
Speeding Up Short Data Transfers:
Theory, Architectural Support, and Simulation Results

Yin Zhang
yzhang@cs.cornell.edu

Cornell University

Lili Qiu
lqiu@cs.cornell.edu
Cornell University

Srinivasan Keshav
keshav@ensim.com
Ensim Corporation

ABSTRACT
Today’s Internet traffic is dominated by short Web data transfers.
Such a workload is well known to interact poorly with the TCP
protocol. TCP uses the slow start procedure to probe the network
for bandwidth both at connection start up and upon restart after an
idle period. This usually requires several roundtrips and is inefficient
when the duration of a transfer is short.

In this paper, we propose a new technique, which we call
TCP/SPAND, to speed up short data transfers. In TCP/SPAND,
network performance information is shared among many co-located
hosts to estimate each connection’s fair share of the network re-
sources. Based on such estimation and the transfer size, the TCP
sender determines the optimal initial congestion window size. In-
stead of doing slow start, it uses a pacing scheme to smoothly send
out the packets in its initial congestion window. We use extensive
simulations to evaluate the performance of the resulting system. Our
results show that TCP/SPAND significantly reduces latency for short
transfers even in presence of multiple heavily congested bottlenecks.
Meanwhile, the performance benefit does not come at the expense of
degrading the performance of connections using the standard TCP.
That is, TCP/SPAND is TCP friendly.

1. INTRODUCTION
Numerous measurements show that Internet traffic is now dominated
by short and bursty Web data transfers [13, 19, 21]. Such a workload
interacts poorly with TCP, the dominant transport protocol in today’s
Internet. TCP uses the slow start procedure [14] to probe the avail-
able network capacity both at connection start up and upon restart
after an idle period. This usually requires several roundtrips. For
short Web data transfers, which typically span only a few roundtrips,
spending several roundtrips in probing the network state can be very
inefficient. Several techniques like P-HTTP have been proposed in
the past to speed up short Web transfers. These techniques help, but
are not complete solutions.

In this paper, we propose a new technique, which we call
TCP/SPAND, to effectively eliminate the slow start penalty for short
data transfers. In TCP/SPAND, network performance information is
shared among many co-located hosts to estimate each connection’s
fair share of the network resources. Based on such estimation and
the file transfer size, the TCP sender determines the optimal initial
congestion window size at connection start up and upon restart after
an idle period. Instead of doing slow start, it uses a pacing scheme
to smoothly send out the packets in its initial window. Once all
the packets in the initial window have been paced out, the sender
switches back to the behavior of the standard TCP.

We implement TCP/SPAND in the ns simulator [24] and use ex-
tensive simulations to evaluate its performance. Our results show
that TCP/SPAND significantly reduces latency for short transfers

even in presence of multiple heavily congested bottlenecks. Mean-
while, TCP/SPAND is TCP-friendly. The significant performance
improvement is not at the expense of degrading the performance of
the connections using the standard TCP [14]. Therefore, deploying
TCP/SPAND at Web servers can provide great performance benefit.
Furthermore, our system is designed to be incrementally deployable
in today’s Internet. It only involves modifications at the server side.
All the client side applications can be left untouched.

The rest of the paper is organized as follows.
�

2 gives some back-
ground about TCP.

�
3 overviews the previous work. In

�
4, we ana-

lytically derive the optimal initial congestion window as a function of
certain network path characteristics and the transfer size.

�
5 presents

the design and implementation of TCP/SPAND, an incrementally de-
ployable architecture that allows us to apply our analytical results to
today’s Internet.

�
6 presents simulation results to evaluate the ef-

fectiveness of our approach. We end with concluding remarks and
future work in

�
7.

2. BACKGROUND
TCP is currently the dominant transport protocol in the Internet and
forms the foundation of applications such as Web browsing, E-mail,
file transfer, and news distribution. It is a closed-loop flow control
scheme, in which a source dynamically adjusts its flow control win-
dow in response to implicit signals of network overload. Specifically,
a source uses the slow start algorithm to probe the available network
capacity by gradually growing its congestion window until conges-
tion is detected or its window size reaches the receiver’s advertised
window. The slow start is also terminated if the congestion window
grows beyond a threshold. In this case, it uses the congestion avoid-
ance to further open up the window until a loss occurs. It responds
to the loss by adjusting its congestion window and other parameters.

The success of TCP relies on the feedback mechanism, where it uses
a packet loss as the indication to adapt itself through adjusting a va-
riety of parameters, such as the congestion window size (�������), the
slow start threshold (�	��

���������), the smoothed roundtrip time (���	
�
)
and its variance (��
�

�����). However, for a feedback mechanism to
work, a connection should last long enough. When transfers are
small compared with the bandwidth-delay product of the link, such
as file transfers of several hundred kilobytes over satellite links or
typical-sized web pages over terrestrial links, it is very likely that we
have little or no feedback – loss indications. In this case, the con-
nection’s performance is primarily governed by the choice of initial
parameters.

In the original TCP [14], the initial values of such parameters are
chosen to accommodate a wide range of network conditions. They
may not be optimal for a specific network scenario.

3. PREVIOUS WORK

There have been a number of proposals on improving the start up
and/or restart performance of TCP connections.

Two typical examples of application level approaches are launch-
ing multiple concurrent TCP connections and P-HTTP (persistent
HTTP) [29]. Using multiple concurrent connections makes TCP
overly aggressive for many environments and can lead to congestive
collapse in shared networks [10, 9]. P-HTTP reuses a single TCP
connection for multiple Web transfers, thereby amortizing the con-
nection setup overhead, but still pays the slow start penalty. Since
the average Web document (including the inline Web objects) is only
around 30KB [21], such penalty is significant enough to limit the
performance benefit of P-HTTP.

T/TCP [5] bypasses the three-way handshaking by having the sender
start transmitting data in the first segment sent (along with the
SYN) [1]. In addition, T/TCP proposes temporal sharing of TCP
control block (TCB) state, including maximum segment size (MSS),
smoothed RTT, and RTT variance [5]. [6] also mentions the possi-
bility of caching the congestion avoidance threshold without offering
details.

Hoe proposes [16] to use the bandwidth-delay product to estimate
the initial �	��
��������	� . However, they use a packet-pair [18] like
scheme to estimate the network available bandwidth, which does not
work well for FIFO networks.

Allman et. al. propose [2] to increase the initial window (and op-
tionally the restart window) to roughly 4K bytes. There have been
various studies in support of [2] such as [3] and [32]. However, since
they use a fixed initial window for all connections, the value has to
be conservative, and the improvement is still inadequate in situations
where the bandwidth delay product is much larger.

TCP control block interdependence [34] specifies temporal reusing
of TCP state, including carrying over congestion window informa-
tion from one connection to the next. Similar to [34], Fast start [26,
27] reuses the congestion window size (�������), the slow start thresh-
old (�	��
����������), the smoothed roundtrip time (���	
�
) and its variance
(�	
�

�����). By taking advantage of temporal locality, both approaches
can lead to significant performance gain. On the other hand, as
demonstrated in

�
4, the optimal initial congestion window size de-

pends on both the network state and the transfer size. Therefore, di-
rectly reusing previous parameters is not optimal. In addition, when
network condition changes, such reusing can be overly aggressive.
Fast Start [27] addresses the issue by resorting to router support. This
is not the final solution at least for today’s Internet. Moreover, in both
approaches information sharing is limited to within a single host (al-
though the possibility for inter-host sharing is mentioned in [26]).

In summary, TCP start-up performance has received considerable at-
tention. Many proposals help, but are not complete solutions.

4. MINIMIZE LATENCY BY CHOOSING
OPTIMAL INITIAL ��� �"!

In this section, we show how to determine the optimal initial �������
(denoted as ��������#
$�%) that minimizes the completion time for a data
transfer given the transfer size and the network path characteristics.
We first analytically derive �&�'����#
$�% for a simple scenario in which
the network path characteristics remain unchanged (in

�
4.1). We

then extend our results to more general scenarios by introducing a
technique called the shift optimization (in

�
4.2).

4.1 Derivation of ������� #
$�% for a Simple Scenario
We consider a simple network model in which there is only one TCP
connection, the network path characteristics remain unchanged for
the duration of the connection, and all losses are due to network con-
gestion.

We use the following notations in our derivations:(Let � #
$�% = propagation delay * bottleneck bandwidth.(Let �*),+-� #
$�%/.10 , where 0 is the buffer size at the bottle-
neck router.

Clearly, �*#
$�% is the number of packets the link can hold on its own,
while �*) is the total number of packets that the link and the buffer
together can hold.

As we know, the slow start algorithm is designed to probe the avail-
able network capacity. The throughput during slow start is very low.
More specifically, without delayed ACK, no more than 2436587 pack-
ets can be sent in 9 RTT’s during slow start; with delayed ACK,
the throughput is even lower because the congestion window grows
more slowly. Therefore, if the network condition is known and sta-
ble, we should try to avoid slow start, and enter congestion avoidance
directly. This can be achieved by setting the initial �	��

��������� to be
no more than the initial ������� . Therefore, we only need to consider
the congestion avoidance phase in order to find ������� #
$�% . Moreover,
we only consider the Reno-style congestion avoidance because it is
the dominant TCP flavor in today’s Internet.

Time t

Window Size W(t) Service Rate S(t)

E 2E 3E

[(1+Wc)/2]

Wopt

1+Wc

Figure 1: Evolution of service rate and congestion window during
congestion avoidance for TCP/Reno. : is the duration of an epoch.

Consider a TCP/Reno connection that starts at time 0 with an initial������� of ;	<'=?>A@BDC and has an infinite amount of data to send. DefineE,F
?G as the service rate it receives at time
 , and � F
?G as its conges-
tion window size at
 . Figure 1 depicts roughly how

E,F
?G and � F
�G
evolve with time, going through periodical epochs. A similar figure
also appeared in [15]. (For simplicity, we ignore the time required
by the fast retransmission algorithm to wait for 3 duplicated ACK’s.)

Let

: : the duration of an epochHJI
: the number of packets sent during an epochK

: the average number of packets acknowledged by
an ACK

Close inspection of the congestion window evolution allows us to
estimate

HJI
: During each epoch, the congestion window size starts

from ; < = >J@B C and increases linearly in time, with a slope of @L pack-
ets per roundtrip time. When the window size reaches �M) . 7 , the
sender injects �N) . 7 packets into the network. Since the network
can hold at most �) packets, the last packet will get dropped. Af-
ter sending another �*) packets (corresponding to the �*) ACK’s for
those packets that are not dropped), the sender detects the loss by 3
duplicated ACK’s and recovers from it through fast retransmission.
Then the window drops back to ; < = >J@B C and a new epoch begins.
Therefore, the total number of packets sent during each epoch is:

H I + KPO F <'=Q
R	SPT&U =&V�WXZY

[G . 2 O �) . 7 (1)

For a given transfer with size
H

, choosing ������� #
$�% is essentially the
problem of fitting a block with size

H
in the

E,F
?G curve to minimize
the transfer time. More precisely, we want to find �]_^ `bac:dG to
minimize e , which satisfies fJg >�hg

E,F
?G��4
i+ H . (We can then choose� F �	G as our �&�'��� #
$�% .) For this problem, we have the following
theorem:

t

W(t) S(t)

F

cwnd_{opt}

k*E

Figure 2: Minimize completion time by having the transfer end at
some epoch boundary.

THEOREM 1. As illustrated in Figure 2, we can minimize the
completion time for a given transfer with size

H
by choosing the ini-

tial ������� appropriately so that the transfer ends at an epoch bound-
ary, i.e., at time 9 O : , for some integer 9 .
The detailed proof for Theorem 1 can be found in [37]. Below we
give some intuition behind the theorem.

Consider a transfer that starts at time �j\-^ `ba?:dG with a completion
time of elkm: . Clearly, there are only two cases: (i) � . elkn: ,
and (ii) � . epol: . As illustrated in Figure 3, by comparing the
area of the shaded regions, it is evident that in both cases the amount
of data transfered during interval ^ :-5Ne6a?:rq is no less than the data
transfered in ^ �sac� . e6q , which is the transfer size. This means if
we can have the original transfer end at time : , the completion time
does not increase.

t

S(t)

t

S(t)

s s+T EE-T

(a) s+T <= E

E

t

S(t)

t

S(t)

s s+T EE-TE s

(b) s+T > E

Figure 3: Fixing the width of the shaded region to elkn: , we can
maximize the area of the region by having the region end at : .

Based on Theorem 1 we can further derive the value of �&�'��� #
$�% .
The result is summarized in the following theorem:

THEOREM 2. The optimal initial ������� (������� #
$�%) that mini-
mizes the completion time of a given file transfer with size

H
can

be determined as the largest integer t (ku�N) . 7) satisfying

KPO <'=Q
v S�wjx .

F 2 O �) . 7�G,y Huz|{�}~H I (2)

where
HJI

is defined in Equation 1.

The derivation of Theorem 2 is given in [37].

Note that the ��������#
$�% in Theorem 2 is derived for the case in which
the transfer ends at some epoch boundary. But ending at an epoch
boundary means the connection has to experience a loss during its
final epoch. Although in theory, the loss can be detected and recov-
ered very fast through fast retransmission, in reality it may still be
desirable to avoid such an additional loss. This can be achieved by
having the transfer end with its �&�'��� equal �N) instead of �*) . 7 .
Accordingly, the initial �&�'��� becomes the largest integer t (ku�))
satisfying

KPO <'=Q
v S�w�x y

H1z|{�}dH I
(3)

4.2 Shift Optimization
We can prove that the ��������#
$�% given by Theorem 2 minimizes the
integer number of roundtrips required for the given transfer. The
only assumption we need to make is that �N) remains unchanged
throughout the duration of the connection.

Of course, assuming a constant �) is unrealistic in the real world.
But fortunately, we can relax this assumption through a technique
which we call the shift optimization. More specifically, for ��������#
$�%
determined by Equation 3, if

K�O F�� <�=v S)����������&� x G is greater thanF Hrz|{�}bH I G , we can reduce the initial �&�'��� without increasing the
integer number of required roundtrips by shifting the entire transfer
in Figure 2 towards left.

The exact amount of reduction in �&�'��� can be estimated as follows:
Suppose we reduce the initial ������� by � . Since it takes roughly

KJOF �*)�5�������� #
$�%�. 7	G roundtrips for ������� to grow from
F �&�'��� #
$�% 5��G up to

F �) 5]��G , the total amount of transfered data is reduced
by around � O F K�O F �*)658������� #
$�%�. 7	G�G . Such reduction should
be no more than

KiO � < =v S)������ ���&� x 5
H]z|{�}�HAI

in order to keep the
same integer number of required roundtrips. This gives us

��+�;
KPO � <�=v S)����������&� x 5

H1z|{�}~H I
KPO F �) 5N��������#�$�% . 7	G C (4)

Clearly, the shift optimization doesn’t increase the integer number
of required roundtrips. It does slightly increase the completion time
by not more than one roundtrip time. However, we believe such
marginal overhead is acceptable because in return we can have a
smaller and thus safer initial �&�'��� . More importantly, as we will
soon demonstrate in this section, the shift optimization makes our
algorithm less sensitive to the exact value of �) .
A simple example of the shift optimization is illustrated in Figure 4.
In this example, we have

K +�7 , �N)�+�7�` , and transfer size
H +7s7 . From Equation 3, we obtain ��������#
$�%d+_� , which results in a

completion time of 2 ��e�e s (more precisely, more than 1 but less

than 2 full �'e6e ’s). After the shift optimization, we get a much
smaller initial ������� of 5, while the completion time becomes 2 full�'e6e s, which is only slightly larger than before optimization.

After Optimization
Initial cwnd=5

Before Optimization
Initial cwnd=9

Figure 4: A simple example of the shift optimization. (
K + 7 . �) +7�` . Transfer size

H +m7�7 .)
To further demonstrate the effect of the shift optimization, we keep
the transfer size to be 30 packets, and plot the computed initial �&�'���
with and without the shift optimization as a function of �) . The
results are summarized in Figure 5.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

In
iti

al
 c

w
nd

 (p
ac

ke
t)

Wc (packet)

Effect of Shift Optimization (file size=30 packets)

w/o optimization
with optimization
y=x

Figure 5: The effect of the shift optimization.

We make two observations: First, with the shift optimization, the
initial �&�'��� is more conservative than directly reusing �N) (corre-
sponding to curve �N+ [in the figure). Second, with the shift op-
timization, the computed �&�'��� is insensitive to the value of �) ,
especially when �N) is large. Multiple �N) can result in the same
initial ������� . Such insensitivity allows us to compute a near optimal
initial ������� even if �*) varies over time or if accurate estimation for�) is not available.

We have demonstrated that the shift optimization makes the choice
of initial ������� both conservative and insensitive to the value of �M) .
Meanwhile, the latency is only increased by a small amount (less
than an RTT). In the rest of this paper, we will use �&�'���b#
$�% to refer
to the optimal initial ������� after the shift optimization.

So far we have only considered non-shared networks, we can extend
our results to shared networks by redefining �) as a connection’s
share of the available network resources, which can be estimated
as one segment smaller than the congestion window size before the
TCP sender detects a loss during congestion avoidance. Measure-
ment study of Internet traces shows that the WAN performance is
reasonably stable over terms of several minutes; meanwhile, nearby
hosts experience similar or identical throughput performance within
a time period measured in minutes [25, 7, 31]. Such level of stability
suggests sharing performance information both temporarily and spa-

tially (across many co-located hosts) can help to more accurately de-
termine network performance, in particular, a connection’s fair share
of network resources (�N)).
5. TCP/SPAND: SYSTEM DESIGN AND IM-

PLEMENTATION
In this section, we present the design and implementation of
TCP/SPAND, a system that allows applications like Web servers or
FTP servers to effectively avoid the slow start penalty by applying
the theory we develop in

�
4. Our design only involves modifications

to the server side. All the client applications can be left untouched.
This makes TCP/SPAND incrementally deployable in today’s Inter-
net.

5.1 System Architecture
Our design of TCP/SPAND, similar to SPAND [31, 30], uses a per-
formance gateway that monitors all traffic entering and leaving an
organization’s network. For each destination network, the gateway
gathers network performance information from all the active TCP
flows to that destination. It then aggregates such information to esti-
mate the current network state.

The gateway needs to track two types of performance information,
which are described below:(�) , which reflects the network resources available to a TCP

flow. It is required for choosing the optimal initial ������� as
shown in

�
4. �) can be estimated as one segment smaller

than the current congestion window size when a TCP sender
detects a loss during congestion avoidance. For a short data
transfer, it is possible that entire transfer completes without
experiencing any loss. In this case, its �N) can be estimated as
the congestion window size when the connection terminates.(The roundtrip time (RTT) information. It is used to deter-
mine the initial rate for smoothly sending out the packets in
the initial congestion window, which we will discuss in detail
in
�

5.2.5. It is also useful for determining the initial TCP
timeout value.

At connection start up or upon restart after an idle period, the appli-
cation sitting on top of a TCP sender (e.g., a Web server) extracts the
current estimation of �) and �'e6e from the performance gateway. It
then computes �&�'��� #�$�% as described in

�
4 based on such estimation,

as well as the transfer size, which is locally available. It then uses
a setsockopt system call to initialize the parameters such as the������� and ���	
�
 for the underlying TCP sender. Instead of doing slow
start, the TCP sender directly enters congestion avoidance. (This can
be achieved by setting ����

���s����� to be no more than �������). Mean-
while, the TCP sender uses a pacing scheme to smoothly send out
the packets in the initial window. Once all the packets in the initial
window have been paced out, it switches back to the behavior of the
standard TCP.

5.2 Implementation Issues
There are a number of questions we need to answer in order to actu-
ally implement TCP/SPAND:(What is the right scope for information sharing and aggrega-

tion? That is, among which TCP flows should the performance
information be shared and aggregated?(How does the performance gateway collect performance infor-
mation for active TCP flows?(After collecting the performance information, what algorithms
should the performance gateway use to aggregate the perfor-
mance information and estimate the current network state?

(How can the applications sitting on top of TCP extract the cur-
rent estimation of �) and �'e6e from the performance gate-
way?(What pacing scheme should the TCP senders use to send out
packets in the initial congestion window? How can such a
scheme be implemented?

In the remainder of this section, we discuss the potential solutions
as well as different implementation strategies for these problems in
turn.

5.2.1 Determining the Scope for Sharing and Aggre-
gation

The first problem we discuss is how to determine the right scope for
information sharing and aggregation. Ideally, we would like to share
performance information among flows that share the same bottleneck
router at the same time. Unfortunately, in the current Internet archi-
tecture, it is very difficult to determine which network flows share the
same bottleneck, because there is no easy way to determine where a
packet was dropped.

To get around such difficulty, we decide to use conservative approx-
imations based on the destination IP address. Two possible approxi-
mations have been proposed in [30]: The host locality, that is, flows
that share the common destination IP address; and the network local-
ity, that is, flows that share the same destination network. We choose
to use the latter, which allows more sharing.

Note that it is somewhat difficult to determine the network address
from an IP address because the length of the network part can vary.
We use a simple heuristic which assumes that IP addresses sharing
the most significant 24 bits belong to the same network [30].

Below we evaluate the accuracy of the 24-bit heuristic using access
logs recorded at MSNBC news site [23], one of the busiest Web sites
in the Internet today. Our traces are from busy hours (from 9:00am
to noon) on three consecutive weekdays (from Tuesday, August 03
1999 to Wednesday, August 05 1999). They consist of 10,688,728
HTTP requests to MSNBC, with requests for inline images excluded.

For each client IP address, we use reverse DNS lookup to resolve
its host name, and take the last two segments of the host name as
its domain name. We then report how often client IP addresses
sharing the most significant 24 bits get resolved to different domain
names. Altogether there are 656,559 IP addresses in the access logs,
among which 475,803 (72.48%) can be successfully resolved to host
names via reverse DNS lookup. Of those 475,803 IP addresses, there
are 106,669 distinct 24-bit subnet addresses, and only 6715 (6.3%)
subnet addresses contain IP addresses that are resolved to different
domain names. This demonstrates the high accuracy of the 24-bit
heuristic.

5.2.2 Collecting Performance Information
The second important problem is how the performance gateway col-
lects performance information from active TCP flows. There are sev-
eral possible implementation strategies for this problem.

First, the TCP senders can record the performance information as
socket state variables. The application sitting on top of TCP can
periodically get such information using the getsockopt system
call and then report to the performance gateway by sending a special
performance report packet. This is similar to the approach used in
the original SPAND system.

Alternatively, it is possible to modify TCP so that a TCP sender pig-
gybacks the performance information in its normal outbound data
packets by introducing a new TCP option. When the performance
gateway captures such packets, it can extract the performance infor-
mation it needs. The TCP receivers can simply ignore this option.
The bandwidth and processing overhead for the new TCP option is
unlikely to cause a performance concern because the performance in-
formation doesn’t have to be reported very frequently. However, the
TCP senders may need to negotiate the option in advance in order
to interoperate with existing implementation of TCP receivers [17].
A similar approach for piggybacking the performance information is
to steal bits from normal IP headers [33]. This approach doesn’t re-
quire any TCP option negotiation and can be implemented with only
sender side modifications.

As a third alternative, the performance gateway itself can infer the
performance information by passively monitoring all the traffic en-
tering and leaving the organization’s network and then reconstruct-
ing the TCP protocol state. This is similar to [22]. Compared to the
first two approaches, the passive approach has the advantage that it
doesn’t consume any extra bandwidth and doesn’t require any modi-
fication to the sender’s protocol stack.

5.2.3 Information Aggregation
After collecting the performance information, the performance gate-
way needs to aggregate such information to accurately estimate the
current network state.

Currently, we use a very simple sliding window averaging algorithm
to aggregate the performance information. More specifically, the per-
formance gateway keeps a sliding window of

E
minutes in duration.

It uses the average of all values in the past
E

minutes as the estima-
tion for current �) and �'e6e .

In case there is not enough performance information in the sliding
window, the performance gateway simply informs the TCP senders
to do slow start. As part of our future research, we are interested in
exploring the possibility of exponentially decaying the estimation for�*) in this case.

The only control parameter in our algorithm is
E

, the size of the
sliding window. The choice of

E
involves some tradeoffs: On one

hand, we want
E

to be as large as possible in order to maximize
sharing; on the other hand, a large

E
means the performance gateway

needs to keep a large amount of state; in addition, the choice of
E

needs to match the level of stability reported in the literature.

Currently, we set
E

to 5 minutes. It clearly matches the level of sta-
bility reported in [25, 7, 31], which is a few minutes. Below we use
MSNBC traces to demonstrate that a 5-minute sliding window can
achieve significant sharing while only requiring moderate amount of
state kept by the performance gateway.

Figure 6 shows the cumulative distribution of the time between two
consecutive requests from the same client network. (We use the 24-
bit heuristic described earlier to determine the client network ad-
dress.) As we can see, around 90% of the time, the time elapse
between two consecutive requests from the same client network is
below 5 minutes. This suggests that with a 5-minute sliding window,
most Web transfers are able to benefit from the congestion informa-
tion accumulated by the previous transfers.

We also assess the amount of state the performance gateway needs
to keep. Since the performance gateway keeps state for each destina-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024 4096 16384

C
um

ul
at

iv
e

Fr
ac

tio
n

Time (sec)

Cumulative Fraction of the Time between Consecutive Requests from the Same Network

9am - noon Aug 03 1999
9am - noon Aug 04 1999
9am - noon Aug 05 1999

Figure 6: Cumulative distribution of the time between two consecu-
tive requests from the same network. The 24-bit heuristic is used to
determine the network address from an IP address.

tion network, the total amount of required state is proportional to the
number of different destination networks showing up in a 5-minute
interval. For each request in the MSNBC traces, we count the num-
ber of different client networks appeared in the next 5 minutes. We
then plot the cumulative distribution for all these numbers in Fig-
ure 7. From the figure it is evident that the performance gateway
only needs to keep state for 15,000 to 25,000 different destination
networks even during busiest periods, which can be easily handled
by modern computers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000

C
um

ul
at

iv
e

Fr
ac

tio
n

Number of Different Client Networks

Cumulative Distribution for the Number of Different Client Networks Seen in 5 Minutes

9am - noon Aug 03 1999
9am - noon Aug 04 1999
9am - noon Aug 05 1999

Figure 7: Cumulative distribution for the number of different client
networks seen in 5 minutes.

5.2.4 Retrieving Current Estimation of Network State
There are at least two possible ways for the application to retrieve
the current estimation of �) and �'e6e :

First, similar to SPAND, the application can explicitly query for such
information by sending a special performance inquiry packet to the
performance gateway.

Alternatively, when the performance gateway infers that some appli-
cation needs the current estimation of �) and �'e6e , it can actively
push such information to the host on which the application runs.

There are several simple heuristics that can be used by the perfor-
mance gateway to determine if an application needs such estimation.
For example, when the performance gateway captures an incoming
file transfer request (e.g. an HTTP GET request), or even simpler,
when it captures an inbound packet for a new TCP connection, or for
a connection that has been idle for a while, it can safely infer that
the corresponding TCP flow needs the estimation. These heuristics
can be implemented very easily, especially when the gateway already

uses the Windmill approach [22] to collect performance information
through passive monitoring and protocol reconstruction.

5.2.5 Pacing
Lastly, we discuss pacing. In TCP/SPAND, the TCP senders don’t go
through the slow start procedure after initializing its ������� . However,
the ������� #
$�% derived in

�
4 can be potentially large. Sending out all

the packets in the initial congestion window back to back is clearly
unacceptable because it can result in a large burst overflowing the
network bottleneck buffer.

A natural solution to this problem is to have the TCP sender use
a pacing scheme to smoothly send out all the packets in the initial
window. Once all packets in the initial window have been sent, the
sender can switch back to the behavior of the standard TCP.

There are several pacing schemes proposed in the literature [8, 27,
35]. Here we introduce an alternative scheme based on leaky-bucket.
In this scheme, a TCP sender uses a leaky bucket (more specifically,
a token bucket) to shape its outgoing traffic. When the sender has a
packet to send, it first checks the token bucket. If there are sufficient
tokens, the packet is sent immediately; otherwise, it is delayed using
a fine-grained timer until there are enough tokens. The depth of the
token bucket can be configured to limit the maximum burstiness of
the outgoing traffic. It is set to 4 segments in our simulations. The
token filling rate is set to)������g
� %�% so that the average sending rate is no
more than �&�'��� packets per roundtrip.

In order to implement the leady-bucket based pacing scheme, we
need a fine-grained timer to reschedule a segment for later transmis-
sion in case there are no sufficient tokens. Meanwhile, since the
token filling rate is inversely proportional to ���	
�
 , we need a rela-
tively accurate estimation of �'e6e , which can not be achieved with
the 200 ms or 500 ms timer granularity in the standard TCP. In our
simulations, we use a 50 ms timer. If the TCP
 x t�����
���t�� option
is available, it can be used to further improve the accuracy of RTT
estimation.

There is evidence to suggest that the overhead of software timers
is not likely to be significant with modern processor technologies.
([12] reports an overhead of the order of a few microseconds.) More-
over, the timer overhead is unlikely to be a significant addition to the
cost of taking interrupts and processing ACK’s that goes with ACK
clocking [27].

5.3 Implementation Status
Currently, we have implemented TCP/SPAND in the ns network
simulator [24]. Our implementation is based on TCP NewReno [16,
11], a variant of TCP that uses partial new ACK information to re-
cover from multiple packet losses in a window at the rate of one per
RTT. As described above, the performance gateway uses a 5-minute
sliding window to aggregate the performance information. For sim-
plicity, we assume that the communication between the performance
gateway and the other hosts in the organization’s network is instanta-
neous. This is reasonable, because compared to the large delay for a
WAN connection, the communication latency in a LAN environment
is negligible.

6. SIMULATION RESULTS
In this section, we use extensive simulations in the ns network sim-
ulator to study the performance of TCP/SPAND. We first discuss our
simulation topology and experiment methodology, and then present
detailed results for various simulation scenarios.

6.1 Simulation Topology
In our simulations, we use single-bottleneck topologies to uncover
and illuminate the important issues, and more realistic multiple-
bottleneck topologies to evaluate the performance of TCP/SPAND
in real-world scenarios.

The single-bottleneck topology is shown in Figure 8. One or more
bursty connections are established between a subset of the sources on
the left and sinks on the right. The bottleneck buffer is 10 KB. The
bottleneck router uses FIFO scheduling and drop-tail buffer manage-
ment. All non-bottleneck links have 10 Mbps capacity and 1 ms
one-way propagation delay. We consider three scenarios shown in
Table 1.

Source 1

Source 2

Source n

Dest 1

Dest 2

Dest n

Bottleneck Link

Router S Router D

10 Mbps, 1ms

Figure 8: Single-bottleneck topology. Bottleneck buffer is 10 KB.
The settings for bottleneck link are summarized in Table 1.

The multiple-bottleneck topology is illustrated in Figure 9. In this
topology, a set of � user flows traverse a congested network path
that consists of � hops. Cross traffic is generated at each inter-
mediate router � v (x +�7�a&2�a�������a?�) from � cross-traffic sources.
Each router has 10 KB buffer and uses FIFO scheduling and drop-
tail buffer management. All links other than those between adjacent
routers have 10 Mbps capacity and 1 ms one-way propagation delay.
As for the links between adjacent routers, we consider two scenarios
summarized in Table 2, which roughly correspond to Scenario 1 and
2 for the single-bottleneck topology. (Note that the aggregated buffer
size is larger in the multiple-bottleneck scenario.)

R

C
Cross-Traffic

Sources

C
Cross-Traffic

Sinks

R

C
Cross-Traffic

Sources

R

C
Cross-Traffic

Sinks

C
Cross-Traffic

Sources

R

C
Cross-Traffic

Sinks

1 2 3 K

M
User Flow

Sinks

M
User Flows

Figure 9: The multiple-bottleneck topology. Bottleneck buffer is 10
KB. The settings for bottleneck link are summarized in Table 2.

For the interest of brevity, we only include the results for Scenario 1
and Scenario 4 in this paper. Interested readers can refer to [37] for
results of the other scenarios. In general, the performance gain using
TCP/SPAND is higher when each connection share of �) is large.
In other words, TCP/SPAND yields even higher performance benefit
for the scenarios omitted here.

6.2 Experiment Methodology
We set up our experiments in the following way to mimic the behav-
ior of Web transfers: Each experiment consists of 40 rounds. In each
round every sender transfers one file with start time uniformly dis-

tributed around a central point by a time interval (denoted as jitter).
Between each round there is 120 seconds of idle time.

We use the average completion time of all file transfers in an experi-
ment as our performance metric. For each simulation configuration,
we report the mean of 10 runs of an experiment. We also looked at
the variation, but since it is very small compared to the mean, we
don’t report it here.

We compare the performance of TCP/SPAND with the following
four variants of TCP’s:(Reno with slow start restart (reno-ssr): TCP/Reno which en-

forces slow start when restarting data flow after an idle period.(Reno without slow start restart (reno-nssr): TCP/Reno which
reuses the prior congestion window upon restarting after an
idle period (This is the scheme used in SunOS.).(NewReno with slow start restart (newreno-ssr):
TCP/NewReno with restart behavior similar to reno-ssr.(NewReno without slow start restart (newreno-nssr):
TCP/NewReno with restart behavior similar to reno-nssr.

The maximum window size of all TCP connections in our simula-
tions is set to 100 KB. The TCP segment size is set to 1 KB. More-
over, in order to remove the performance difference due to different
timer granularities, all TCP flavors use the same timer granularity
of 50 ms unless otherwise specified. Finally, just like in [26, 27],
all the TCP protocols in our experiment use one-way connections
instead of two-way connections. That is, TCP classes derived from
TcpAgent are used instead of those derived from FullTcpAgent
in the ns simulator. Consequently, there is no overhead of 3-way
handshaking at connection setup. We believe removing such con-
nection setup overhead is necessary for us to better understand the
performance impact of the slow start procedure, which is the major
focus of TCP/SPAND. Avoiding connection setup overhead is or-
thogonal to avoiding slow start penalty and has already been well
studied in the literature. For example, P-HTTP [29] can effectively
amortize such overhead across multiple transfers.

6.3 Performance Evaluation on the Single-
Bottleneck Topology

In this section, we evaluate the performance of TCP/SPAND on the
single-bottleneck topology illustrated in Figure 8. We examine the
multiple-bottleneck topologies in the following section.

6.3.1 Performance evaluation with many concurrent
web transfers

6.3.1.1 Varying the number of competing connections
First, we compare performance as the number of competing TCP
connections varies from 1 to 30 while transfer size is kept at 30 KB,
which is the average Web transfer size [21]. Five telnet sessions
compete with the main flows to help avoid deterministic behavior.
The inter-arrival times for telnet sessions are drawn from the “tcplib”
distribution as implemented in ns.

Figure 10 shows the results for Scenario 1 in Table 1. As shown in the
figure, TCP/SPAND leads to significant reduction in average com-
pletion time. Compared with reno-ssr and newreno-ssr, TCP/SPAND
reduces latency by more than 50% in most cases, which means a
100% improvement in average data rate. Compared to reno-nssr and
newreno-nssr, the completion time reduction is smaller but still sig-
nificant, over 20% in most cases. Notice that reno-nssr and newreno-
nssr are well-known to be overly aggressive but still perform con-
siderably worse than TCP/SPAND. There are two major reasons for

Scenario Bandwidth Link Delay Descriptions
1 1.6 Mbps 50 ms typical terrestrial WAN links with close to T1 speed
2 1.6 Mbps 200 ms typical geostationary satellite links with close to T1 speed
3 45 Mbps 200 ms typical geostationary satellite links with T3 speed

Table 1: Different simulation scenarios for the single-bottleneck topology
Scenario Bandwidth Link Delay Descriptions

4 1.6 Mbps 50/(� 5]7) ms roundtrip time (RTT) similar to Scenario 1
5 1.6 Mbps 200/(�_517) ms roundtrip time (RTT) similar to Scenario 2

Table 2: Different simulation scenarios for the multiple-bottleneck topology. ��yu2 is the number of hops.

this: first, directly reusing previous ������� is not optimal; second,
sending all the packets in initial window at once is usually too bursty
and can cause more losses than TCP/SPAND.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

ec
on

d)

Number of Connections

Scenario 1 (transfer size=30KB)

spand
reno-nssr
reno-ssr
newreno-nssr
newreno-ssr

Figure 10: Performance comparison for different number of connec-
tions. Bottleneck link has setting of Scenario 1 (defined in Table 1).
In each round, file transfers start within 10 seconds (i.e. jitter=10
sec). 5 telnet sessions are used to avoid deterministic behavior.

6.3.1.2 Varying the transfer size
Now we compare performance as the transfer size varies. As shown
in Figure 11, TCP/SPAND reduces the completion time over a wide
range of transfer sizes. In percentage terms, the improvement de-
creases as the transfer size increases. This is what we would expect,
because avoiding the slow start penalty has a much bigger impact on
small transfers than on larger ones.

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

ec
on

d)

File Size (packet)

Scenario 1 with 6 competing TCP connections

spand
reno-nssr
reno-ssr
newreno-nssr
newreno-ssr

Figure 11: Performance comparison for different transfer sizes. 6
TCP connections competes for the bottleneck link with setting of
Scenario 1 (defined in Table 1). In each round, file transfers start
within 10 seconds (i.e. jitter=10 sec). 5 telnet sessions are used to
avoid deterministic behavior.

6.3.2 Performance evaluation with ON/OFF UDP
flows as cross traffic

It has been reported in [28] that WWW-related traffic tends to be
self-similar in nature. In [36], it is shown that self-similar traf-
fic may be created by using several ON/OFF UDP sources whose
ON/OFF times are drawn from heavy-tailed distributions such as the
Pareto distribution. So in this section, we evaluate the performance
of TCP/SPAND with ON/OFF UDP flows as cross traffic.

As before (in
�

6.3.1), we first evaluate performance as the num-
ber of competing connections varies while the transfer size is still
kept at 30KB. The simulation results are illustrated in Figure 12.
TCP/SPAND reduces latency by 35% to 65% compared with reno-
ssr and newreno-ssr, which means a 60% to 200% improvement in
average data rate. Compared with reno-nssr and newreno-nssr, the
latency reduction is around 25% to 50%.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

ec
on

d)

Number of Connections

Scenario 1 with 40 competing UDPs (transfer size = 30KB)

spand
reno-nssr
reno-ssr
newreno-nssr
newreno-ssr

Figure 12: Performance comparison for different number of connec-
tions with 40 ON/OFF UDP flows as cross traffic. The ON/OFF
times of the UDP sources are drawn from Pareto distributions with
the “shape” parameters set to 1.2. The mean ON time is 1 second
and the mean OFF time is 2 seconds. During ON times, the sources
transmit with a rate of 12 Kbps. In both (a) and (b), the jitter for
transfer start time in each round is 10 seconds.

Figure 13 shows the result of varying the transfer size and keeping
the number of connections constant. Again, TCP/SPAND reduces
completion time over a wide range of transfer sizes.

6.4 Performance Evaluation on the Multiple-
Bottleneck Topology

In this section, we evaluate the performance of TCP/SPAND when
the underlying network path is heavily congested and has multiple
bottlenecks.

We use the multiple-bottleneck topology illustrated in Figure 9. The
number of hops (�) is fixed to 5. At each intermediate router � v

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

ec
on

d)

File Size (packet)

Scenario 1 with 40 competing UDPs (connection number=6)

spand
reno-nssr
reno-ssr
newreno-nssr
newreno-ssr

Figure 13: Performance comparison for different transfer sizes with
UDP as cross traffic. Settings are the same as in Figure 12.

(x +¡7sa?2�ac¢ba
£), the cross traffic is generated from � +¤£4` ON/OFF
UDP connections. Just like in

�
6.3.2, the ON/OFF time of the UDP

sources are drawn from Pareto distributions with the “shape” param-
eters set to 1.2. The mean ON time is 1 second and the mean OFF
time is 2 seconds.

6.4.1 Performance evaluation with 12 Kbps UDP
Sources

We first evaluate performance when each ON/OFF UDP source gen-
erates cross traffic at a rate of 12 Kbps during ON time, which is the
same as for the single-bottleneck case in

�
6.3.2.

As before, we first keep the transfer size at 30 KB and vary the
number of competing connections. As illustrated in Figure 14,
TCP/SPAND leads to significant reduction in completion time: 30%
to 65% over reno-ssr and newreno-ssr, 25% to 55% over reno-nssr
and newreno-nssr. Such performance improvement is comparable to
the single-bottleneck case shown in Figure 12.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

ec
on

d)

Number of Connections

Scenario 4 with 12 Kbps ON/OFF UDP cross traffic (transfer size = 30KB)

spand
reno-nssr
reno-ssr
newreno-nssr
newreno-ssr

Figure 14: Performance comparison for different number of connec-
tions with 12 Kbps ON/OFF UDP flows as cross traffic. The jitter
for transfer start time in each round is 10 seconds.

We then fix the number of competing connections to 6 and vary the
transfer size. It is evident from Figure 15 that TCP/SPAND again
achieves significant performance improvement similar to the single-
bottleneck case shown in Figure 13.

6.4.2 Performance evaluation with 48 Kbps UDP
Sources

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

ec
on

d)

File Size (packet)

Scenario 4 with 12 Kbps ON/OFF UDP cross traffic (connection number=6)

spand
reno-nssr
reno-ssr
newreno-nssr
newreno-ssr

Figure 15: Performance comparison for different transfer sizes with
12 Kbps ON/OFF UDP flows as cross traffic. Settings are the same
as in Figure 14.

To further investigate the performance of TCP/SPAND under heavy
congestion, we increase the sending rate of the UDP sources during
ON time to 48 Kbps and redo all the experiments. The simulation
results are summarized in Figure 16 and Figure 17.

From the significant increase in the completion time, it is evident
that the underlying network path is highly congested. But even un-
der such heavy congestion, TCP/SPAND consistently out-performs
the other TCP flavors. Of course, the performance improvement
decreases. This is not surprising, because the impact of the initial
congestion window becomes less significant as the network becomes
highly congested.

0

0.5

1

1.5

2

0 5 10 15 20 25 30

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

ec
on

d)

Number of Connections

Scenario 4 with 48 Kbps ON/OFF UDP cross traffic (transfer size = 30KB)

spand
reno-nssr
reno-ssr
newreno-nssr
newreno-ssr

Figure 16: Performance comparison for different number of connec-
tions with 48 Kbps ON/OFF UDP flows as cross traffic. The jitter
for transfer start time in each round is 10 seconds.

6.5 TCP Friendliness
In this section, we demonstrate the performance improvement of
TCP/SPAND does not come at the expense of degrading the per-
formance of the connections using the standard TCP. In other words,
TCP/SPAND is TCP friendly.

We show this by considering a mixture of TCP’s on the single-
bottleneck topology. One half of the connections use TCP/SPAND,
while an equal number use reno-ssr, one of the least aggressive TCP
schemes. We then compare their performance with the case in which
all connections use reno-ssr. The jitter for transfer start time during
each round is set to 0.1 second to create maximum contention for
the bottleneck bandwidth. Again 5 telnet sessions are introduced to
avoid deterministic behavior.

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

ec
on

d)

File Size (packet)

Scenario 4 with 48 Kbps ON/OFF UDP cross traffic (connection number=6)

spand
reno-nssr
reno-ssr
newreno-nssr
newreno-ssr

Figure 17: Performance comparison for different transfer sizes with
48 Kbps ON/OFF UDP flows as cross traffic. Settings are the same
as in Figure 16.

First, we use 50 ms timer granularity for reno-ssr, which is the same
as TCP/SPAND. Figure 18 summarizes the simulation results, where
the bottleneck link is T1 link with latency of 50 ms (Scenario 1), and
the transfer size is kept at either 30 KB.

From the figure it is evident that the performance of reno-ssr, when
mixed with TCP/SPAND, is virtually the same as when all connec-
tions use reno-ssr. This demonstrates TCP/SPAND is TCP-friendly
even under heavy contention.

Also worth mentioning is that TCP/SPAND performs almost the
same as reno-ssr. This is because the jitter is only 0.1 second. In
such case, each connection’s share of �*) is very small due to heavy
contention. Consequently, the optimal initial ������� is very close to
1, which makes TCP/SPAND behave almost the same as reno-ssr.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

ec
on

d)

Number of Connections

Scenario 1 (transfer size=30KB)

spand (mixed)
reno-ssr (mixed)
reno-ssr (all)

Figure 18: TCP friendliness. 5 telnet sessions are used as back-
ground traffic. Transfer start time in each round has a jitter of 0.1
sec. Transfer size is either 30 KB or 100 KB. The timer granularity
for both reno-ssr and TCP/SPAND is 50 ms.

We also use 200ms timer granularity for reno-ssr to evaluate the
TCP-friendliness of TCP/SPAND. The results are illustrated in Fig-
ure 19. We can see from the figure that TCP/SPAND significantly
outperforms reno-ssr. Meanwhile, reno-ssr experiences almost no
performance degradation in presence of TCP/SPAND.

6.6 Summary of Simulation Results
To summarize, in this section we use extensive simulations to evalu-
ate the performance of TCP/SPAND. TCP/SPAND consistently out-
performs reno-ssr, newreno-ssr, reno-nssr, and newreno-nssr in all

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

ec
on

d)

Number of Connections

Scenario 1 (transfer size=30KB)

spand (mixed)
reno-ssr (mixed)
reno-ssr (all)

Figure 19: TCP friendliness. The configuration is the same as in
Figure 18 except that reno-ssr uses 200 ms timer granularity instead
of 50 ms. TCP/SPAND still uses 50 ms timer granularity.

simulation scenarios, even in presence of multiple heavily congested
links. The performance benefit is greatest when each connection’s
share of �*) is large. In such cases, TCP/SPAND can reduce latency
by 35% to 65% compared with reno-ssr and newreno-ssr; or by 20%
to 50% compared with reno-nssr and newreno-nssr. Meanwhile, such
significant performance improvement does not come at the cost of
degrading unenhanced TCP connections. We have demonstrated that
TCP/SPAND is TCP-friendly even under heavy contention.

There are three major factors that contribute to the good performance
of TCP/SPAND. First, by sharing and aggregating performance in-
formation among many co-located hosts, the sender can have a quite
accurate estimation of current network conditions. Second, the initial������� used by TCP/SPAND is chosen based on our theoretical anal-
ysis for optimal initial �&�'��� . We also employ the shift optimization
(described in

�
4) to make such choice conservative and insensitive

to the accuracy of the estimation of current network characteristics.
In this way, TCP/SPAND can utilize available bandwidth efficiently
and safely when each connection’s share of �*) is large. When the
network is heavily loaded, TCP/SPAND tends to be conservative.
Particularly, when each connection’s share of �N) is less than 4K
bytes, the choice of initial ������� in TCP/SPAND is more conser-
vative than what is proposed in RFC 2414 [2]. Finally, by using a
pacing scheme to send out packets in the initial congestion window,
TCP/SPAND effectively reduces the burstiness of TCP upon start-up
and restart.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we investigate the possibility of speeding up short data
transfers by effectively avoiding the slow start penalty. By analyz-
ing the TCP start-up dynamics, we derive the optimal initial con-
gestion window (�&�'����#
$�%) as a function of the transfer size and
a connection’s share of network resources (�N)). We then propose
an incrementally deployable architecture called TCP/SPAND, which
accurately estimates a connection’s fair share of network resources
by sharing performance information among a large number of co-
located hosts. Based on such estimation and the transfer size, a TCP
sender can further compute the optimal initial congestion window
size. Instead of doing slow start, it directly enters congestion avoid-
ance and uses a pacing scheme to smoothly send out the packets in
its initial congestion window. We then do extensive simulations us-
ing ns simulator to evaluate the performance of the resulting system.
Our results show that TCP/SPAND significantly reduces latency for
short transfers even in presence of multiple heavily congested bot-

tlenecks. Meanwhile, the performance benefit does not come at the
expense of degrading the performance of connections using the stan-
dard TCP.

There are a number of directions that we want to further explore in
the future. First of all, we plan to implement TCP/SPAND in real
systems and evaluate its performance through Internet experiments.
Secondly, we want to better understand the impact of pacing on TCP
performance, especially for short TCP flows. We are also interested
in developing effective techniques for determining which network
flows share a bottleneck. Finally, we plan to investigate better algo-
rithms for information aggregation.

8. REFERENCES
[1] M. Allman, S. Dawkins, D. Glover, J. Griner, T. Henderson, J.

Heidemann, H. Kruse, S. Ostermann, K. Scott, J. Semke, J.
Touch, and D. Tran, “Ongoing TCP Research Related to
Satellites,” Internet Draft draft-ietf-tcpsat-res-issues-05.txt,
Nov. 1998.

[2] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s
Initial Window,” RFC-2414, Sept. 1998.

[3] M. Allman and C. Hayes, “An Evaluation of TCP with Larger
Initial Windows,” ACM Computer Communication Review,
July 1998.

[4] A. Aggarwal, S. Savage, and T. Anderson, “Understanding
the Performance of TCP Pacing,” Proc. IEEE
INFOCOM ’2000, Mar. 2000.

[5] R. Braden, “Extending TCP for Transactions - Concepts,”
RFC-1379, Nov. 1992.

[6] R. Braden, “T/TCP - TCP Extensions for Transactions
Functional Specification,” RFC-1644, July 1994.

[7] H. Balakrishnan, S. Seshan, M. Stemm, and R. Katz,
“Analyzing Stability in Wide-Area Network Performance,”
Proc. SIGMETRICS ’97, 1997.

[8] H. Balakrishnan, V. Padmanabhan, and R. Katz, “The Effects
of Asymmetry on TCP Performance,” Proc. ACM/IEEE
Mobicom ’97, Sept. 1997.

[9] H. Balakrishnan, V. Padmanabhan, S. Seshan, M. Stemm, and
R. Katz, “TCP Behavior of a Busy Internet Server: Analysis
and Improvements,” Proc. IEEE INFOCOM ’98, Mar. 1998.

[10] S. Floyd and K. Fall, “Promoting the Use of End-to-End
Congestion Control in the Internet,” IEEE/ACM Transactions
on Networking, Aug. 1999.

[11] S. Floyd and T. Henderson, “The NewReno Modification to
TCP’s Fast Recovery Algorithm,” RFC-2582, Experimental,
April 1999.

[12] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Understanding
TCP Dynamics in an Integrated Services Internet,” Proc.
NOSSDAV ’97, May 1997.

[13] S. Gribble and E. Brewer, “System Design Issues for Internet
Middleware Services: Deductions from a Large Client Trace,”
Proc. 1st Usenix Symposium on Internet Technologies and
Systems (USITS ’97), Dec. 1997.

[14] V. Jacobson and M. Karels, “Congestion Avoidance and
Control,” Proc. SIGCOMM ’88, Aug. 1988.

[15] D. Heyman, T. Lakshman, and A. Neidhardt, “A New Method
for Analyzing Feedback-Based Protocols with Applications
to Engineering Web Traffic over the Internet,” Proc.
SIGMETRICS ’97, 1997.

[16] J. Hoe, “Improving the Start-up Behavior of a Congestion
Control Scheme for TCP,” Proc. SIGCOMM ’96, Aug. 1996.

[17] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for
High Performance,” RFC-1323, May 1992.

[18] S. Keshav, “A Control-Theoretic Approach to Flow Control,”
Proc. SIGCOMM ’91, Sept. 1991.

[19] K. Thompson, G. Miller, and R. Wilder, “Wide-Area Internet
Traffic Patterns and Characteristics,” IEEE Network,
11(6):10-23, Nov. 1997.

[20] T. Lakshman and U. Madhow, “Performance Analysis of
Window-Based Flow Control using TCP/IP: the Effect of
High Bandwidth-Delay Products and Random Loss,” IFIP
Transactions C-26, High Performance Networking V, pp.
135-150, North-Holland, 1994.

[21] B. Mah, “An Empirical Model of HTTP Network Traffic,”
Proc. INFOCOM ’97, 1997.

[22] G. Malan and F. Jahanian, “An Extensible Probe Architecture
for Network Protocol Performance Measurement,” Proc.
SIGCOMM ’98, 1998.

[23] http://www.msnbc.com.
[24] UCB/LBNL/VINT Network Simulator - ns (version 2).

http://www-mash.cs.berkeley.edu/ns, 1997.
[25] V. Paxson, “Measurements and Analysis of End-to-End

Internet Dynamics,” PhD thesis, U.C. Berkeley, May 1996.
[26] V. Padmanabhan, “Addressing the Challenges of Web Data

Transport,” Ph.D. Thesis, UC Berkeley, 1998.
[27] V. Padmanabhan and R. Katz, “TCP Fast Start: A Technique

for Speeding Up Web Transfers,” Proc. IEEE Globecom ’98
Internet Mini-Conference, Nov. 1998.

[28] K. Park, G. Kim, and M. Crovella, “On the Relationship
between File Sizes, Transport Protocols and Self-Similar
Network Traffic,” Proc. ICNP ’96, 1996.

[29] V. Padmanabhan and J. Mogul, “Improving HTTP Latency,”
Proc. Second International World Wide Web Conference,
Oct. 1994.

[30] S. Savage, N. Cardwell, and T. Anderson, “The Case for
Informed Transport Protocols,” Proc. 7th Workshop on Hot
Topics in Operating Systems (HOTOS ’99), Mar. 1999.

[31] S. Seshan, M. Stemm, and R. Katz, “SPAND: Shared Passive
Network Performance Discovery,” Proc 1st Usenix
Symposium on Internet Technologies and Systems
(USITS ’97), Dec. 1997.

[32] T. Shepard and C. Partridge, “When TCP Starts Up With Four
Packets Into Only Three Buffers,” RFC-2416, Sept. 1998.

[33] I. Stoica and H. Zhang, “Providing Guaranteed Services
Without Per Flow Management,” Proc. SIGCOMM ’99,
Sept. 1999.

[34] J. Touch, “TCP Control Block Interdependence,” RFC-2140,
April 1997.

[35] V. Visweswaraiah and J. Heidemann, “Improving Restart of
Idle TCP Connections,” Technical Report 97-661, University
of Southern California, Nov. 1997.

[36] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson,
“Self-Similarity through High Variability: Statistical Analysis
of Ethernet LAN Traffic at the Source Level,” Proc.
SIGCOMM ’95, 1995.

[37] Y. Zhang, L. Qiu, and S. Keshav, “Speeding Up Short Data
Transfers: Theory, Architectural Support, and Simulation
Results,” Technical Report 2000-1799, Department of
Computer Science, Cornell University, June 2000.

9. ACKNOWLEDGMENT
Special thanks to Brad Karp, Geoffrey M. Voelker and anonymous
NOSSDAV reviewers for their valuable comments. Also thanks to
Venkata N. Padmanabhan for providing MSNBC web server trace
data.

