'view’ of the function’. This, for in- out computing the min can implement distributed barrier
stance, models computation of routing tables, where tsgnchronization. [17].

result of the computation is a different routing table atCounts,such as of the total number of nodes, or of the
each node. Theorem 1 shows that, due to unreliable nodesber of nodes that have a particular property. A count
and links, although' is well-defined, it may not be com-query is a first step for many other distributed algorithms,
putable. and can be used as a basis for distributed voting, consen-

Theorem 1:F'(S*) cannot be computed in a distributedus, and leader election.
system that suffer from node failures and message losse Histogramsof the number of nodes with a particular

Proof : The proof is by construction. Consider a tworange of state values. This is a generalization of a count
node system where node 1 and node 2 collaborate to caquery, with count being done for each histogram bin. Be-
pute F'(S?). This requires that either node 1, or node 2ause histograms approximate distributions, this allows us
or some third node needs to obtaify and s} and com- to compute attributes of distributions such as the mean,
pute F(S?). Without loss of generality, suppose node fnedian, or mode, the cumulative distributions, and higher
is chosen to act as the coordinator. Now, if node 2’s staieder moments.
changes just before the communication of this changed Membership:Maintaining membership in the system or
state from node 2 to node 1 is lost, and immediately after a user-defined group as a distributed query allows sev-
communication node 2 also dies, then there is no way feral powerful algorithms such as publish-subscribe, broad-
node 1 to computé’(S?) o cast, and content-aware multicast ('SelectCast’) [17].

We conjecture thaf' can be correctly computed if ei- These examples serve to illustrate the power of decen-
ther of these two conditions does not hold. For instancetiélized global state discovery. However, this approach has
up to K nodes can fail, but messages are not lost, themet been applied to some of the areas outlined in the in-
node can updat& + 1 other nodes with its new state eviroduction, such as routing, intrusion detection, and BGP
ery time its state changes. This allows the system to copolicy coordination. Modeling such known problems as
pute F'(S*) despite node failures. Similarly, if messagefinctions of approximate global state is an open area of
can be lost but no nodes fail, then peer nodes can use eegearch.
standard reliable transmission protocol with acknowledg-
ments, timeouts, and retransmissions, to eventually delifer Network topology

any message, and therefore allow computatioR (8*). The cost and performance of a solution depends on the
Theorem 1 shows that, in generaljis not computable. assumed underlying network topology. For instance, with
However, for most interesting real-world problems, 3 clique, every neighbor can be reached at unit cost; with
when computed over a sufficiently large fraction of nodeg.unbalanced tree, the cost can be as large(a$). In the
approximates its true value. More formally, [ét be the |iterature, the computation of approximate global state has
set of nodes whose node statésan be gathered at a coysually been studied in the context of overlay networks,
ordinator node. For these functions(c") — F(S*) < ¢, whose topology can be made as regular as desired: the
wheree is the desired error bound. In the rest of this papefadeoff then is between the mean path length,the robust-
we will only consider such function&. ness of the topology, and the size of the routing table [9].
The following network topologies are relevant:
e Clique: In a clique, every node is one hop away from
We now proceed from this abstract model to a taxoavery other node, so all communication has unit cost. In
omy of the problem according to type of function beingarticular, a node can communicate its statelfoother
computed, underlying network topology, and state changedes in one time step. However, the size of a routing ta-
model. ble isO(NN) which automatically limits scalability. Much
of the literature in this area implicitly assumes that the net-
work is a clique.
Although the function being computed, such as the oméRandom graph of degrde Here, every node hdsran-
for Internet routing, can be complicated, in the literaturdpom neighbors. A random graph of degéeenly needs a
the functions studied can be categorized into one of a feauting table of sizé:, but path lengths will be longer than
simple types: with a clique.
e Extremal valuesthese include the minimum and maxe Tree of degreé: In ak-ary tree, every node haschil-
imum values and Top-K queries. Although conceptuallyren and one parent. A tree with degiedas a routing

[1l. TAXONOMY OF THE PROBLEM SPACE

A. Function type



table of sizek + 1, but, unlike a random graph, it is frag- IV. METRICS
ile with respect to failures. On the other hand, computa-

i th ¢ I ¢ | to th tfinish | Any solution for computation of approximate global
lons the propagate values from leaves to the oot iNiSNdR o " myst navigate a tradeoff among the following four
O(logiN) time.

i antities:
e Hypercube:This is a topology where nodes are arrange

. . curacy How close is the computed result to the true
on the vertices of a hypercube, so that a node is connecte p . .

, . vajue of F'(S*)? Note that this metric can only be com-
to every other node such that the binary representation’ 0

their IDs differ in one bit position (if such a node eX|sts)|{.)u'[ecI in a synthetic settlng.
. o ﬁ:ost The cost of a solution has three components: the
In a hypercube, both the routing table and the mean pat .
k computation cost at each node, theemory cost for stor-
length isO(logiN).

« Power-law random graphsThese are approximate mod29¢ required by the state discovery algorithm as well as

: the overlay routing table, and themmunication COSt,
els for Internet topology, where the node degree is power:". ~ .
law distributed. which is the number of bytes exchanged by the nodes to

. ) . omputeF'.
e Hierarchical power-law graphsThese graphs, create
e PerformanceThe performance of a scheme has two as-
by tools, such as BRITE [14], are meant to closely ap- . . .
. pects. First, how much time does it take to compbte
proximate Internet topology.

State discovery usually involvesunds of computation
e Measured Internet topologyTools such as Rocketfuel y y unas P ,

[16] map the actual Internet topology, so it is possibl%nd this is therefore expressed in terms of the number of
’ rounds. Delay can be measured either as the average or

to evaluate the relative performance of various solutioghse worst case time for the computation to complete. Sec-
on this graph. Note that all the other topologies can be P plete.

. . ond, what fraction of the nodes present in the system at the
thought of as regular overlays on Hierarchical PLRGs qr .

. Ime the computation ends computecorrectly (or, to be
measured Internet topologies.

) o _precise, within a small error bound of the true valué)?
The literature on graph topologies is deep and this liglz 5 pystnessiow sensitive is the computation to node

leaves out many interesting topologies such as de Brujjpq |ink failure and message loss? This quantifies the er-

graphs, rings with ‘finger pointers’, and butterflies. Atthig, i the computed function as a function of the fraction

point, it is not clear which topology is "best’ in terms 0fy¢ yoqes that fail, or the fraction of messages that are lost.

a tradeoff between routing cost, memory cost, and rObust’Some tradeoffs are straightforward: for instance, accu-

ness to failure. The problem is ma_de more complgx l?é{cy for speed, or robustness for cost. Others are not so
realizing that regular overlay topologies, when overlaid O(fbvious, for instance, trading accuracy for robustness, by
a irregular network, can often result in the same real i ing randomized gossip. Our goal is to compare some
beglg par? (f[f :jn?nli/ ]?\_/Ierlayllmks, causing both CcoNgestioRy|i known algorithms with respect to these metrics, and
and correfated fink failures: potentially come up with a class of algorithms that are able

to achieve every solution in the Pareto frontier.
C. State change model

The global state being computed may change over time V. SOLUTION APPROACHES

for several reasons. These include: Several solutions to global state computation have been
e Change in node stat&he state value at each node magtudied in the database, distributed systems, and network-
change over time. ing communities. These approaches fall into the following

e Change in number of noddsodes may join, leave, orbroad categories.

abruptly fail. Moreover, the failure may be permanent or o
transient. A. Centralization

e Change in linksLinks may be added, deleted, or fail. A centralized approach, where a designated root node
Message failure can be modeled as transient Iinkfailure€o||ect55§ from all other nodes and comput&s has the
Clearly, if the rate of change of network state is tobest speed and accuracy. In the database community, this
rapid, global statistics are stale by the time they can be capproach has been extensively studied for maintenance of
lected, making them less useful as hints for optimal localaterialized views [8]; the emphasis here is on techniques
decisions. On the other hand, if the network is essentiatlyat minimize the cost of incremental view maintenance by
static, global state needs to be computed only once, whikploiting properties of the query as well as the underlying
allows the use of complex or time-consuming algorithmdata. The communication cost of this approach depends
whose cost can be amortized over long durations. on the number of updates needed for computation of the



global state, and whether the root is reachable by one-litsplocal value to the message’s state, and forwards the
paths from all other nodes. If so, then it also has the leasessage to the next randomly chosen neighbor. A ran-
cost. If not, state values need to be transferred on multiplem walk message samples and updates state values at the
hops, which adds to the cost. subset of the nodes that it touches. More than one random
Centralization is not scalable because the root node knelk may be in progress in parallel.
comes a bottleneck. The solution is not robust, because thélote that with a random walk, a node’s state may be
loss of the root node causes total failure. However, naampled more than once. Therefore, it is necessary to
that the solution is immune to failures in every node otheomehow prevent 'double counting’ [15]. A second issue
than the root node. Therefore, in practice, this solutionis that the global statistics can only be computed proba-
commonly employed, with resources devoted to adequaibstically. Typically, we can only make statements such
protection of the root node. as with probability 14 the error in the computed value is
less thare.
The advantage of a random walk is that it relatively ro-
A generalization of the centralized approach consistslafist to node failures (as long as care is taken to regenerate
inducing a multi-level hierarchy or tree on the underlying walk that is lost due to a failing node). In a stable network
graph and having each node send its state to its pare&vith sufficiently long message length and sufficiently long
which performs local aggregation and, in turn, sends tilks, one can computery function of global state, but
aggregated results upwards, eventually reaching the rdota class of networks called expander graphs, even short
This approach was used by the TAG system [13] and in Agalks are ‘good’ random samples of local states [6].
trolabe [17]. Similar to a centralized solution, this solution ] _ _
is fragile, in that the loss of a single node can disrupt tife Randomized gossip based solutions
tree. Therefore, care must be taken to maintain backups$n eachround of computation of random gossip, every
for tree nodes, and to switch from a tree node to its backopde talks to one or more randomly selected neighbors and
(or re-elect a new tree node) in case of a failure. Wittkchanges some information with it or them (this is called
in-network aggregation at each node, the communicati@mti-entropy’ or ‘a simple epidemic’ in [3]). It turns out
costs are lower than with a centralized solution. Assumitigat, after approximatelipg N rounds of computation, all
a balanced tree, the computation tim&igog NV ). nodes can, with high probability, compute the global state
[1,10]. Just like a random walk, we need to prevent double
counting, and we can only make probabilistic statements
Flooding is, in a sense, diametrically opposed to a cemdout the computed values.
tralized solution. Instead of having a single nqdél a There are two subtle differences between a random walk
single copy of data from every other node, with floodand randomized gossip. Flrst, with standard random-
ing, a node whose state has changedifafective node) ized gossip, every node participates in message exchange,
pushes its data to all or a random subset of its neighwhereas with a random walk, K walks are ongoing, only
bors, who then become infective, and forward this me&- nodes participate in message exchange. Of course, it
sage to some or all their uninfected neighbors and so isrpossible to device a randomized gossip protocol where
(this is called ‘rumor spreading’ or a ‘complex epidemicdnly K of N nodes participate in gossiping. Second, two
in [3]). If care is taken not to forward the same data twicerodes A and B may both choose the same node C as a node
accomplished, for instance, by using source-specific s@th which to exchange state in either algorithm. With
quence numbers—flooding requires at mextE) mes- random gossip, C’s value will be propagated only once
sages, wherd’ is the number of edges in the networkito some other node. However, with a random walk, two
For reasonable network&, = O(NlogN), so on surface, walks leave C, so C’s value will propagate #t@o other
flooding appears to be a good idea. However, with nainedes. When the number of random walks is much smaller
flooding, there is nan — network aggregation, so, in thanN, this is unlikely to happen, and in that situation an
practice, it is quite inefficient. Combining flooding withnetwork with K random walks look much like network
aggregation is more efficient. where, in each round of computatioR, of NV nodes par-
ticipate in random gossip.

B. Tree-based solutions

C. Flooding and Randomized flooding

D. Random walk-based solutions

A random walk is a style of computation where a node VI. SKETCHES

sends its state in a message to a randomly selected neigf-he four mechanisms described in the previous section
bor, which uses this message to update its local state, adals be characterized asansport mechanisms that move



information around in the network. In this section, we for Are there fundamentally new techniques besides those
cus onwhat is being moved instead éfow it is moved.  described above for global state discovery?

When using a centralized approach, there is no in-Is there an algorithm that is better than all existing ap-
network aggregation. However, with the other approacheaches simultaneously on all metrics?

(tree, flood, random walk, and randomized gossip), parHow do the various solution approaches compare on the
tial state is aggregated intgetches to prevent the size chosen metrics for different query types and topologies?
of message scaling linearly witN. For instance, if the Second, can we map real problems such as network
function that is being computedisin, then the sketch is routing and Top-K queries to these theoretically well-
the smallest of the values being aggregated. Sketchessitglied algorithms? How about distributed intrusion de-
essentially functions computed over partial state that, ovieetion, or coordination of BGP policies? We think this is
time, converge to the final solution. non-trivial.

It is important to ensure that when a node receives alhird, how should we actually implement a global state
sketch, if the sketch already includes that node’s value, figcovery in areal system? This requires solutions to prob-
node should not add the its value to the sketch again (I&MNs such as:
it should avoiddouble counting). This problem does note choosing the right transport and aggregation mechanism
arise in centralized and tree-based solutions. For floodingiMatching the overlay topology with the underlay topol-
random walk, and randomized gossip-based solutions, A4
can avoid double counting in one of three ways. - removing stale data

« Carry node IDs in the sketch sketch can carry the set® INterfacing the new algorithms with legacy systems

of node IDs that contributed to it. This prevents doubfe distributed determination of convergence ,
counting. However, this makes the sketch €#eV). One ..punchlng holes through firewalls and NATs using tech-
can possibly restrict messages to a smaller region, stifiues such as STUNT [7]

as an Astrolabe zone [17], but this requires the distributd@King advantage of heterogeneity in node connectivity

construction of zones, and some mechanism for inter-z lifetime
communication « coping with message and node loss and
« Use order and duplicate insensitive sketchidsis approa®hPr€venting corruption in the computation due to mali-

uses a special form of sketch (such as a Flajolet-MarffiPus nodes [17]. - _ _
sketch [4]) that is insensitive to duplicates [15]. Essen- Ve believe that finding answers to these issues will go a

tially, this transforms a measure of central tendency intdd'd Way towards creating robust, scaleable, and efficient

measure of extremal values, which is inherently order aflptributed systems.
duplicate insensitive. However, this conversion often re-

sults in a loss of accuracy: an FM sketch can have an error . . .
as large as 33%. | would like to acknowledge Joe Hellerstein for alerting

and when it shares its value with another node, it also shé§l insightful discussions.
some of its weight. Using a principle of mass conserva-
tion, it can be shown that double counting is avoided. Mass .
conservation is appealing in theory, but is problematic # S: Boyd. A. Ghosh, B. Prabhakar, and D. Shah, “Gossip Algo-
maintain in the face of messaae and node failures rithms: Design, Analysis, and Applications,” Proc. IEEE INFO-
g - COM 2005, March 2005.

Each of these techniques has its own pros and coi$. J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate ag-
Moreover, they can sometimes be used in conjunction gregation techniques for sensor databases,” Proceedings of the

ith h, th Theref det .. d mi International Conference on Data Engineering, March 2004.
wi _eac other. . ere Ore’_ etermining a, good mix A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
duplicate-suppression techniques for a particular problem . stuygis, D. Swinehart, and D. Terry, “Epidemic algorithms for
is, at this time, more of an art than a science. replicated database maintenance,” PODC, 1987.
[4] P. Flajolet and G.N. Martin, “Probabilistic Counting Algorithms

for Database Applications,” J. Computer and System Sciences,

Vol. 31, 1985.

. . .[5] S. Ghemawat, H. Gobioff, and S.T. Leung, “The Google File
Given this lay of the land, many open problems remailt! System” SOSPO3, October 2003,

These fall into three broad categories. First, many theorgfr ¢ Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-
ical issues are still open. For instance: to-peer networks,” In Proceedings of IEEE INFOCOM, 2004.
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