
Understanding the Performance of Many TCP Flows

Lili Qiu Yin Zhang Srinivasan Keshav
liliq@microsoft.com yzhang@cs.cornell.edu skeshav@ensim.com
Microsoft Research Cornell University Ensim Corporation

Abstract

As the most widely used reliable transport in today’s In-
ternet, TCP has been extensively studied in the past decade.
However, previous research usually only considers a small
or medium number of concurrent TCP connections. The
TCP behavior under many competing TCP flows has not
been sufficiently explored.

In this paper 1, we use extensive simulations to system-
atically investigate the performance of a large number of
concurrent TCP flows. We start with a simple scenario, in
which all the connections have the same round-trip time,
and the gateways use Drop-Tail policy. We examine how the
aggregate throughput, goodput, and loss rate vary with dif-
ferent underlying topologies. We also look at the behavior
of each individual connection when competing with other
connections. We observe global synchronization in some
cases. We break the synchronization by either adding ran-
dom processing time or using RED gateways, and examine
their effects on the TCP performance. Finally we investigate
the TCP performance with different RTT’s, and quantify the
roundtrip bias using both analysis and simulations.

Keywords: TCP, congestion control, drop-tail, RED,
simulation.

1. Introduction

TCP [24] is the most widely used reliable transport pro-
tocol today. It is used to carry a significant amount of Inter-
net traffic, including World Wide Web (HTTP), file trans-
fer (FTP), email (SMTP) and remote access (Telnet) traffic.
Due to its importance, TCP has been extensively studied in
the past ten years.

There are three commonly used approaches to study the
TCP protocol: developing analytical models, conducting
Internet measurements, and running simulations. This pa-
per focuses on using simulations to study the performance

1This paper is a significantly modified and extended version of an ear-
lier paper that was published in the Proceedings of the 7th International
Conference on Network Protocols (ICNP’99), Toronto, Canada, 1999.

of long-lived TCP flows2. It extends the previous results
in several important ways. Most notably, we concentrate on
TCP behavior under many competing TCP flows, while pre-
vious research usually only considered a small or medium
number of concurrent TCP connections. We start with a
simple scenario, in which all the connections have the same
round-trip time, and the gateways use Drop-Tail policy. We
examine how the aggregate throughput, goodput, and loss
rate vary with different underlying topologies. We also look
at the behavior of each individual connection when com-
peting with other connections. In some cases, we observe
global synchronization. To break the synchronization, we
either add random processing time, or use RED gateways,
and examine their effects on the TCP performance. Finally
we investigate the TCP performance with different RTT’s,
and quantify the roundtrip bias using both analysis and sim-
ulations.

The remainder of the paper is organized as follows. In
Section 2, we describe our simulation methodology. In
Section 3, we present the simulation results for TCP flows
with the same propagation delay under Drop-Tail gateways.
In Section 4 and Section 5, we study the effect of adding
random overhead and using RED gateway on TCP perfor-
mance, respectively. In Section 6, we examine the perfor-
mance of TCP/SACK (TCP with support for selective ac-
knowledgments) [30] under both Drop-Tail and RED gate-
ways. We quantify the roundtrip bias using both simulations
and analysis in Section 7. We end with concluding remarks
and future work in Section 9.

2. Simulation Methodology

We study the aggregate TCP performance through ex-
tensive simulations using ns network simulator [33]. The
ns Reno code closely models the congestion control behav-
ior of most of the TCP implementations in widespread use.
We use a single-bottleneck topology 3 shown in Figure 1 as

2A long-lived TCP flow is a TCP flow whose sender has unlimited
amount of data to send.

3It is possible to have multiple bottlenecks. However this paper focuses
on a thorough examination of single-bottleneck topologies.

our simulation topology, where the high bandwidth link is
set to 10 Mbps Ethernet bandwidth with 0.1 ms delay. We
vary each of the four parameters in the model: ���������	�
�	�
�
����	��� ��� , ������� � �����
� ��� , ����� , and ! �"� ��#%$
$
&(')'+*-,/.10 to see
how each parameter affects TCP performance. More specif-
ically, we consider both ISDN and T1 links, with the link
delay of either 50 ms (typical for terrestrial WAN links) or
200 ms (typical for geostationary satellite links) [37]. We
also vary the buffer size and the number of connections for
each scenario 4.

Source 1

Source 2

Source n

Dest 1

Dest 2

Dest n

Bottleneck Link

Router S Router D

Large bandwidth links

Figure 1. Simplified abstract network model.

The bottleneck link router uses FIFO scheduling. Its
buffer management is either Drop-Tail or RED [16]. The
TCP segment size is set to 500 bytes, similar to what was
used in [32, 2]. As [32] points out, it is very common to
have hundreds of concurrent connections competing for the
bottleneck resource in today’s Internet, so we are particu-
larly interested in the TCP behavior under such a large num-
ber of connections.

Each sender has unlimited amount of data to send. When
the bottleneck link is ISDN, the TCP sources send data with
start time uniformly distributed between 0 and 5 seconds,
and the duration of each simulation is 1000 seconds. When
the bottleneck link is T1, the start time is uniformly dis-
tributed between 0 and 1 second, and each simulation lasts
200 seconds.

We use the following notations throughout our discus-
sions:2

Let 354
6%7 8 ���������	�9���
�
��� �	��� �	� :; ���
� �<� � ��=?>@; ��� �	A � � �)B , which is the number of
packets the link can hold. 3C4
6%7 is optimal in the sense
that it is the window size that fully utilizes the link
bandwidth without incurring any queuing delay.2
Let 3 $ 8D3 4
6%7�E � , where � is the buffer size at the
bottleneck link. 3 $

is the total number of packets that
the link and the buffer can hold.

4Note that to fully understand the performance implication of different
parameters in network topologies, our simulation settings are not limited
to the real-world scenarios.

3. TCP behavior for flows with the same prop-
agation delay

Our study of TCP flows with the same propagation delay
shows that TCP exhibits a wide range of behavior depend-
ing on the value of FHGI 4 .�. , where ����� denotes the number
of connections. Based on the capacity of the pipe (mea-
sured as F GI 4 .�.), we classify our results into the following
three cases: large pipe (3 $KJML : �����), small pipe (3 $KN
 �����), and medium pipe (����� N 3 $KNML : �����).

3.1. Case 1: 3 $HJOL : ����� (Large pipe case)

Previous studies have shown that a small number of TCP
connections with the same RTT can get synchronized [44].
We originally thought adding more connections introduces
more randomness, and makes synchronization harder to
take place. Surprisingly, our simulation results show the
synchronization persists even in the case of large number of
connections.

Figure 2 depicts the synchronization behavior. In all
graphs we sort the connection ID’s by the total number
of packets each connection has received. Such sorting al-
lows us to reveal the synchronization behavior more clearly.
As shown in the figure, the buffer occupancy periodically
fluctuates from half to full, which implies all connections
halve their congestion windows in synchrony. The global
synchronization behavior can be further demonstrated by
the periodic white stripes in the scatter plot of ACK arrival
time, which imply all the connections start and end loss re-
covery in a synchronized manner.

The explanation for the synchronization behavior is sim-
ilar to the case for a small number of connections. Suppose
at the end of the current epoch the total number of outstand-
ing packets from all the connections is equal to 3 $

. During
the next epoch all connections will increment their window.
All the packets that are sent due to window increase will get
dropped. Thus all the connections will incur loss during the
same PQ!K! . This makes all connections adjust window in
synchrony. When 3 $ JRL : = ����� , most connections have
more than 3 outstanding packets before the loss. So they can
all recover the loss by fast retransmissions, and reduce the
window by half, leading to global synchronization. In con-
trast, when 3 $SNTL : ����� , though all the connections still
experience loss during the same PQ!K! , they react to the loss
differently. Some connections whose

=UA � � is larger than 3
before the loss can recover the loss through fast retransmis-
sion, whereas the others will have to use timeout to recover
the loss. Since the set of connections recovering loss using
fast transmission and the set using timeout will change over
time, global synchronization cannot be achieved.

Due to global synchronization, all the connections share
the resource very fairly: in the steady state they experience

0

10

20

30

40

50

60

70

80

90

100

500 550 600 650 700 750 800 850 900 950 1000

C
on

ne
ct

io
n

ID

Time (second)

ACK recv time: ISDN link, Buffer=400, conn=100

0

10

20

30

40

50

60

70

80

90

100

50 55 60 65 70 75 80 85 90 95 100

C
on

ne
ct

io
n

ID

Time (second)

ACK recv time: T1 link, Buffer=400, conn=100

0

20

40

60

80

100

20 40 60 80 100 120 140

C
on

ne
ct

io
n

ID

Total pkts received

Total pkts received: ISDN link, Buffer=400, conn=100

Actual received
Fair share

0

20

40

60

80

100

160 180 200 220 240 260 280 300 320 340

C
on

ne
ct

io
n

ID

Total pkts received

Total pkts received: T1 link, Buffer=400, conn=100

Actual received
Fair share

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900 1000

Time (second)

Buffer occupancy: ISDN link, Buffer=400, conn=100

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

B
uf

fe
r

oc
cu

pa
nc

y
(p

kt
s)

Time (second)

Buffer occupancy: T1 link, Buffer=400, conn=100

Figure 2. Large pipe case leads to global synchronization: 100 connections sharing the bottleneck link of either ISDN or T1 with

one-way propagation delay of 50 ms and bottleneck buffer size of 400 packets. Notice the buffer occupancy fluctuates from half to

full periodically. Moreover there are periodic white stripes in the scatter plot of ACK arrival time, where during the white stripes all

connections experience loss and try to recover them using fast retransmission.

the same number of losses and send the same number of
packets. We can aggregate all the connections as one big
connection, and accurately predict the aggregate loss prob-
ability as follows:

� ������� ��� ; � ; � � � �
� 8
�

; :��
	 F�
���������������� E�� : 3 E �
where

;
is the average number of packets acknowledged by

an ACK, and 3 8 F GI 4 .�. . (Refer to [41] for more details.)
When

; 8 �
,

� ������� ��� ; � ; � � � �
� 8
� � "! F ��#%$'& ! F #)(if W is odd� "! F � #%$�$! F # � otherwise

So we can approximate
� �����*� ��� ; � ; � � �+�
� as

� �����+� ��� ; � ; � � �+�
�-, .L : 3 $ E�� � : 3 E .0/
Figure 3 shows our prediction matches well to the actual

loss probability.

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 100 1000

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: Buffer=4*Conn

actual loss
predicted loss

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 10 100 1000

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: Buffer=6*Conn

actual loss
predicted loss

Figure 3. Loss prediction for large pipe case: A varying number

of connections share T1 link with one-way propagation delay

of 50 ms, and the bottleneck buffer is either 4 times or 6 times

the number of connections.

Furthermore, as expected, global synchronization leads
to periodical fluctuation in buffer occupancy as shown in
Figure 2. When the total buffer size is less than F G$, halving=UA � � in synchrony leads to under-utilization of bottleneck
link.

3.2. Case 2: 3 $ N ����� (Small pipe case)

When 3 $ N ����� , we have found TCP connections
share the path very unfairly: only a subset of connections
are active (i.e. their goodput is considerably larger than
0), while the other connections are shut-off due to constant
timeout as shown in Figure 4. The number of active con-
nections is close to 3 $

, and the exact value depends on both
3 $

and the number of competing connections. When �����
exceeds the number of active connections the network re-
source can support, adding more connections to the already
overly congested network only creates more shut-off con-
nections. Almost all the packets sent by the shut-off connec-
tions get dropped. The remaining active connections are left
mostly intact. This explains the curves in Figure 5: when
 ����� is larger than the number of active connection the
network resources can support, the total number of packets
sent and lost grows linearly with the number of connections.
The linear increase in the number of packets sent and lost
mainly comes from the increase in the number of inactive
(mostly shut-off) connections, each of which sends a con-
stant number of packets before it gets completely shut off.

38000

40000

42000

44000

46000

48000

50000

52000

54000

56000

0 100 200 300 400 500 600

T
ot

al
 s

en
t f

ro
m

 s
ou

rc
es

Total connections

Total number of packets sent from sources: Wc=100

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600

T
ot

al
 lo

ss
es

Total connections

Total number of packets lost: Wc=100

Figure 5. Varying number of connections compete for T1 link

with
���"� ��� 821�354 � and

; ����� � � 87683 � � =?>
� �9� (3 $ 8� 3:3 � � = >
� �9�): the total number of packets sent and dropped

increases linearly with the number of connection when the con-

nection number is large.

50

100

150

200

250

300

150 155 160 165 170 175 180 185 190 195 200

C
on

ne
ct

io
n

ID

Time (second)

ACK recv time: Wc=100, conn=300

0

50

100

150

200

250

300

150 155 160 165 170 175 180 185 190 195 200

Time (second)

ACK recv time: Wc=200, conn=300

0

50

100

150

200

250

300

0 50 100 150 200 250

C
on

ne
ct

io
n

ID

Total pkts received

Total pkts received: Wc=100, conn=300

Actual received
Fair share

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

C
on

ne
ct

io
n

ID

Total pkts received

Total pkts received: Wc=200, conn=300

Actual received
Fair share

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

B
uf

fe
r

oc
cu

pa
nc

y

Time (second)

Buffer occupancy: Wc=100, conn=300

0

20

40

60

80

100

120

140

160

0 50 100 150 200

Time (second)

Buffer occupancy: Wc=200, conn=300

Figure 4. Small pipe case: 300 concurrent connections compete for T1 link with one-way propagation delay of 50 ms and bottleneck

buffer size of 60 (or 160) packets (3 $ 8 3 4
6U7�E � ����� � � 8 100 or 200 packets). Note that the buffer occupancy fluctuates widely.

Moreover part of connections receive little goodput as shown in the two graphs in the middle.

3.3. Case 3: ����� N 3 $ N L : ����� (Medium pipe
case)

As shown in Figure 6, TCP behavior in this case falls
in between the above two cases. More specifically, as ex-
plained earlier (in Section 3.1), since

� N F GI 4 .�. N L
, the

connections respond to loss differently: connections with=UA � � greater than 3 before the loss can recover from the
loss through fast retransmission, whereas the others will
have to recover from the loss using timeout. Since the set
of connections using fast retransmission and the set using
timeout will change over time, no global synchronization
occurs, and the network resources are not shared as fairly as
when 3 $SJTL : ����� . On the other hand, there is still local
synchronization, as shown Figure 6, where some groups of
connections are synchronized within the groups. Further-
more, since F GI 4 .�. J �

, all the connections can get reason-
able amount of throughput. In contrast to the small pipe
case, there are almost no connections getting shut-off.

0

10

20

30

40

50

60

70

80

90

100

150 155 160 165 170 175 180 185 190 195 200

C
on

ne
ct

io
n

ID

Time (second)

ACK recv time: Wc=200, conn=100, no overhead

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450

Total pkts received

Total pkts received: Wc=200, conn=100, no overhead

Actual received
Fair share

C
on

ne
ct

io
n

ID

0

20

40

60

80

100

120

140

160

0 50 100 150 200

Time (second)

Buffer occupancy: Wc=200, conn=100, no overhead

B
uf

fe
r

oc
cu

pa
nc

y
(p

kt
s)

Figure 6. Medium pipe case: 100 concurrent connections com-

pete for T1 link with
����� ��� 8 1�3�4 � and

; ����� � � 8� 683 ��� =?>
� �9� (3 $ 8 3 4+6%7 E ������� � � 8 � 3:3 � � = >
� �9�).
Buffer occupancy fluctuates widely, and there is local synchro-

nization within some groups.

3.4. Aggregate Throughput

We define normalized aggregate TCP throughput as the
number of bits sent by the bottleneck link in unit time nor-
malized by the link capacity. Our results are as follows:2

As shown in Figure 7(a), when the number of connec-
tions is small and the buffer size is less than 3 4
6U7

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Total connections

Normalized throughput: T1 link with oneway propagation delay of 200 ms, varying buffer size

Buffer=10
Buffer=20
Buffer=40
Buffer=60
Buffer=110
Buffer=160
Buffer=200
Buffer=300

(a)

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Total connections

Normalized throughput: T1 link with oneway propagation delay of 50 ms, varying buffer size

Buffer=60
Buffer=160
Buffer=260
Buffer=360
Buffer=460

(b)

Figure 7. Throughput: varying number of connections compete

for the bottleneck link T1 with
�	��� �	� 8 � 383 4 � or

�	��� ��� 81�3*4 � .
(3 4
6%7 8 � 683 packets in this case), the normalized
TCP throughput is less than 1. The degree of under-
utilization depends on both the number of connections
and the ratio of the buffer size to 3C4
6%7 . The smaller
the number of connections and the lower the ratio, the
lower the network utilization is.2
As shown in Figure 7(b), when the buffer size is larger
than 3 4
6%7 (3 4
6U7 8 � 3 packets in this case), the nor-
malized TCP throughput is close to 1, regardless of the
number of connections.2
When the number of connections is large, even if the
buffer size is small (smaller than 3 4
6%7), the normal-
ized TCP throughput is close to 1. This is evident from
Figure 7(a), where the throughput is close to 1 for a
large number of connections under all the buffer sizes
considered.

3.5. Aggregate Goodput

We define normalized aggregate goodput as the number
of good bits, i.e. bits that are not unnecessarily retransmit-
ted, received by all the receivers in unit time normalized by
the link capacity. As shown in Figure 8,

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 g
oo

dp
ut

Total connections

Normalized goodput: ISDN link with oneway propagation delay of 50 ms, varying buffer size

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 g
oo

dp
ut

Total connections

Normalized goodput: T1 link with oneway propagation delay of 50 ms, varying buffer size

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

Figure 8. Goodput: varying number of connections compete

for the bottleneck link of either ISDN or T1. In both cases,�	��� ��� 8 1�3+4 � .2
There is a linear decrease in goodput as the number of
connections increases.2
The slope of the decrease depends on the bottleneck
link bandwidth: the decrease is more rapid when the
bottleneck link is ISDN, and is slower when T1 is used
as the bottleneck link.

We can explain these results as follows. The difference
between the throughput and goodput is the number of un-
necessary retransmissions. As the number of connections
increases, the loss probability increases, which in turn in-
creases the number of unnecessary retransmissions. There-
fore the more connections, the lower the goodput is. On the
other hand, since� ����� �+� �)B � � ��� 4 � � �
� ��� �9��� � � � �

8 �(���(� � � ��� ��=%� � �"����� � � �
�����)� 4 � ���?�
���)�� �+� > = �"� � = � �
�
the decrease in the goodput is more significant with slower
bottleneck link (e.g. ISDN), and less significant with faster
bottleneck link (e.g. T1). This is evident from Figure 8.

To summarize, when the bottleneck link is fast or the
loss probability is low (less than � 3��), the number of un-
necessary retransmissions is negligible. So the normalized
goodput is close to the normalized throughput. Otherwise
(i.e., when the bottleneck link is slow and the loss proba-
bility is high) the loss in the goodput due to unnecessary

retransmissions becomes significant. The decrease in the
goodput depends on both the bottleneck link bandwidth and
the loss probability.

3.6. Loss Probability

Our simulation results indicate when the 3 $
is fixed and

the number of connections is small, the loss probability
grows quadratically with the increasing number of connec-
tions as shown in Figure 9. The quadratic growth in the loss
probability can be explained as follows. When FHGI 4 .�. J L

,
TCP connections can recover packet loss without timeouts.
Every connection loses one packet during each loss episode.
So altogether there are ����� losses every episode. Mean-
while the frequency of loss episode is proportional to ����� .
Therefore for a small number of connections, the loss prob-
ability is proportional to ����� $. Such quadratic growth in
loss probability is also reported in [32] for TCP/Tahoe with
RED dropping policy.

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25 30 35 40 45 50

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: T1 link with oneway propagation delay of 50 ms, with buffer size=260 pkts

Wc=300

Figure 9. Loss probability for a small number of connections:

varying number of connections compete for the bottleneck link

of T1 with
���"� ��� 8 183 4 � . The loss probability grows quadrat-

ically when the number of connections is small.

As the number of connections gets large (larger thanF G), the growth of loss probability with respect to the num-
ber of connections matches very well with the following
family of hyperbolic curves represented by � 8 �

! �� # # as
shown in Figure 10. Table 1 gives the parameters of the
hyperbolic curves used in Figure 10.

A possible explanation for the hyperbolic growth in loss
rate is as follows. When each connection’s share of 3 $

is
small, most connections stay in slow start. Assuming suffi-
cient statistical multiplexing, every connection’s congestion
window grows from 1 to 3 , so the total number of packets
sent in one epoch is � : 3 E =

, where 3�� FKGI 4 .1. , and
=

is a small constant corresponding to the number of packets
sent during consecutive timeouts 5. Since the loss rate is
inversely proportional to the total number of packets sent in

5Assuming there is no delayed ACK, and a connection encounters a

one epoch, we have
� ����� ����� � � �$ F # $, which is equivalent

to � ��� � ����� � � �$ F G : ������ E $$ F G : �����
This conforms to the hyperbolic function.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: ISDN link with oneway propagation delay of 50 ms, varying buffer size

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300 400 500 600

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: T1 link with oneway propagation delay of 50 ms, varying buffer size

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

Figure 10. Loss probability for a large number of connections:

varying number of connections compete for the bottleneck link

of either ISDN or T1. In both cases, propagation delay = 50 ms.

The loss probability curves match very well with hyperbolic

curves when the number of connections is large, where the

parameters of the hyperbolic curves are given in Table 1.

4. TCP behavior with random overhead

4.1. 3 $ JOL : ����� (Large pipe case)

Our discussions in Section 3 focus on the macroscopic
behavior of concurrent TCP connections with the same
propagation delay. In order to explore properties of net-
works with Drop-Tail gateways unmasked by the specific
details of traffic phase effects or other deterministic behav-
ior, we add random packet-processing time in the source
nodes. This is likely to be more realistic. The technique

packet drop (or drops) during the slow start phase when the congestion
window is � . Then the total number of packets sent in one epoch before
a timeout is �������	�
�
��� �
 ������������� .

ISDN T1
Wc a b Wc a b
100 149.2537 0.4646 100 144.9275 0.3237
200 333.3333 0.5262 200 285.7143 0.3429
300 588.2352 0.6059 300 454.5454 0.3682
400 1250.000 0.9170 400 526.3158 0.3517
500 2000.000 1.1852 500 769.2308 0.3948

Table 1. Parameters for the hyperbolic curves used for fitting

loss probability as shown in Figure 10.

of adding random processing time was first introduced in
[15]. However we have different goals. In [15], Floyd and
Jacobson are interested in how much randomness is neces-
sary to break the systematic discrimination against a partic-
ular connection. In contrast, we are interested in how much
randomness is sufficient to break the global synchroniza-
tion. Consequently, the conclusions are different. [15] con-
cludes that adding a random packet-processing time ranging
from zero to the bottleneck service time is sufficient; while
we find that a random processing time that ranges from zero
to
� 3�� : P !H! (usually much larger than a random packet

service time) is required to break down the global synchro-
nization. This is shown in Figure 11, where the global syn-
chronization is muted after adding the random processing
time up to

� 3 � : PQ!K! .

The performance results in the non-synchronization case
also differ from the global synchronization case. As shown
in Figure 12, when the number of connections is less than
100, the loss probability in the two cases are almost identi-
cal; as the number of connections further increases, the gap
between the two opens up—the non-synchronization case
has higher loss probability than the synchronization case.
Nevertheless, using the prediction based on global synchro-
nization gives a reasonable approximation (at least a lower
bound) of loss probability for non-synchronized case. How-
ever, in the non-synchronization case, the connections do
not share the bottleneck bandwidth fairly. As shown in Fig-
ure 11, there is a large variation in the throughput of dif-
ferent connections. Consequently, we can no longer predict
the bandwidth share for each connection in this case.

A few comments follow:2
There is a general concern that synchronization is
harmful since it may lead to under-utilization of the
bottleneck bandwidth. However with the use of
TCP/Reno and sufficient bottleneck buffer provision-
ing, this is unlikely to be a problem in practice.2
There have been several attempts to break synchro-
nization in order to avoid under-utilization. However
our simulation results indicate breaking the synchro-
nization by adding random processing time increases
the unfairness and loss probability.

0

10

20

30

40

50

60

70

80

90

100

500 550 600 650 700 750 800 850 900 950 1000

C
on

ne
ct

io
n

ID

Time (second)

ACK recv time: ISDN link, Buffer=400, conn=100

0

10

20

30

40

50

60

70

80

90

100

50 55 60 65 70 75 80 85 90 95 100

C
on

ne
ct

io
n

ID

Time (second)

ACK recv time: T1 link, Buffer=400, conn=100

0

20

40

60

80

100

0 50 100 150 200 250

C
on

ne
ct

io
n

ID

Total pkts received

Total pkts received: ISDN link, Buffer=400, conn=100

Actual received
Fair share

0

20

40

60

80

100

50 100 150 200 250 300 350

C
on

ne
ct

io
n

ID

Total pkts received

Total pkts received: T1 link, Buffer=400, conn=100

Actual received
Fair share

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900 1000

B
uf

fe
r

oc
cu

pa
nc

y
(p

kt
s)

Time (second)

Buffer occupancy: ISDN link, Buffer=400, conn=100

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

Time (second)

Buffer occupancy: T1 link, Buffer=400, conn=100

Figure 11. Adding random process time in large pipe case breaks down the global synchronization: 100 connections share the

bottleneck link of either ISDN or T1 with one-way propagation delay of 50 ms and bottleneck buffer size of 400 packets. Compared to

the case of without random processing time, the buffer occupancy is quite stable. Furthermore global synchronization disappears

as shown in the scatter plot for ACK arrival.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

1 10 100 1000

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability

no overhead
predicted loss
within 1%*RTT overhead
within 5%*RTT overhead
within 10%*RTT overhead
within 20%*RTT overhead
within 50%*RTT overhead

Figure 12. Compare the loss probability by adding different

amount of random processing time: varying number of con-

nections compete for T1 link with
���"� ��� 8 183+4 � .

4.2. 3 $ N ����� (Small pipe case)

Adding random processing time also affects the case
when 3 $ N ����� . Without random processing time, we
find there is consistent discrimination against some connec-
tions, which end up being completely shut off due to con-
stant timeouts. After adding random processing time, such
discrimination still exists but is much less severe. As shown
in Figure 13, the number of shut-off connections is con-
siderably smaller than before. Furthermore, the buffer oc-
cupancy is mostly full and stable, whereas without random
processing time, the buffer occupancy is quite low, and fluc-
tuates a lot.

4.3. ����� N 3 $HNOL : ����� (Medium pipe case)

As shown in Figure 14, adding random processing time
does not have much impact on TCP behavior in the case of
medium size pipe: as before, most connections get reason-
able goodput and are not synchronized. On the other hand,
the buffer occupancy now becomes mostly full and stable in
contrast to the case without random processing time, where
the buffer occupancy is low, and fluctuates a lot. In addition,
even local synchronization disappears after adding random
processing time.

4.4. Aggregate Throughput & Goodput

Adding random processing time changes little in the
overall throughput and goodput as shown in Figure 15 and
Figure 16.

4.5. Loss Probability

With a small number of TCP connections, after adding
random processing time, the loss probability grows mostly

0

10

20

30

40

50

60

70

80

90

100

150 155 160 165 170 175 180 185 190 195 200

C
on

ne
ct

io
n

ID

Time (second)

ACK recv time: Wc=200, conn=100, up to 10% random overhead

0

20

40

60

80

100

50 100 150 200 250 300 350

Total pkts received

Total pkts received: Wc=200, conn=100
up to 10% random overhead

Actual received
Fair share

C
on

ne
ct

io
n

ID

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

Time (second)

Buffer occupancy: Wc=200, conn=100
up to 10% random overhead

B
uf

fe
r

oc
cu

pa
nc

y
(p

kt
s)

Figure 14. Adding random processing time in

medium pipe case: 100 concurrent connections compete

for T1 link with
�	��� �	� 8 1�3+4 � and

; ����� � � 8 � 683 � � = >
� �9�
(3 $ 8 354
6%7 E ������� � � 8 � 3:3 packets). The buffer

occupancy is quite stable. In contrast to without random

processing time, there is no local synchronization.

linearly as the number of connections increases. This is ev-
ident from Figure 17, which compares the loss probability
curves before and after adding random processing time.

For the large number of connections, adding random pro-
cessing time does not change the general shape of the loss
probability curve: as before, the growth of loss probabil-
ity with respect to the number of connections matches well
with hyperbolic curves, as shown in Figure 18. On the other
hand, for the same configuration (with the same number of
connections and buffer size), the loss probability becomes
higher after adding the random processing time. Conse-
quently, the parameters of hyperbolic curves are different
as shown in Table 2.

ISDN T1
Wc a b Wc a b
100 125.0000 0.4930 100 125.0000 0.4263
200 217.3913 0.5257 200 227.2727 0.4505
300 400.0000 0.6071 300 333.3333 0.4690
400 714.2857 0.7536 400 500.0000 0.5123
500 1428.5714 1.1110 500 666.6666 0.5366

Table 2. Parameters for the hyperbolic curves used for fitting

loss probability as shown in Figure 18.

0

50

100

150

200

250

300

150 155 160 165 170 175 180 185 190 195 200

C
on

ne
ct

io
n

ID

Time (second)

ACK recv time: Wc=100, conn=300

0

50

100

150

200

250

300

150 155 160 165 170 175 180 185 190 195 200

C
on

ne
ct

io
n

ID

Time (second)

ACK recv time: Wc=200, conn=300

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160

C
on

ne
ct

io
n

ID

Total pkts received

Total pkts received: Wc=100, conn=300

Actual received
Fair share

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

C
on

ne
ct

io
n

ID

Total pkts received

Total pkts received: Wc=200, conn=300

Actual received
Fair share

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

B
uf

fe
r

oc
cu

pa
nc

y

Time (second)

Buffer occupancy: Wc=100, conn=300

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

B
uf

fe
r

oc
cu

pa
nc

y

Time (second)

Buffer occupancy: Wc=200, conn=300

Figure 13. Adding random processing time in small pipe case: 300 concurrent connections compete for T1 link with one-way

propagation delay of 50 ms and buffer size of 60 (or 160) packets (3 $ 8 3 4
6U7 E ������� � � =100 or 200 packets). The buffer

occupancy is quite stable, and the consistent discrimination is not as severe as without adding random processing time.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Total connections

Normalized throughput: T1 link with oneway propagation delay of 200 ms, varying buffer size

Buffer=10
Buffer=20
Buffer=40
Buffer=60
Buffer=110
Buffer=160
Buffer=200
Buffer=300

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Total connections

Normalized throughput: T1 link with oneway propagation delay of 50 ms, varying buffer size

Buffer=60
Buffer=160
Buffer=260
Buffer=360
Buffer=460

Figure 15. Throughput after adding random processing time of

up to
� 3 � : PQ!K! at TCP source: varying number of connec-

tions compete for the bottleneck link of T1 link with propagation

delay of either 200 ms or 50 ms.

5. TCP Performance under RED Queue Man-
agement

In this section, we further investigate TCP performance
under Random Early Detection (RED) queue management.

5.1. Background of RED

RED is the recommended active queue management
scheme for rapid deployment throughout the Internet. With
RED, a router will detect congestion before the queue over-
flows, and provide an indication of this congestion to the
end nodes. It may use one of several methods for indicating
congestion to end-nodes. One is to use packet drops. Al-
ternatively, it can set a Congestion Experienced (CE) bit in
a packet header as an indication of congestion, instead of
relying solely on packet drops. The latter method is com-
monly referred to as explicit congestion notification (ECN)
[17, 42, 43]. The major advantage of active queue man-
agement mechanisms like RED is that the transport pro-
tocols with congestion control (e.g., TCP) do not have to
rely on buffer overflow as the only indication of congestion.
This can potentially reduce unnecessary queuing delay for
all traffic sharing that queue.

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 g
oo

dp
ut

Total connections

Normalized goodput: ISDN link with oneway propagation delay of 50 ms, varying buffer size

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 g
oo

dp
ut

Total connections

Normalized goodput: T1 link with oneway propagation delay of 50 ms, varying buffer size

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

Figure 16. Goodput after adding random processing time of up

to
� 3�� : PQ!K! at TCP source: varying number of connections

compete for the bottleneck link of either ISDN or T1. In both

cases, the one-way propagation delay=50 ms.

Consider a router with a buffer size of � packets. With
the RED buffer management scheme, a router detects con-
gestion by the average queue length (��), which is estimated
using an exponentially weighted moving average: ����� ��� A�� �	� �� E A�� � � , where

A��
is a fixed (small) parameter

and � is the instantaneous queue length. When the average
queue length exceeds a minimum threshold (
���
 7��), incom-
ing packets are probabilistically dropped or marked with the
Congestion Experienced bit [17, 42, 43]. The probability
that a packet arriving at the RED queue is either dropped
or marked depends upon several control parameters of the
algorithm. An initial drop/mark probability � � is computed
using a drop function � based on the average queue length
�� and three control parameters
����96 ,
���
�7�� , and
����
7�� .
The actual probability is a function of the initial probability
and a count of the number of packets enqueued since the
last packet was dropped: � # 8 �

�
� � ��� = � � ����� � � � .

In the original RED scheme, � � �� � 8 �
if ����
���� 7�� ,

which means all incoming packets are dropped or marked
when the average queue length exceeds
�����7�� . As shown
by Firoiu et al.[13], this can lead to oscillatory behavior.
Recently, Floyd recommended using the ‘gentle ” variant
of RED [19], which uses the following modified dropping
function � (illustrated in Fig. 19):

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10 12 14 16 18 20

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: T1 link with oneway propagation delay of 50 ms, buffer size=60

Wc=100, within10%*RTT
Wc=100, w/o overhead

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 5 10 15 20 25 30 35 40 45 50

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: T1 link with oneway propagation delay of 50 ms, with buffer size=260

Wc=300, within 10%*RTT overhead
Wc=300, w/o overhead

Figure 17. Loss probability for a small number of connections

after adding random processing time of up to
� 3�� : PQ!K!

at TCP source: varying number of connections compete for

the bottleneck link of T1 link with
���"� ��� 8 1�3�4 � . The loss

probability grows linearly when the number of connections is

small.

� � �� � 8
���� ���

3 if �� N
���
 7���
if �� � � �
���� 7��������
	 �
����
��� ��� ���
	 � ��� �
���� 6 if ������
 ��
 7����
���� 7����������
��� ����
��� ��� � � ���
�����6 � E
����	6 otherwise

As shown by Rosolen et al.[39, 40], the “gentle ” option
makes the RED much more robust to the setting of the pa-
rameters
����
7�� and
����	6 . Therefore, we turn it on for all
simulations in this paper. Moreover, in this paper, we only
consider RED without support for ECN.

5.2. RED Configurations

RED has four control parameters:
���
 7�� ,
���� 7�� ,
���� 6 ,
and

A �
. How to properly configure these parameters has

been the subject of many studies [8, 13, 11, 18]. The focus
of our work is on understanding the impact of RED on TCP
performance. Therefore, instead of proposing any new rec-
ommendations on configuring RED parameters, we closely
follow the guidelines by Floyd [18]. More specifically, we
always use the recommended values of
���� 7�� 8 L
���
 7�� ,

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 100 200 300 400 500 600

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: ISDN link with oneway propagation delay of 50 ms, varying buffer size

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: T1 link with oneway propagation delay of 50 ms, varying buffer size

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

Figure 18. Loss probability for large number of connections af-

ter adding up to
� 3�� : PQ!K! at TCP source: varying number of

connections compete for the bottleneck link of either ISDN or

T1. In both cases, the one-way propagation delay is 50 ms. The

loss probability curves match very well with hyperbolic curves

when the number of connections is large, where the parameters

of the hyperbolic curves are given in Table 2.

����	6 8 3 /
�
, and

A � 8 3 / 3:3 � . The recommended value for
the last parameter
���
 7�� is 5 packets. However, as noted
in [18], the optimal setting for
���
 7�� also depends partly
on the link speed, propagation delay, and maximum buffer
size. Therefore, besides the recommended value of 5 pack-
ets, we also experiment with two different values of
���
 7��
based on the buffer size: � � 6 and � ��� , where � is the
maximum buffer size. Finally, as recommended in [19], we
turn on the “gentle ” option for RED in all simulations.

Table 3 lists the configurations we use for simulations.

Scheme
���
�7��
����97���8 L :
 ��
 7��
RED-1 � /6 � /2
RED-2 � /9 � /3
RED-3 5 packets 15 packets

Table 3. Different RED configurations.

Under RED queue management, each flow’s fair share
of the pipe can be measured as F �GI 4 .�. , where ����� is the
total number of connections, 3 !$ 8 3 4
6%7�E
���� 7�� reflects
the total number of packets the link and the buffer can hold

q

B2*max_thmax_thmin_th

max_p

1

D(q)
_

_

Figure 19. Drop function of RED with the “gentle ” modification.

before the router exits the operation region of RED and sig-
nificantly increases the dropping probability.

Our study shows that the TCP behavior under RED
queue management can again be classified into three cases
based on each flow’s fair share of the pipe (F �GI 4 .�.): large
pipe case (3 !$ J L : �����), small pipe case (3 !$ N
 �����), and medium pipe case (����� N 3 !$ NOL : �����).
Table 4 summarizes the TCP behavior in each case. Details
are given in the following three sections.

Pipe
Behavior large small medium

synchronization no no no
link sharing fair unfair fair

buffer occupancy stable unstable unstable

Table 4. TCP behavior under RED queue management.

5.3. 3 !$ JOL : ����� (Large pipe case)

Figure 20 shows the TCP behavior under RED queue
management in the large pipe case. The randomness in-
troduced by RED completely breaks down the global and
local synchronization, which is evident from the scatter plot
of the ACK arrival times. The number of packets received
by different flows ranges from 120 to 280, which is quite
fair. Moreover, the queue length is quite stable and is well-
bounded by
���
�7�� and
����97�� .

5.4. 3 !$ N ����� (Small pipe case)

Figure 21 plots the TCP behavior under RED queue
management in the small pipe case, which is radically dif-
ferent from the large pipe case. There is still no apparent
global or local synchronization. However, the bandwidth
sharing becomes very unfair. Some flows completely get
shut off, but the number of shut-off connections is smaller
compared to the case with dropping tail gateways. More-
over, the buffer occupancy oscillates rapidly between 0 and
around 2*
���� 7�� , the latter of which is the threshold used
by RED with the gentle modification [19].

0

10

20

30

40

50

60

70

80

90

100

50 55 60 65 70 75 80 85 90 95 100

C
on

ne
ct

io
n

ID

Time (second)

ACK Recv Time

0

10

20

30

40

50

60

70

80

90

100

120 140 160 180 200 220 240 260 280

C
on

ne
ct

io
n

ID

Total Packets Received

Total Packets Received

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

B
uf

fe
r

oc
cu

pa
nc

y
(p

kt
s)

Time (second)

Buffer Occupancy

min_{th}
max_{th}

Figure 20. TCP behavior under RED queue management, in the

large pipe case: 100 concurrent connections compete for T1

link with one-way propagation delay of 50 ms and buffer size

of 760 packets. The RED configuration is RED-1 (3 !$ 8
3 4
6%7�E
���� 7�� =420 packets).

0

10

20

30

40

50

60

70

80

90

100

50 55 60 65 70 75 80 85 90 95 100

C
on

ne
ct

io
n

ID

Time (second)

ACK Recv Time

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

C
on

ne
ct

io
n

ID

Total Packets Received

Total Packets Received

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

B
uf

fe
r

oc
cu

pa
nc

y
(p

kt
s)

Time (second)

Buffer Occupancy

min_{th}
max_{th}

Figure 21. TCP behavior under RED queue management, in the

medium pipe case: 100 concurrent connections compete for

T1 link with one-way propagation delay of 50 ms and buffer

size of 560 packets. The RED configuration is RED-3 (3 !$ 8
3 4
6%7�E
���� 7�� = 55 packets).

5.5. ����� N 3 !$ NML : ����� (Medium pipe case)

Figure 22 illustrates the TCP behavior under RED queue
management in the medium pipe case, which is somewhat
in between. Again, there is no obvious global or local
synchronization. The bandwidth sharing is reasonably fair,
with the number of packets received by different flows rang-
ing from 50 to 350. The queue length oscillates around

�����7�� periodically.

0

10

20

30

40

50

60

70

80

90

100

50 55 60 65 70 75 80 85 90 95 100

C
on

ne
ct

io
n

ID

Time (second)

ACK Recv Time

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350

C
on

ne
ct

io
n

ID

Total Packets Received

Total Packets Received

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90 100

B
uf

fe
r

oc
cu

pa
nc

y
(p

kt
s)

Time (second)

Buffer Occupancy

min_{th}
max_{th}

Figure 22. TCP behavior under RED queue management, in the

medium pipe case: 100 concurrent connections compete for

T1 link with one-way propagation delay of 50 ms and buffer

size of 560 packets. The RED configuration is RED-2 (3 !$ 8
3 4
6%7�E
���� 7�� = 223 packets).

5.6. Aggregate Throughput, Goodput & Loss Prob-
ability

Figure 23 plots the aggregate throughput as a function of
the number of competing TCP connections. As we can see,
the throughput initially increases with the number of com-
peting connections. As we further increase the number of
TCP connections, the throughput decreases until a certain
point beyond which the throughput keeps increasing again
with the number of connections. A possible explanation for
the non-monotonic relationship between the throughput and
the number of connections is as follows. When the number
of competing connections is small, the bottleneck link is not
fully utilized. In this case, increase in the number of con-
nections leads to more connections utilizing the link and
higher throughput. Further increase in the number of con-
nections results in more losses and timeouts. Consequently,

most connections stay in slow start phase, which makes the
bottleneck link under-utilized. However beyond a certain
point, there are enough competing connections to keep the
bottleneck link close to full utilization again, even though
most connections stay in the slow start phase.

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(a) RED-1.

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(b) RED-2.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(c) RED-3.

Figure 23. Throughput: varying number of connections com-

pete for T1 bottleneck link with RED.

Figure 24 shows the aggregate goodput versus the num-
ber of connections. As with Drop-Tail, the increase in the
number of competing connections leads to heavier conges-
tion, and thereby more unnecessary retransmissions. As a
consequence, the goodput decreases.

Figure 25 and Figure 26 plot the loss probability versus
the number of connections, for a small number and a larger
number of connections, respectively. As we can see, the loss

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 G
oo

dp
ut

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(a) RED-1.

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 G
oo

dp
ut

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(b) RED-2.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 G
oo

dp
ut

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(c) RED-3.

Figure 24. Goodput: varying number of connections compete

for T1 bottleneck link with RED.

rate increases quadratically with ����� for small ����� ,
which conforms to the results reported in [32]. When the ����� is large, the loss rate increases hyperbolically with
 ����� , just as in the case of Drop-Tail.

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3 4 5 6 7 8 9 10

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(a) RED-1.

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3 4 5 6 7 8 9 10

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(b) RED-2.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 2 3 4 5 6 7 8 9 10

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(c) RED-3.

Figure 25. Loss probability for a small number of connections

competing for T1 bottleneck link with RED.

6. TCP/SACK Performance under Drop-Tail
and RED

In this section, we study the TCP/Sack (TCP with sup-
port for selective acknowledgments (SACK)) under both
Drop-Tail and RED dropping policies.

Figure 27 plots the aggregate throughput as a function of

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(a) RED-1.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(b) RED-2.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(c) RED-3.

Figure 26. Loss probability for a large number of connections

competing for T1 bottleneck link with RED.

the number of competing TCP connections. The results are
similar to TCP/Reno for possibly the same reason.

Figure 28 shows the aggregate goodput versus the
number of TCP/SACK connections. As in the case of
TCP/Reno, the aggregate goodput decreases with the num-
ber of connections due to the increase in the total num-
ber of unnecessary retransmissions. On the other hand,
the goodput of TCP/SACK is slightly higher than that of
TCP/Reno due to more efficient loss recovery mechanism
in TCP/SACK.

Figure 29 and Figure 30 plot the aggregate loss proba-
bility of TCP/SACK for a small number and a large number
of connections, respectively. As in TCP/Reno, the loss rate
is proportional to ����� $ for small ����� . For large ����� ,
the loss rate increases hyperbolically with ����� .

7. TCP behavior with different RTT

In this section, we explore the TCP performance under
different RTT’s. We start with a simple scenario in which
there are only two different RTT values and all flows are
long-lived FTP sessions that can reach the steady state (in
Section 7.1). We then consider more complicated scenar-
ios where there are more than two different RTT values (in
Section 7.2).

7.1 Bulk Transfers with 2 Different RTT’s

We divide all TCP flows into two equal-sized groups � �
and � $. All flows within the same group � ,

have the same
two-way propagation delay � � , (� = 1, 2). We vary � � �
while keeping � � $ fixed. This can be achieved by prop-
erly adjusting the one-way propagation delay on the high-
bandwidth (10 Mbps) links in Figure 1. Figure 31 shows
the network topology used in our simulations.

For each simulation run, we record the average queu-
ing delay (�) experienced by all packets. Then we can es-
timate the average roundtrip time for flows in group � ,

,
as PQ!K! , 8 � � , E � . We also record � ��� � � � � , , the
average goodput for flows in group � ,

. The goal is to
study how � � ��� � � � � $ � � ��� � � � � � � changes with respect to� PQ!K! �

� P !H! $ � .
As suggested by Floyd et al. [15], in order to explore

properties of network behavior unmasked by the specific
details of traffic phase effects, we always add a random pro-
cessing time at the TCP sender, which is uniformly chosen
between zero and the bottleneck service time for a TCP data
packet.

Fig. 32 shows the results of 6 competing FTP sessions
with the Drop-Tail FIFO queue management. The bottle-
neck link has T1 capacity and 50 msec one-way propagation
delay. � � $ is kept at 102 msec. As we can see, the good-
put ratio satisfies Equation (1) over a wide range of RTT

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(a) Drop Tail.

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(b) RED-1.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(c) RED-2.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(d) RED-3.

Figure 27. Throughput: varying number of TCP/SACK connec-

tions compete for T1 bottleneck link.

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 G
oo

dp
ut

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(a) Drop Tail.

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 G
oo

dp
ut

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(b) RED-1.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 G
oo

dp
ut

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(c) RED-2.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 G
oo

dp
ut

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(d) RED-3.

Figure 28. Goodput: varying number of TCP/SACK connections

compete for T1 bottleneck link.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 2 3 4 5 6 7 8 9 10

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(a) Drop Tail.

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3 4 5 6 7 8 9 10

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(b) RED-1.

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3 4 5 6 7 8 9 10

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(c) RED-2.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 2 3 4 5 6 7 8 9 10

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(d) RED-3.

Figure 29. Loss probability for a small number of TCP/SACK

connections competing for T1 bottleneck link.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(a) Drop Tail.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(b) RED-1.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(c) RED-2.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600

Lo
ss

 R
at

e

Total connections

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

(d) RED-3.

Figure 30. Loss probability for a large number of TCP/SACK

connections competing for T1 bottleneck link.

Source 1

Source N

Source 2N

Dest 1

Dest N
Bottleneck Link

Router S Router D

Large bandwidth links

Source N+1

Dest 2N

Dest N+1

Figure 31. Network topology with 2 different RTT’s.

ratio, in particular, when RTT ratio is less than 5. (Exten-
sive simulations with many different settings also give the
same result.)

3 / 1
��� PQ!K! �PQ!K! ��� $�� � ��� � � � � $

� ��� � � � � �

� � PQ!K! �PQ!K! ��� $ (1)

0

5

10

15

20

25

1 1.5 2 2.5 3 3.5 4 4.5 5

Y
: G

oo
dp

ut
2/

G
oo

dp
ut

1

X: RTT1/RTT2

Y=X^2
Y=0.5*X^2

Figure 32. The effect of Drop-Tail queue (dt in Table 3) on 6

FTP sessions with 2 different RTT’s. The bottleneck link has T1

capacity and 50 msec one-way propagation delay. � � � varies

while � � $ is kept at 102 msec.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

cw
nd

Time (sec)

long-RTT flow (T1)
short-RTT flow (T2)

Figure 33. The congestion window evolution of two TCP flows

! � and ! $ with Drop-Tail FIFO queue management. PQ!K! �
J

P !H! $.
To explain (1), we need to thoroughly understand the

synchronization effect of Drop-Tail gateways. For brevity,
let us only consider two competing TCP flows. All our anal-
ysis still applies when there are more than two competing
TCP flows. Fig. 33 illustrates the evolution of the conges-
tion window size (

=UA � �) for two competing TCP flows ! �
and ! $ (with PQ!K! �

J P !H! $) under Drop-Tail FIFO queue
management. As we can see, the synchronization effect on

! � and ! $ is more complicated than the global synchro-
nization for TCP connections with the same RTT. For ! $,
whenever the bottleneck buffer becomes full, it will get a
loss from 0 up to one roundtrip time (PQ!K! $) after it in-
creases its congestion window. It takes another roundtrip
for ! $ to detect the loss by 3 duplicated ACK’s and re-
duce its sending rate by halving its

=%A � � . It takes one
more roundtrip for such rate reduction to actually take ef-
fect. Therefore, on average it takes roughly � / 1

� P !H! $ for
the rate of ! $ ’s packets arriving at the bottleneck router to
decrease. When ! � increases its

=UA � � and sends one more
packet, this extra packet won’t get dropped unless it arrives
at the bottleneck queue before the packet arrival rate of ! $
decreases. With the random processing time at the sender,
this extra packet can arrive at the bottleneck queue at any
time within PQ!K! � after the queue becomes full. Therefore,
we can estimate the drop probability for this extra packet as

���
 � � �"� / 1 � PQ!K! $

� PQ!K! � � , which is within � 3 / 1 �
� � when

PQ!K! �
� PQ!K! $ � � � � 1 � . Or equivalently,

#drops seen by ! � in unit time
#drops seen by ! $ in unit time

� � 3 / 1 �
� � (2)

Assuming that at steady state, the
=UA � � of connection ! ,

grows from 3 ,
to � � 3 , during each epoch, then ! , sees

a drop every 3 , � PQ!K! , . Consequently, (2) becomes

3 $ � PQ!K! $
3 � � PQ!K! �

� � 3 / 1 �
� � (3)

Meanwhile, the goodput for ! , can be approximated as:

� ��� � � � � , 8
L � 3 ,
� � PQ!K! , � = 1, 2. (4)

From (3) and (4), we immediately get (1). Note that as
we further increase RTT ratio (beyond 5), the gap between
the actual goodput ratio and (1) enlarges. Part of the reason
may be that the increasing effect of timeouts tends to break
the synchronization.

Now we consider the effect of RED queue management.
It is well-known that � ��� � � � � , is roughly inversely propor-
tional to PQ!K! ,�� � , , where � , is the packet loss rate for flow� [35]. With RED, different flows roughly experience the
same packet loss rate under steady state. Consequently, we
have:

� ��� � � � � $
� ��� � � � � �

, PQ!K! �PQ!K! $ (5)

Our simulation results confirm (5), as shown in Fig-
ure 34.

7.2 Bulk Transfers with 8 Different RTT’s

In this section, we consider 8 competing FTP sessions	 ,
(� =1,2,...8) all with different RTT’s. The two-way prop-

agation delay for
	
� is kept at 102 msec. The propagation

0

1

2

3

4

5

6

7

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Y
: G

oo
dp

ut
2/

G
oo

dp
ut

1

X: RTT1/RTT2

r1
r2
r3
r1e
r2e
r3e
Y=X

Figure 34. The effect of RED gateway on FTP sessions with

2 different RTT’s. The simulation settings are the same as in

Fig. 32 except that the bottleneck router uses RED queue man-

agement.

delays for all the other FTP sessions are uniformly cho-
sen between 102 msec and 300 msec during each simula-
tion run. The configurations for the bottleneck link and the
buffer size are the same as before. For each run of the ex-
periment, we record goodput ratios � ��� � � � � �

� � ��� � � � � ,
and the RTT ratios PQ!K! , � PQ!K! � (� = 2,3,...,8). We then
make a scatter plot of all the data points (PQ!K! , � PQ!K! � ,� ��� � � � � �

� � ��� � � � � ,) obtained from 15 runs for each
queue management scheme. The results are summarized
in Fig. 35.

0.5

1

1.5

2

2.5

3

3.5

4

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Y
: G

oo
dp

ut
1/

G
oo

dp
ut

_i

X: RTT_i/RTT_1

dt
r1
r2
r3
r1e
r2e
r3e
Y=X
Y=0.5*X
Y=1.5*X

Figure 35. Comparison between the effect of RED gateway and

the dropping tail gateway on 8 TCP flows with all different RTT’s.

As we can see, with Drop-Tail, the bias against long-RTT
flows with 8 different RTT’s is smaller than in the case of 2
different RTT’s. The throughput ratios are centered around
line � 8�� and are well-bounded by two lines � 8 �

/ 1��and � 8 3 / 1�� . In comparison, with RED, the throughput
ratios are clustered much closer to line � 8�� . This sug-
gests that RED is more fair than Drop-Tail. To quantify the
fairness of different queue management schemes for flows
with different PQ!K! ’s, we use the normalized fairness ratio
[1], which is defined as follows.

� 8 � 	 ., � � � ��� � � � � , � PQ!K! , � $� 	 ., � � � � ��� � � � � , � PQ!K! , � $
Fig. 36 shows the normalized fairness ratio for different

queue management policy. As we can see that Drop-Tail is

significantly less fair than RED.

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 F
ai

rn
es

s
R

at
io

Run ID

dt
r1
r2
r3
r1e
r2e
r3e

Figure 36. Normalized fairness ratio using different queue man-

agement policies.

To summarize, for bulk transfers RED tend to reduce the
bais against long-RTT connections. With both RED and
Drop-Tail queue management, a connection’s goodput is in-
versely proportional to its RTT.

8. Related Work

Large scale performance analysis has been an active re-
search area recently. Many researches focus on building
scalable simulators, such as [3, 9, 21, 23, 25, 26, 6, 46, 47].
For example, [9] speeds up simulation by using parallel
simulation techniques. It does not change the underlying
simulation paradigm. Other approaches focus on raising
the level of simulation abstraction. In particular, [3] pro-
poses to abstract an entire group of closely spaced packets
as a packet train. This enables their simulator to represent
network traffic with considerably fewer events than a tra-
ditional simulator. Two other abstraction techniques: cen-
tralized computation and abstract packet distribution, are
suggested in [23], which are shown to apply to multicast
simulation. The combination of these two methods leads to
orders of magnitude of performance improvement without
sacrificing accuracy.

Another approach is to use fluid models to approximate
real traffic at coarser time scales. For instance, [25, 26]
track events corresponding to the changes in the fluid rate.
[46, 47] apply the fluid model through time-driven fluid
simulation (TDFS). TDFS discretizes time into small time
intervals, and assumes a constant fluid rate during each time
interval. The system states are updated periodically. Sim-
ulation speedup can be achieved by using a larger time in-
terval. As pointed out in [21], the fluid model based ap-
proaches lack packet information, which makes it difficult
to simulate packet based protocols like TCP. [21] addresses
this issue by developing time-stepped hybrid simulation
(TSHS). TSHS discretizes time into small time intervals.
Packets from the same session falling into the same time-
step are grouped into a chunk, and assumed to be evenly dis-

tributed. This technique relieves the simulator from keeping
track of each individual packet.

Analyzing simulation results to estimate TCP perfor-
mance, as done in this paper, is a very different approach
from building a scalable simulator. The strategy taken by
[32] is the closest to ours. It studies how TCP throughput,
loss rates, and fairness are affected by changing the number
of flows. Their work differs from ours in that we focus on
studying how TCP performance changes by varying differ-
ent parameters of the network model, whereas they focus
on studying how the TCP behaves as one of the parameters
- the number of flows changes, while fixing all the other pa-
rameters. Furthermore they study TCP/Tahoe under RED
gateways, whereas we study TCP/Reno under either drop-
tail or RED gateways. RED dropping policy is not sensitive
to instantaneous queue occupancy, so it is relatively easy to
obtain the steady state performance.

There has been a vast volume of research on study-
ing RED dropping policy, ranging from analytical model-
ing [5, 31] to simulations and experimental evaluation [45,
10, 8, 48], from recommendations for parameters and ar-
chitecture configuration [18, 19, 13, 22] to proposals of
alternatives, which include BLUE [12], SRED (Stabilized
RED) [34], Adaptive RED [11], FRED (Fair Random Early
Drop) [28], and BRED (Balanced RED) [4]. Our simu-
lation study of RED performance complements the exist-
ing body of research by comparing the aggregate through-
put, goodput, loss rate, and roundtrip bias of TCP connec-
tions under RED gateways with those under drop-tail gate-
ways. Our results show that for long-lived flows, the aggre-
gate throughput, goodput, and loss rate under drop-tail gate-
ways are comparable to those under RED gateways. On the
other hand, RED tend to reduce the bias against long-RTT
connections, making the bandwidth sharing more fair than
drop-tail.

There are lots of other studies on TCP performance. Ear-
lier ones include [14, 27, 30] etc. Recently, there have been
significant research efforts on developing analytical models
for the dynamic behavior of TCP. [35] and [36] develop ana-
lytical models for predicting the steady state sending rate of
a bulk transfer TCP flow as a function of loss rate and round
trip time. [7] extends the steady state model in [35] by con-
sidering the startup effects. Their extended model charac-
terizes the expected value and distribution of TCP connec-
tion establishment and data transfer latency as a function of
transfer size, round trip time, and packet loss rate. [2] de-
velops a stochastic model for the performance of a single
TCP session in the presence of random packet loss. [20]
presents a closed queueing network model for the estima-
tion of the performance of TCP/Tahoe connections, such as
packet loss rate,

=UA � � , and ��� �)B�� � ��B . We believe our sim-
ulation studies are complementary to the analytical mod-
eling, and help further explore TCP dynamics under con-

trolled environment.

9. Conclusion and Future Work

In this paper, we use extensive simulations to systemati-
cally investigate the performance of many TCP flows. Our
major findings are:2

When all the connections have the same propagation
delay, without adding random processing time, global
synchronization occurs when 3 $ J L : ����� . When
3 $ N ����� , the bandwidth sharing becomes ex-
tremely unfair: some get most bandwidth, while others
become completely shut-off. When the value of F GI 4 .�.
is in between, the performance falls in between: there
is local synchronization, but no global synchronization
nor shut-off connections.2
Adding random processing time or using RED gate-
ways makes both synchronization and consistent dis-
crimination less pronounced.2
For both Drop-Tail and RED gateways, the aggregate
throughput of TCP flows is close to link bandwidth,
except when there are too few connections to fill up the
pipe. There is a small variation in the throughput as the
number of connections increases, but most variation is
within 2%.2
For both Drop-Tail and RED gateways, the aggregate
goodput of TCP flow decreases slightly with the num-
ber of connections due to the increase in the unneces-
sary retransmissions. The only exception occurs when
there are too few connections to fill up the pipe.2
For both Drop-Tail and RED gateways, the aggregate
loss rate of TCP flow is proportional to ����� $ for
small ����� , and increases hyperbolically with �����
for large ����� .2
TCP/SACK helps to increase the aggregate goodput
slightly compared to TCP/Reno, due to its more effi-
cient loss recovery mechanism.

Based on our results, we make four observations. First,
since adding random processing time makes both syn-
chronization and consistent discrimination less pronounced,
these dramatic behaviors are not severe problems in the
real Internet. Second, for bulk transfers, the aggregate
throughput, goodput, and loss rate under Drop-Tail gate-
ways are comparable to those under RED gateways. Third,
TCP/SACK helps to slightly increase the goodput compared
to TCP/Reno. On the other hand, SACK cannot completely
avoid unnecessary retransmissions. For example, when the
timeout value is smaller than it should be, a packet may be
re-sent even though it has arrived at the receiver. Finally,
we observe that for bulk transfers, RED tends to reduce the
bias against long-RTT connections, making the bandwidth
sharing more fair than with Drop-Tail.

There are a number of directions for future work. First,
we have shown the loss probability curves can be approxi-
mated quite well with simple analytical functions. As part
of our future work, we will investigate how to quantitatively
determine the parameters in the functions. Second, we
plan to further explore TCP performance under multiple-
bottleneck networks. Third, in this paper, we mainly focus
on studying the performance of many long-lived TCP flows.
We are very interested in investigating the performance of
HTTP flows in the future. Finally, we plan to use Internet
experiments to verify some of the results in the paper.

References

[1] A. Aagarwal, S. Savage, and T. Anderson. Understanding the
Performance of TCP Pacing. Proc. IEEE INFOCOM’2000, Tel-
Aviv, Israel, March 2000.

[2] A. A. Abouzeid, S. Roy, and M. Azizoglu. Stochastic Model-
ing of TCP over Lossy Links. Proc. of IEEE INFOCOM’2000,
Tel-Aviv, Israel, March 2000.

[3] J. Ahn and P. B. Danzig. Packet network simulation: speedup
and accuracy versus timing granularity. IEEE/ACM Transac-
tions on Networking, Volume 4, No. 5, pp. 743-757, October
1996.

[4] F. Anjum and L. Tassiulas. Balanced-RED: An Algorithm to
Achieve Fairness in the Internet. Proc. IEEE INFOCOM’99,
New York City, USA, March 1999.

[5] T. Bonald, M. May, J. C. Bolot. Analytic Evaluation of RED
Performance. Proc. IEEE INFOCOM’2000, Tel-Avi, Israel,
March 2000.

[6] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A.
Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H.
Yu. Advances in Network Simulation. IEEE Computer, 33(5),
pp. 59-67, May 2000.

[7] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP La-
tency. Proc. of IEEE INFOCOM’2000, Tel-Aviv, Israel, March
2000.

[8] M. Christiansen, K. Jeffay, D. Ott, and F. Smith. Tuning
RED for Web Traffic. Proc. ACM SIGCOMM’2000, Stock-
holm, Sweden, August 2000.

[9] J. Cowie, D. Nicol, and A. Ogielski. Modeling the Global In-
ternet. Computing in Science & Engineering, pp. 30-38, 1999.

[10] O. Elloumi and H. Afifi. RED Algorithm in ATM Networks.
Technical Report, June 1997.

[11] W. Feng, D. Kandlur, D. Saha, and K. Shin. A Self-
Configuring RED Gateway. Proc. IEEE INFOCOM’99, New
York City, USA, March 1999.

[12] W. Feng, D. Kandlur, D. Saha, and K. Shin. Blue: A New
Class of Active Queue Management Algorithms. University of
Michigan Technical Report CSE-TR-387-99, April 1999.

[13] V. Firoiu, and M. Borden. A Study of Active Queue Man-
agement for Congestion Control. Proc. IEEE INFOCOM’2000,
Tel-Aviv, Israel, March 2000.

[14] S. Floyd. Connections with Multiple Congested Gateways in
Packet-Switched Networks Part 1: One-way Traffic. Computer
Communication Review, Vol.21, No.5, October 1991, p. 30-47.

[15] S. Floyd and V. Jacobson. On Traffic Phase Effects in Packet-
Switched Gateways. Internetworking: Research and Experi-
ence, V.3 N.3, September 1992, p.115-156.

[16] S. Floyd and V. Jacobson. Random Early Detection Gate-
ways for Congestion Avoidance. IEEE/ACM Transactions on
Networking, V.1 N.4, August 1993, p. 397-413.

[17] S. Floyd. TCP and Explicit Congestion Notification. ACM
Computer Communication Review, 24(5):10-23, October 1994.

[18] S. Floyd. RED: Discussions of Setting Parameters.
http://www.aciri.org/floyd/REDparameters.txt , November
1997.

[19] S. Floyd. Recommendation on Using the “gentle ” Variant of
RED. http://www.aciri.org/floyd/red/gentle.html, March 2000.

[20] M. Garetto, R. Lo Cigno, M. Meo, M. Ajmone Marsan. A
Detailed and Accurate Closed Queueing Network Model of
Many Interacting TCP Flows. Proc. IEEE INFOCOM’2001,
Anchorage, AK, USA, April 2001.

[21] Y. Guo, W. Gong, and D. Towsley. Timing-stepped Hybrid
Simulation (TSHS) for Large Scale Networks. Proc. IEEE IN-
FOCOM’2000, Tel-Aviv, Israel, March 2000.

[22] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. A Con-
trol Theoretic Analysis of RED. Proc. IEEE INFOCOM’2001,
Anchorage, AK, USA, April 2001.

[23] P. Huang, D. Estrin, and J. Heidemann. Enabling Large-scale
Simulations: Selective Abstraction Approach to the Study of
Multicast Protocols. Proc. Sixth International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS’98), Montreal, Canada, July
1998.

[24] V. Jacobson and M. Karels. Congestion Avoidance and Con-
trol. Proc. ACM SIGCOMM ’88, Stanford, CA, USA, August
1988.

[25] G. Kesidis, A. Singh, D. Cheung, and W. W. Kwok. Feasibil-
ity of Fluid-Driven Simulation for ATM Network. Proc. IEEE
GLOBECOM’96, pp. 2013-2017, Vol. 3, Westminster, London,
Britian, November 1996.

[26] K. Kumaran and D. Mitra. Performance and Fluid Simu-
lations of a Novel Shared Buffer Management System. Proc.
IEEE INFOCOM’98, San Francisco, CA, USA, March 1998.

[27] T. V. Lakshman and U. Madhow. Performance Analysis of
Window-based Flow Control using TCP/IP: Effect of High
Bandwidth-Delay Products and Random Loss. Proc. IFIP
TC6/WG6.4 Fifth International Conference on High Perfor-
mance Networking, June 1994.

[28] D. Lin and R. Morris. Dynamics of Random Early Detec-
tion. In Proc. ACM SIGCOMM’97, Cannes, France, September
1997.

[29] B. Mah. An Empirical Model of HTTP Network Traffic.
Proc. IEEE INFOCOM ’97, Kobe, Japan, April 1997.

[30] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgement Options. RFC 2018, April 1996.

[31] V. Misra, W. Gong, and D. Towsley. Fluid-based Analysis
of a Network of AQM Routers Supporting TCP Flows with an
Application to RED. Proc. ACM SIGCOMM’2000, Stockholm,
Sweden, August 2000.

[32] R. Morris. TCP Behavior with Many Flows. Proc. IEEE In-
ternational Conference on Network Protocols’97, Atlanta, GA,
USA, October 1997.

[33] UCB/LBNLVINT Network Simulator - ns (version 2).
http://www-mash.cs.berkeley.edu/ns, 1997.

[34] T. Ott, T. Lakshman, and L. Wong. SRED: Stabilized RED.
In Proc. IEEE INFOCOM’99, New York City, USA, March
1999.

[35] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, Modeling
TCP Throughput: A Simple Model and Its Empirical Valida-
tion. In Proc. of ACM SIGCOMM’98, Vancouver, BC, Canada,
September 1998.

[36] J. Padhye, V. Firoiu, and D. Towsley. A stochastic Model of
TCP Reno Congestion Avoidance and Control. CMPSCI Tech-
nical Report 99-02.

[37] V. N. Padmanabhan and R. H. Katz. TCP Fast Start: A Tech-
nique for Speeding Up Web Transfers. In Proc. of IEEE Globe-
com’98, Sydney, Australia, November 1998.

[38] L. Qiu, Y. Zhang, S. Keshav. On individual and aggregate
TCP Performance. In Proc. of ICNP’99, Toronto, Canada,
November 1999.

[39] V. Rosolen, O. Bonaventure and G. Leduc. Impact of Cell
Discard Strategies on TCP/IP in ATM UBR Networks. Proc.
6th Workshop on Performance Modelling and Evaluation of
ATM Networks (IFIP ATM ’98), July 1998.

[40] V. Rosolen, O. Bonaventure and G. Leduc. A RED Discard
Strategy for ATM Networks and Its Performance Evaluation
with TCP/IP Traffic. ACM Computer Communication Review,
July 1999.

[41] L. Qiu, Y. Zhang, and S. Keshav. On Individual and Aggre-
gate TCP Performance. Cornell CS Technical Report, TR99-
1744, May 1999.

[42] K. Ramakrishnan and S. Floyd. A Proposal to add Explicit
Congestion Notification (ECN) to IP. RFC 2481, January 1999.

[43] K. Ramakrishnan and R. Jain. A Binary Feedback Scheme
for Congestion Avoidance in Computer Networks. ACM Trans-
action on Computer Systems, 8(2):158-181, May 1990.

[44] S. Shenker, L. Zhang, and D. D. Clark. Some Observations
on the Dynamics of a Congestion Control Algorithm. ACM
Computer Communication Review, pp.30-39, 1990.

[45] C. Villamizar and C. Song. High Performance TCP in
ANSNET. ACM Computer Communications Review, 24(5):45-
60, October 1994.

[46] A. Yan, and W. B. Gong. Time-Driven Fluid Simulation
for High-Speed Networks With Flow-Based Routing. Proc. of
the Applied Telecommunications Symposium’98, pp.153-158,
Boston, MA, USA, Aprial 1998.

[47] A. Yan, and W. B. Gong. Fluid Simulation for High Speed
Networks. IEEE Transactions on Information Theory, June
1999.

[48] Y. Zhang and L. Qiu. Understanding the End-to-End Perfor-
mance Impact of RED in a Heterogeneous Environment. Cor-
nell CS Technical Report 2000-1802, July 2000.

